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3. Introduction 
Computational biology is the application of computational methods and tools to the study 

of biological systems [1]. It is a rapidly growing field that is increasingly being applied to 

medicine, particularly in the areas of drug discovery and precision medicine [2,3]. 

Computational biology plays an important role in the development of new medical treatments 

and therapies, by providing a deeper understanding of the underlying biological mechanisms 

of disease and by identifying new targets for drug development.  

At the intersection of computational biology and medicine, a new field is emerging –  

computational medicine. Computational medicine is an interdisciplinary field that utilizes 

computational methods and tools to better understand, diagnose, and treat diseases. It 

combines expertise from computer science, mathematics, and engineering with knowledge 

from the biomedical sciences and clinical medicine to develop new methods for analyzing 

large and complex biomedical data. By combining the knowledge provided by the above-

mentioned fields, it is possible to mathematically track and infer the effects of research and 

treatment. One of the methods that make it possible to track the dynamics of metabolic 

reactions, changes in the concentrations of metabolically active molecules present in the cell, 

is modeling. This mathematical modeling can be used to understand the dynamics of 

metabolic pathways [4]. The ultimate goal of computational medicine is to improve patient 

care and outcomes by providing more accurate and personalized diagnoses and treatments. 

3.1. Computational modeling of metabolism 
Computational biology can be used to understand the dynamics of metabolites flow in 

various metabolic and signaling pathways by developing mathematical models that simulate 

the interactions between molecules in the cells, tissues, and organisms [5]. These models can 

be used to test new treatments in silico, and to identify new targets for drug development. 

Modeling makes it possible to predict changes in the cell that are a consequence of 

interference with the biological system. An example of such interference can be the delivery 

of a specific biologically active molecule involved in metabolic pathways (delivery of an 

excessive amount of the substrate or product of a given enzyme) or the use of an enzyme 

inhibitor that deactivates enzyme molecules, which on a macroscopic scale will be evident by 

slowing down the reaction catalyzed by the enzyme. Slowing down the course of an enzymatic 

reaction can also be achieved by genetic knockdown of the gene encoding the enzyme in 

question. Following the gene knockdown, the cell will lack functionally correct molecules of 
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the enzyme in question, leading to a reduction in the speed of the reaction in which the 

enzyme participates or even a complete stop of the reaction. 

In clinical settings, the inhibitor is often a therapeutic substance [6]. Predicting the 

changes induced by a drug as a function of its dose in theory allows for more accurate dosing 

to achieve the best possible therapeutic effects. This is an advantage that can be drawn upon 

as early as the initial molecular research stage. Having knowledge of the target molecule that 

a drug interacts with and the effect it is expected to have on it will enable better planning of 

experiments. One of the apparent benefits of modeling is the reduction in the number of 

laboratory animals on which experiments will be conducted. These experiments often lead to 

the deterioration of the health of laboratory animals or even their death [7–9]. Availability of 

a proper digital model for some of the studies needed to approve a drug and confirm its 

therapeutic ability could allow for their replacement with simulation studies. 

The main difficulties faced by computational biology researchers are the limited 

availability of reliable data and its inconsistency. Depending on the source of the data, they 

can differ significantly from each other. Differences in the concentration data or kinetic 

parameter values of the enzymes in question can be due to, among other things, inaccurate 

measurements, which can be influenced by a number of different reasons, such as data 

acquisition methodology, equipment limitations, lack of adequate training of the scientist, or 

even the source of the data. Concentrations of biological molecules depend on a wide variety 

of factors, even as simple as the time of year in which the material for the study was collected 

[10], the diet, or the type, size, and location from which the tissue under study originated [11].  

3.2. Methods used in computational modeling 
There are several different methods that can be used for creating computational models 

of metabolic systems. The choice of method will depend on the specific characteristics of the 

metabolic system being studied and the research question being addressed. ODE-based 

modeling is the most commonly used method, but other methods such as chemical master 

equations (CMEs), constraint-based modeling, kinetic modeling [12], flux balance analysis 

(FBA) [13–15], Petri net modeling [16], rule-based Modelling (RBM) [17], and agent-based 

modeling can be useful in specific cases. 
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3.2.1. Ordinary differential equations 

Ordinary differential equations (ODEs) are a mathematical tool commonly used in 

computational biology to model the dynamics of metabolic systems [18–25]. These equations 

describe how the concentrations of different molecules in a system change over time and can 

be used to simulate the interactions between different metabolic pathways. 

In computational models of metabolism, ODEs are used to represent the rate of change 

of the concentration of a given molecule, which is determined by the balance of the influx 

(from other pathways) and outflux (towards other pathways or products) of that molecule. 

The rate of change is described by a set of ODEs one for each metabolite [26]. 

To construct a model of metabolism using ODEs, the first step is to identify the set of 

metabolic pathways and reactions that are relevant to the system being studied. Next, a set 

of ODEs can be written to describe the rate of change of the concentration of each metabolite 

in the system, taking into account the fluxes of the reactions. Once the ODEs have been 

written, they can be solved numerically to simulate the dynamics of the metabolic system. 

The results of these simulations can be used to make predictions about how the system will 

behave under different conditions and can be useful in understanding the underlying 

mechanisms of metabolic disorders. Additionally, ODE models can be used to analyze the 

effect of genetic mutations, environmental factors and drug interventions on metabolic 

pathways, and identify potential therapeutic targets. 

While ODEs are a powerful tool for computational modeling of metabolic systems, there 

are several limitations and potential disadvantages to consider: 

1. ODEs are based on the assumption of continuity and smoothness, which might not be 

valid for some biological systems, especially if they have a discrete, stochastic nature. 

In these cases, other mathematical frameworks such as stochastic differential 

equations or agent-based models might be more appropriate. 

2. ODEs are based on the assumption of mass balance, which means that the total 

amount of each metabolite is conserved. This might not be true for all systems, 

especially in cases where the system is open to the environment or where there are 

significant amounts of influx or outflux. 
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3. ODEs require the estimation of kinetic parameters. These parameters are often 

difficult to measure experimentally, and the estimation process can be time-

consuming and uncertain. 

4. ODEs often require a large number of equations and variables, which can make the 

model complex and difficult to analyze. The complexity of the models increases with 

the number of reactions and metabolites considered, making it harder to understand 

the underlying mechanisms of the system. 

5. ODEs can have a high computational cost, especially for large models with a large 

number of equations. This can make it difficult to simulate the model over a long time 

period or to perform sensitivity analysis to determine the impact of different 

parameters on the system. 

It is worth noting that ODEs models are deterministic in nature, while biological systems 

are inherently stochastic, this lack of randomness might not reflect the real system. ODE 

models are a simplification of reality. Therefore, in some cases, ODEs might not capture the 

complexity, variability, and uncertainty of the real metabolic systems. 

3.2.2. Chemical master equations 

Chemical master equations (CMEs) are a mathematical tool that can be used to model 

the dynamics of chemical reactions, including metabolic pathways [27]. CMEs are a type of 

kinetic modeling, which means that they describe the kinetics of the reactions, including the 

rate laws and the Michaelis-Menten constants. 

One of the main advantages of CMEs is that they can account for the stochastic nature 

of biochemical reactions, which can be important in metabolic pathways where the number 

of reactants is small [28]. CMEs also can take into account the discreteness of the molecules, 

which is a feature that ODEs lack. CMEs can be used to calculate the probability distribution 

of the number of molecules for each reactant in the reaction network at any given time. This 

can be useful in understanding the behavior of the system under different conditions and in 

identifying potential bottlenecks or rate-limiting steps in the pathway. 

However, CMEs also have some limitations that should be considered. One of the main 

disadvantages of CMEs is that they can be computationally expensive, especially for large 

systems with many reactions and many states [29]. Additionally, the solution of CMEs can be 

challenging and might require approximations. 
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In conclusion, CMEs are a powerful tool for computational modeling of metabolic 

pathways, particularly in cases where the stochastic and discrete nature of the system is 

important. However, their computational cost and the difficulty of solving them should be 

taken into account when deciding whether to use CMEs for a specific problem. 

3.2.3. Bypassing the limitations of the most common modeling methods 

Due to the fact that the above-described methods are not without flaws, researchers are 

looking for other, competitive ways and methods to create more accurate computational 

models. There are several strategies that can be used to cope with the limitations of ODEs and 

CMEs models [27]. One strategy is to use a hybrid model that combines the strengths of ODEs 

and CMEs. For example, one can use ODEs to describe the dynamics of the system at the 

macroscopic level, and use CMEs to describe the dynamics of the system at the microscopic 

level. This can allow for the inclusion of both deterministic and stochastic behavior in the 

model. Another strategy is to reduce the complexity of the model by simplifying the system 

or by using model reduction techniques such as lumping or moment-closure approximations. 

This can help to make the model more computationally tractable while still capturing the 

essential dynamics of the system.  

It is worth noting that there is no one-size-fits-all solution and the best approach will 

depend on the specific characteristics of the metabolic system being studied, the research 

question being addressed, and the available computational resources. 

3.3. Queueing theory 
Queueing theory is a branch of mathematical modeling that deals with the study of 

waiting lines (queues) and the behavior of systems that involve waiting (servers) [30]. It can 

be used to analyze systems where resources are limited and there is a need to wait for their 

availability. It was realized that queueing theory, which had been widely used in 

telecommunications and other fields to model systems with limited resources, could be 

applied to metabolic pathways [31]. It provided a new perspective on the analysis of metabolic 

pathways, showing that concepts and mathematical tools originally developed for other fields 

can be adapted and applied to biological systems [32,33]. Queueing theory can be used to 

create computational models of metabolic pathways by modeling the enzymes in the pathway 

as servers and the molecules as customers in a queue [34]. This can help to understand the 

behavior of the system under different conditions, such as changes in the enzyme 
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concentration or the substrate availability. The concept of using queueing theory in 

metabolism modeling has been expanded and refined by researchers over the years, and it 

has become a valuable tool for understanding the behavior of metabolic pathways, evaluate 

the impact of different parameters on the system performance, and identifying potential 

bottlenecks in the system and targets for drug development. 

 

Figure 1 Example queue, which represents concentration Ci(t) of the metabolite. Arrival rates 

are presented as inputs, while metabolite depleting rates are outputs. Due to the complexity 

of the metabolic network, some simplifications were adopted. The influence of processes not 

included in the model were calculated using a genetic algorithm (GA). 

Using the Michaelis-Menten kinetic equations, the adaptation parameter μ(t) was 

calculated. The behavior of metabolites of the studied metabolic pathways and reactions 

occurring in the model can be considered as a network of heterogeneous Poisson processes 

described by Equation 1: 

𝑃[(𝑁(𝑡 + 𝜏) − 𝑁(𝑡)) = 𝑘, 𝑡] =
𝑒−𝜇(𝑡)𝜏(𝜇(𝑡)𝜏)𝑘

𝑘!
 (1.) 

where: 

𝑃[(𝑁(𝑡 + 𝜏) − 𝑁(𝑡)) = 𝑘, 𝑡] – probability of 𝑘 arrivals in the interval (𝑡, 𝑡 + 𝜏] 

𝜇(𝑡)𝜏 – expected number of arrivals in a time interval duration of (𝑡, 𝑡 + 𝜏]  
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The queue processing time of metabolite increment (Eq. 2) is described by the 

exponential distribution of the random variable 𝑇 in the terms of the rate parameter 𝜇(𝑡). 

𝑓(𝑇; 𝜇(𝑡)) = {𝜇(𝑡)𝑒−𝜇(𝑡)𝑇   𝑇 ≥ 0
0            𝑇 < 0

 (2.) 

Various metabolic pathways, which are incorporated in the presented model can be 

mimicked by a composition of interconnected queues based on the Michaelis-Menten 

equations. The flow of metabolite concentration from one queue to another is sequential, so 

that a decrease in concentration in one queue will cause an increase in the next queue. Thus, 

a network of interrelated queues can be equivalent to a set of differential equations [35].  

The probability of a reaction occurring and moving to the next queue depends on factors 

such as metabolite-substrate concentration and kinetic constants. Each of the Michaelis-

Menten kinetics equations relates to a specific substrate and affects whether a reaction occurs 

at a specific time point [34]. One of the advantages of basing the model on queueing theory 

is the possibility for its further development and addition of more reactions/metabolic 

pathways without interfering with the previously optimized reactions. This is particularly 

interesting because the model can be developed with further metabolomics discoveries or 

combined with pathways not included in this study. 

Queueing theory-based models [17] are able to bypass some of the errors generated by 

models based on ODEs and CMEs. Moreover, the models based on queueing theory do not 

require addressing the issues that arise from using ODEs, such us dealing with negative results, 

which are not possible in the living cells. Such issues can be resolved quite easily, however, 

they require non-negative ODE solvers [36], available in e.g., MATLAB. Using queueing theory, 

one can analyze the average waiting time for a substrate to be processed by an enzyme, the 

probability of substrate being processed, the probability of substrate being blocked by 

another substrate and the maximum capacity of the enzyme. There are several benefits of 

using queueing theory in computational modeling of metabolic pathways: 

1. Identification of bottlenecks: Queueing theory can be used to identify bottlenecks in 

the metabolic pathway by analyzing the average waiting time for a substrate to be 

processed by an enzyme and the probability of substrate being blocked by another 

substrate. This can help to understand the behavior of the system under different 

conditions, such as changes in the enzyme concentration or the substrate availability. 
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2. Evaluation of system performance: Queueing theory can be used to evaluate the 

performance of the metabolic pathway by analyzing the average waiting time for a 

substrate to be processed, the probability of substrate being processed, and the 

maximum capacity of the enzyme. This can help to identify potential limitations of the 

system and to evaluate the impact of different parameters on the system 

performance. 

3. Modeling of the enzyme saturation: Queueing theory can be used to model the 

saturation of enzymes, which occurs when the enzymes are saturated by the substrate, 

and the substrate molecules have to wait to be processed. This can provide insights 

into the behavior of the system under different conditions, such as changes in the 

substrate availability or the enzyme concentration. 

4. Analysis of the system under different scenarios: Queueing theory can be used to 

analyze the system under different scenarios, such as changes in the enzyme 

concentration or the substrate availability. This can help to understand the behavior 

of the system under different conditions, and to identify potential limitations of the 

system. 

5. Computationally efficient: Queueing theory models can be computationally efficient, 

especially when compared to other methods, such as ODEs or CMEs, which can be 

more computationally intensive. 

6. Provides a framework for modeling regulation mechanisms: Queueing theory can 

provide a framework for modeling regulation mechanisms, such as feedback inhibition 

or allosteric regulation, by changing the rate of the processing of the molecules by the 

enzymes. 

7. Accounting for randomness: In modeling using queueing theory, it is easy to take into 

account the randomness of biological systems. This can be done by applying Gaussian 

noise to concentration values and kinetic parameters. Moreover, its application 

additionally allows one to face possible measurement errors that are consequences of 

various factors including apparatus errors or human factor. 

It is worth noting that queueing theory is a mathematical framework that can be used to 

model the behavior of systems, but it is an abstraction of the real-world systems, so the 
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assumptions made and the parameters used in the model should be carefully considered and 

validated against experimental data. 

In conclusion, queueing theory can be useful in creating computational models of 

metabolic pathways by modeling the enzymes as servers and the molecules as customers, it 

can provide insight into the system behavior and help identify potential bottlenecks in the 

pathway, but it is an abstraction of the real-world systems, so the assumptions made and the 

parameters used in the model should be carefully considered and validated against 

experimental data in order to achieve the highest possible accuracy and reality of the 

computation. This can help to identify any limitations or inaccuracies in the model and guide 

the model development process. 

3.4. Kinetics of enzymatic reactions  
The kinetics of enzymatic reactions describes how the rate of the reaction changes with 

respect to the concentration of the reactants, products, and enzymes. Enzymatic reactions are 

catalyzed by enzymes, which are specific proteins that lower the activation energy required 

for a reaction to occur, thus increasing the rate of the reaction. The kinetics of an enzymatic 

reaction can be described by the Michaelis-Menten equation [37], which describes the 

relationship between the rate of the reaction and the concentration of the substrate 

(reactant). The Michaelis-Menten equation is given by Equation 3: 

𝑣(𝑡) =  

𝑉𝑓
𝑆1(𝑡)𝑆2(𝑡)

𝐾𝑆1
𝐾𝑆2

−  𝑉𝑟
𝑃1(𝑡)𝑃2(𝑡)

𝐾𝑃1
𝐾𝑃2

(1 +
𝑆1(𝑡)
𝐾𝑆1

+
𝑃1(𝑡)
𝐾𝑃1

) (1 +
𝑆2(𝑡)
𝐾𝑆2

+
𝑃2(𝑡)
𝐾𝑃2

)
 (3.) 

where: 

𝑣(𝑡) – reaction speed (velocity) 

𝑉𝑓 – forward reaction speed 

𝑉𝑟 – reverse reaction speed 

𝑆1(𝑡), 𝑆2(𝑡), … , 𝑆𝑥(𝑡) – substrate concentration in mmol/L at time instant 𝑡 

𝑃1(𝑡), 𝑃2(𝑡), … , 𝑃𝑥(𝑡) – product concentration in mmol/L at time instant 𝑡 

𝐾𝑆1
, 𝐾𝑆2

, … , 𝐾𝑆𝑥
 – kinetic constant of substrate 

𝐾𝑃1
, 𝐾𝑃2

, … , 𝐾𝑃𝑥
 – kinetic constant of product 
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It is worth noting that the Michaelis-Menten equation is a simplification of the reality, it 

assumes that the enzymes are in excess, and the enzymes are not affected by the substrate 

concentration, which might not be true for all cases. 

The parameters used in the equations were derived from the scientific literature. To 

obtain them, I performed an extensive literature review in article databases such as PubMed 

[38] and Google Scholar [39]. The sources of the parameters were scientific articles from 

journals with high scientific reputation. Obtaining parameters from peer-reviewed journals 

deemed the parameters as reliable. The data came from two types of publications, original 

research and review articles. The information they contained was from research and was 

experimental data, or (in the case of review type articles) it was a literature review done by 

another research team that provided the data used to calculate the enzyme kinetics 

equations. Another sources of kinetic parameters used in the Michaelis-Menten equations 

were the KEGG Pathway [40], BRENDA [41], and BioNumbers [42] databases. These sources 

provided information on metabolite concentrations, kinetic data of the enzyme, i.e. 𝑉𝑚𝑎𝑥 and 

𝐾𝑚. The parameters from the scientific articles also served as a source of data as a means for 

model validation, to verify the accuracy of the calculations. 

The so-called “balancing flow” was used to determine the flow of molecules having many 

different roles in cellular metabolism and participating in several metabolic pathways/other 

biochemical reactions. These were equations that took into account, among other things, the 

flow of a molecule to other cellular compartments, such as from the mitochondrion to the 

cytoplasm. 

3.5. Law of mass action 
The law of mass action is a principle in chemistry that describes the equilibrium state of a 

chemical reaction. It states that the reaction rate is proportional to the product of the 

concentrations of the reactants raised to their stoichiometric coefficients (Eq. 4) [43,44]. This 

means that the rate of the reaction is determined by the number of reactant particles present 

and their likelihood of colliding and reacting with each other. The law of mass action is used 

to derive mathematical equations that can be used to predict the equilibrium state of a 

chemical reaction given the initial concentrations of the reactants and the rate constants for 

the forward and reverse reactions. The law of mass action is based on the assumption that 

the particles in a chemical reaction are in constant, random motion and that the rate of the 
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reaction is directly proportional to the number of collisions between the reactant particles. It 

is a fundamental principle that is widely used in chemical kinetics and thermodynamics. 

𝑟𝑎𝑡𝑒 = 𝑘[𝐴]𝑚[𝐵]𝑛 (4.) 

where: 

𝑘 – rate constant of the reaction, 

[𝐴], [𝐵] – concentrations of the reactants A and B, 

𝑚, 𝑛 – stoichiometric coefficients of reactants A and B in the reaction. 

The law of mass action is a useful tool for understanding and predicting the behavior of 

chemical reactions, but it is not always applicable in real-world situations where other factors 

such as enzymes or catalysts can affect the rate of a reaction. Enzymes catalyze reactions by 

binding to the reactants and lowering the activation energy needed for the reaction to occur 

[45,46]. The rate of the reaction is not solely determined by the concentration of the 

reactants, but also by the presence and activity of the enzymes. Therefore, the mass action 

law is not useful in describing enzyme-catalyzed reactions. For this reason, I used the 

equations described by mass action law only in developing the insulin signaling pathway 

model. 

3.6. The Krebs cycle 
The Krebs cycle, also known as the citric acid cycle (CAC) or the tricarboxylic acid cycle 

(TCA), is a series of chemical reactions that take place in the mitochondrial matrix of eukaryotic 

cells. It is the central metabolic pathway that generates energy through the oxidation of 

acetyl-CoA, derived primarily from carbohydrates, fats, and proteins thus linking the metabolic 

pathways of these compounds. The reactions of the citric acid cycle were identified in 1937 

by Hans Adolf Krebs, in whose honor the cycle is commonly called the Krebs cycle after him 

[47]. 

The source of acetyl-CoA in the Krebs cycle is pyruvate formed in glycolysis, which 

undergoes a reaction catalyzed by pyruvate dehydrogenase [48]. The Krebs cycle starts with 

the condensation of acetyl-CoA and oxaloacetate to form citrate. Citrate then goes through a 

series of transformations, including the conversion to isocitrate, alpha-ketoglutarate, succinyl-

CoA, succinate, fumarate, malate, and back to oxaloacetate, and the cycle continuously 

repeats (Fig. 2). These reactions are catalyzed by eight different enzymes, including citrate 
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synthase, aconitase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinyl-CoA 

synthetase, succinate dehydrogenase, fumarase, and malate dehydrogenase. 

 

Figure 2 Overview of the Krebs cycle presenting the flow of metabolic intermediates in the 

cycle. 

During each turn of the cycle, electrons are removed from the intermediates and 

transferred to the electron transport chain, ultimately leading to the production of adenosine 

triphosphate (ATP) through oxidative phosphorylation. Additionally, the cycle produces 

several important molecules, such as guanosine triphosphate (GTP), as well as reduced 

nicotinamide adenine dinucleotide (NADH), and reduced flavin adenine dinucleotide (FADH2), 

which are used in the electron transport chain, where they are involved in reactions that lead 

to the generation of ATP. Each molecule of NADH and FADH2 generated in the Krebs cycle 

leads to the production of 2.5 and 1.5 molecules of high-energy ATP, respectively. The Krebs 

cycle also produces carbon dioxide (CO2), which is released as a waste product. Additionally, 

the cycle also generates important intermediates that can be used for other metabolic 

pathways such as gluconeogenesis, the biosynthesis of amino acids, and the synthesis of 

nucleotides. 

To summarize, the Krebs cycle is an important source of energy for cells, as it generates 

GTP (which is the equivalent energy carrier as ATP) and other high-energy molecules that can 

be used to drive other metabolic reactions. It also plays a key role in the regulation of glucose 
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and lipid metabolism, and has been implicated in a wide range of physiological processes, 

including aging and cancer [49,50]. 

3.7. The pentose phosphate pathway 
The pentose phosphate pathway (PPP) is a metabolic pathway that plays a crucial role in 

the metabolism of carbohydrates. It is also known as the hexose monophosphate pathway, 

the phosphogluconate pathway, or the Warburg-Dickens pathway. The main substrate of the 

PPP is glucose-6-phosphate (G6P), which is converted into various products such as 

nicotinamide adenine dinucleotide phosphate (NADPH) and ribose 5-phosphate (R5P). NADPH 

is used in the biosynthesis of fatty acids, while R5P is a precursor in the synthesis of 

nucleotides which are the building blocks of DNA and RNA. Another biologically significant 

molecule formed in PPP is erythrose 4-phosphate (E4P), which is used in the synthesis of 

aromatic amino acids (phenylalanine, tyrosine, and tryptophan). 

The PPP can be divided into two phases: the oxidative phase and the non-oxidative phase 

(Fig. 3). In the oxidative phase, NADPH is produced via the action of the enzyme glucose-6-

phosphate dehydrogenase (G6PD). In the non-oxidative phase, various simple sugars are 

synthesized via the action of transketolase and other enzymes. 5-carbon sugars derived from 

the digestion of nucleic acids can be utilized in the PPP, where their carbon backbones are 

metabolized into intermediates for glycolysis or gluconeogenesis. 
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Figure 3 Overview of the pentose phosphate pathway illustrating the interconnections 

between metabolites and their flux to glycolysis and other metabolic pathways, where they 

are utilized. G6PD – glucose-6-phosphate dehydrogenase, PGLS – 6-

phosphogluconolactonase, PGD – 6-phosphogluconate dehydrogenase, RPIA – ribose-5-

phosphate isomerase A, RPE – ribulose-5-phosphate-3-epimerase, TA – transaldolase, TK – 

transketolase. 

The PPP plays an important role in maintaining cellular levels of NADPH, which is 

necessary for maintaining cellular redox balance and preventing oxidative stress thus limiting 

the harmful effects of reactive oxygen species (ROS) in the cell. ROS can damage cellular lipids, 

proteins, and nucleic acids, and eventually cause cell death [51–53]. It is estimated that as 

much as 60% of NADPH comes from the PPP [54]. The pathway is active in many tissues, 

including the liver, adrenal cortex, and mammary glands. It is also particularly active in red 

blood cells, where it helps to reduce oxidative stress [55]. Due to the lack of mitochondria, the 

only source of NADPH in erythrocytes is PPP. NADPH is used in erythrocytes to reduce 

glutathione (GSH), which, in its reduced form, is crucial for normal function. When GSH levels 

in erythrocytes are too low, hemolysis can occur [56]. 

Studies have shown that the activity of the PPP is significantly increased in cancer cells 

compared to normal cells [57]. Elevated PPP activity is important for cancer cells to maintain 

their high proliferative state [58,59]. Therefore, many drugs aimed at blocking metabolic 
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pathways that supply cancer cells with substances necessary for proliferation target PPP [60–

62]. 

3.8. Signaling pathway of cellular response to insulin 
Insulin signaling is a process that allows cells to respond to changes in blood glucose levels 

by regulating the uptake, storage, and utilization of glucose. The insulin signaling pathway is a 

complex network of interactions between proteins (Fig. 4) [63,64].  It is initiated by the binding 

of insulin to its receptor on the cell surface. This binding triggers a cascade of molecular events 

inside the cell, ultimately leading to changes in gene expression and metabolism. 

The insulin receptor is a tyrosine kinase receptor, meaning that it has an intrinsic kinase 

activity that phosphorylates tyrosine residues on target proteins. When insulin binds to the 

receptor, the receptor's intracellular domain becomes activated and phosphorylates specific 

tyrosine residues on intracellular proteins. This phosphorylation creates binding sites for other 

intracellular signaling molecules, such as insulin receptor substrates (IRS) proteins [26]. 

The phosphorylated IRS proteins then recruit and activate other intracellular signaling 

molecules such as the phosphoinositide 3-kinase (PI3K) enzyme. PI3K is activated by binding 

to the IRS proteins and it converts phosphatidylinositol 4,5-bisphosphate (PIP2) to 

phosphatidylinositol 3,4,5-triphosphate (PIP3), which acts as a second messenger that recruits 

other downstream proteins such as Akt (also known as PKB) to the membrane. Akt is a 

serine/threonine kinase that phosphorylates a variety of target proteins to regulate various 

cellular functions such as glucose uptake, glycogen synthesis, and protein synthesis. It is also 

responsible for activation of the downstream elements of signaling pathway that lead to 

changes in gene expression and glucose uptake. 

One important downstream signaling pathway activated by insulin is the mTOR 

(mammalian target of rapamycin) pathway [65]. This pathway regulates cell growth and 

metabolism and is activated by the PI3K-PKB/Akt pathway [66]. mTOR ultimately leads to the 

activation of S6K1 (S6 kinase 1) and 4E-BP1 (eukaryotic initiation factor 4E-binding protein 1), 

which are key regulators of protein synthesis and glucose uptake, respectively. 

Another important downstream signaling pathway activated by insulin is the MAPK 

(mitogen-activated protein kinase) pathway. This pathway is activated by the IRS-PI3K-

PKB/Akt pathway and ultimately leads to the activation of the transcription factors Elk-1 and 

c-Fos, which are key regulators of gene expression and glucose uptake. In addition, insulin also 
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activates other signaling pathways, such as the JAK2-STAT5 pathway, which leads to the 

activation of genes involved in glucose uptake and metabolism. 

 

 

Figure 4 Insulin signaling pathway – a complex interconnected network of signaling proteins. 

Blocks marked in gray were characterized in [67]. Blocks marked in blue were included in an 

extended model that takes into account the relationship between the insulin signaling 

pathway and mTORC1 [68]. 

The activation of the insulin signaling pathway leads to an increase in the amount of 

activated glucose transporter 4 (GLUT4) molecules, which then translocate to the plasma 

membrane and increase glucose uptake into the cell [67,69,70]. The PI3K/Akt pathway, 

activated by insulin binding to its receptor, phosphorylates and activates the v-SNARE protein 

VAMP2, which in turn mediates the fusion of GLUT4-containing vesicles with the plasma 
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membrane. This leads to an increase in glucose uptake by the cell, which is a key component 

of the cellular response to insulin in terms of glucose metabolism. It also promotes the 

expression of genes involved in glucose transport and metabolism, and by activating enzymes 

involved in glucose metabolism. This results in a decrease in blood glucose levels and an 

increase in energy storage in the form of glycogen and fat. 

One of the proteins involved in the regulation of mTORC1 activity is Ras homolog enriched 

in brain (Rheb). Rheb is a small GTP-binding protein that is involved in the regulation of cell 

growth and proliferation. One of its known interactions is with the enzyme glyceraldehyde-3-

phosphate dehydrogenase (GAPDH). GAPDH is an important enzyme in both glycolysis and the 

pentose phosphate pathway (PPP), and it has been shown that Rheb can modulate GAPDH 

activity. Rheb can bind to GAPDH and activate its enzymatic activity, leading to an increase in 

glucose metabolism. This interaction between Rheb and GAPDH plays a critical role in cell 

growth, as well as in the Warburg effect, a phenomenon where cancer cells preferentially use 

glycolysis for energy production even in the presence of oxygen [60,71,72]. This interaction 

between GAPDH-Rheb-mTORC1 is not fully understood yet, however, it does have a significant 

impact on mTORC1 activity, thus affecting the amount of GLUT4 particles involved in the 

glucose transport. 
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4. Study aims 
The primary objective of the work was to prepare and develop simulation models of cellular 

metabolic pathways and signaling pathway of cellular response to insulin using queueing 

theory and to assess the feasibility of simulating the inhibition of these pathways. 

The partial objectives were: 

1. Assessment of the ability of computational models to simulate and track changes in 

metabolite concentrations in real time. 

2. Evaluation of the possibility of simulating pyruvate dehydrogenase inhibition induced by 

drugs used in breast cancer therapy, using the combination of Tamoxifen with Metformin 

or Phenformin as an example, by comparison of model concentration changes of Krebs 

cycle metabolites and literature data. 

3. Evaluation of the feasibility of simulating 6-phosphogluconate dehydrogenase (6PGD) 

inhibition induced by 6PGD gene knockdown in lung cancer therapy by comparing model 

changes in the pentose phosphate pathway metabolite concentrations and literature 

data. 

4. Assessment of the effect of GAPDH as a regulator of mTORC1 activity, mediated by the 

regulatory protein Rheb, which is an essential activator of mTORC1. Evaluation of the 

effect of mTORC1 activity on the amount of GLUT4 molecules used in glucose transport. 
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5. Summary of works included in the series of publications 

5.1. Original paper I – Queueing theory model of Krebs cycle. 

This paper describes a research project that uses computational modeling to study the 

Krebs cycle. The model is based on queueing theory. A detailed process description for 

creating a simulation model of the Krebs cycle, including a literature review, the use of a 

genetic algorithm to optimize kinetic constants, and a description of the model itself is 

presented in this paper. It was highlighted, that the benefits of using computational models 

include reduction of the amount of the animals used during laboratory experiments, could 

possibly accelerate the diagnosis and treatment of metabolic diseases, and contribute to the 

cost reduction of drug approval process. 

The Michaelis-Menten equations of enzyme kinetics were used to create the model. 

These kinetic equations were combined together and formed a Krebs cycle model based on 

queueing theory. The metabolites of the Krebs cycle are an interconnected system of vessels; 

a metabolite that is a product of one reaction becomes a substrate for another enzyme in a 

following reaction. Therefore, using and basing the model on queueing theory seemed to be 

the correct approach. 

Existing literature data of molecular concentrations of metabolites were taken as initial 

concentration values for the model [18,25,34,42,73–75]. The kinetic properties of enzymes 

that catalyze the reactions in the Krebs cycle were derived from the literature in order to 

calculate the reaction rates using Michaelis-Menten kinetics. The stability of the model was 

tested by simulating it for 5.5 hours and observing the difference between the model's 

predictions and available biological data. Further, the model was tested to emulate changes 

in enzyme activity associated with diseases such as cancer, which can influence metabolism. 

The model was used to simulate the effects of drugs used in the cancer therapy on the 

concentrations of individual metabolites in the cycle. The drugs used during validation process 

are known to affect enzyme reactions in the cycle by slowing them down as a competitive 

inhibitors. The experiment used existing research on substances that affect enzymes involved 

in the Krebs cycle reactions to reflect the effect of the drug on the rate of enzymatic reaction 

and the concentration of metabolites in order to understand the kinetic properties of 

inhibitors and predict its effect on cell metabolism. 

The queueing theory proved to be an effective method of modeling the interactions 

between enzymes, molecules, and other biomolecules in metabolic pathway. This approach 
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allowed for a creation of a mathematical simulation model that resembles the biological one, 

and copes with the issues that would arise from using ODE-based models of biological systems. 

It was found that the largest relative difference between modelled and real-life data was -

11.33% in the case of the combined concentrations of succinyl-CoA and succinate, while the 

calculated concentrations of most other metabolites differed from experimental data by less 

than 5%. These results were very satisfying. 

During validation, the obtained computational results were compared to the 

experimental results published in a study of Janzer et al [76]. This study was a basis to compare 

the predictions of the model to the experimental data. In [76] the concentrations of several 

Krebs cycle metabolites were measured after administration of drugs used in anti-cancer 

therapy. The study tested the effects of anti-cancer drug, Tamoxifen, in combination with 

Metformin and Phenformin, respectively. These drugs are used to treat diabetes and have 

been observed to increase the anti-cancer effects of Tamoxifen.  

Another improvement was the use of the so-called "balancing flow" in the model. 

Balancing flow imitates the drainage of metabolites due to their various uses in cell 

functioning, in order to stabilize the concentrations of Krebs cycle metabolites. Using a 

computational model, I was able to determine the percentage of inhibition induced by specific 

drugs used in cancer therapy. By comparing the simulation and measurement results, it was 

concluded that the drugs administration in the doses used in the study [76] inhibit the reaction 

catalyzed by pyruvate dehydrogenase by about 30%. Because reactions in the Krebs cycle are 

interrelated, and metabolites that are products in one reaction become substrates in the 

following reactions, inhibition of pyruvate dehydrogenase activity also affected changes in the 

concentrations of other metabolites that are not substrates of the aforementioned enzyme. 

It was concluded that the model accurately reflects the stochastic nature of biological 

reactions and provides an accurate and time-efficient representation of the Krebs cycle. 

To summarize, the development of a model that mimics the conditions of metabolic 

reactions in living cells was presented in this paper. The model used data on metabolite 

concentrations and enzyme constants from different sources, but we have made efforts to 

ensure the data was as accurate and compatible as possible. The model can be used as a virtual 

laboratory to study interdependencies between substances and metabolites and their 

influence on cellular functions. It can also provide knowledge on how chemical compounds 

obtain their therapeutic efficacy and be used to improve drug development safety by 
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determining which reactions of the metabolic pathway are the best candidates for disturbing 

and what doses of the drug have a significant effect. The model can also be used to observe 

the dose above which the effect of the drug is imperceptible. 

My contribution to the research reported in this paper has been conceptualization and 

realization of the study. I performed a thorough state of the art analysis, designed the 

structure of the algorithm. I collected the necessary numerical data for the research and 

model preparation regarding the concentrations of metabolites present in the pathway, as 

well as the kinetic constants of the enzymes catalyzing the reactions occurring in the modelled 

pathway. I then used these data to prepare Michaelis-Menten equations of enzyme kinetics. 

Moreover, I performed analysis of simulation results and compared obtained results to the 

literature data. Finally, I wrote the original draft of this paper. 

5.2. Original paper II – Queueing theory model of pentose phosphate 

pathway. 
The paper describes the creation of queueing theory-based computational model of a 

pentose phosphate pathway (PPP). PPP is a metabolic pathway that produces biologically 

important molecules such as nicotinamide adenine dinucleotide phosphate (NADPH), ribose 

5-phosphate (R5P), and erythrose 4-phosphate (E4P). The PPP plays an important role in 

maintaining cellular levels of NADPH under stress, and the pathway is active in many various 

types of human cells, including hepatocytes, adrenal cortex, and mammary glands, as well as 

in red blood cells. NADPH generated by the PPP is used to prevent oxidative stress and the 

formation of dangerous free radicals that could harm the cell. The aim of the work was to 

prepare a PPP model that can track concentration changes of specific metabolites in the 

pathway over time. 

Data on the concentrations of PPP metabolites, as well as the kinetic parameters of the 

enzymes in this pathway, came from a scientific publication [77]. The created model became 

stable within one hour and simulated the pathway using 1,000 simulations per second, 

averaged over 50 simulated cells. The model also used a feature called "balancing flow" to 

better mimic the flow of metabolites in a living cell. The accuracy of the model was assessed 

by comparison of the model results and literature data of PPP’s metabolites concentration. 

We identified 6-phospho-gluconolactone (PGL) to be the bottleneck of the model, as it was 

found to have a high relative difference between literature and computational data. It can be 

explained by the fact that PGL is rapidly hydrolyzed, so the practical equilibrium between 
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glucose-6-phosphate (G6P) and 6-phosphogluconate (6PG) is directed towards the formation 

of 6PG [78]. 

One of the reasons we created the PPP model was that this is one of the pathways that 

has increased activity in cancer cells, and drugs that block this pathway can inhibit tumor 

growth [79]. The model was validated by comparing it to a study [79] that used small hairpin 

RNA (shRNA) to reduce the expression of 6-phosphogluconate dehydrogenase (PGD) gene. As 

a result of the PGD knockdown, an accumulation of metabolites preceding the blocked 

reaction occurred. It was a result of the reduced expression of the PGD enzyme. A bottleneck 

is created at this stage of the pathway, leading to a reduced efficiency of this stage, as there 

are not enough protein molecules in the cell to process all metabolite molecules. The enzyme, 

in turn, was followed by a decrease in metabolites, such as sedoheptulose-7-phosphate (S7P), 

because the reactions preceding its formation were slowed/blocked, making it impossible to 

preserve the natural production of S7P. 

In this study we have performed several measurements to evaluate the level of inhibition 

of the GPD catalyzed reaction in neoplastic cells. The results show that the knockdown of GPD 

caused inhibition of 95-98%. These results are consistent with current biological knowledge 

and comparable to those obtained experimentally. We have also performed simulations with 

100% inhibition but this led to a significant reduction in the concentration of downstream 

metabolites. The results from the model suggest that knockdown efficiency in vitro was likely 

near 95% which is common for shRNA expression knockdown. By conducting this type of 

study, I confirmed the potential of using queueing theory to understand the impact of gene 

knockdown on metabolic pathways. This model, although it uses some simplifications, is able 

to faithfully reproduce the shRNA-induced changes occurring in real cells. 

To summarize, the model used queueing theory and took into account the effects of 

fluctuations in metabolite concentrations on the entire PPP. The model proved to be useful 

for testing the effectiveness of new drugs and predicting the impact of therapy. The study also 

indicated that most studies on blocking the PPP pathway in cancer patients have focused on 

blocking the first reaction of the pathway catalyzed by glucose-6-phosphate dehydrogenase 

(G6PD), but that was not very effective. The presented study explored the effects of 

knockdown of the PGD, which results in inhibition of tumor growth. The proposed model is 

believed to be able to predict the impact of therapy, which will lead to an increase in its 

effectiveness. Moreover, presented model can be used to determine the effects of the 
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inhibition of particular enzymes on the concentration of metabolites with considerably high 

accuracy. 

My contribution to the research reported in this paper has been conceptualization and 

realization of the study. I performed a thorough state of the art analysis, designed the 

structure of the algorithm. I collected the necessary numerical data for the research and 

model preparation regarding the concentrations of metabolites present in the pathway, as 

well as the kinetic constants of the enzymes catalyzing the reactions occurring in the modelled 

pathway. I then used these data to prepare Michaelis-Menten equations of enzyme kinetics. 

Moreover, I performed analysis of simulation results and compared obtained results to the 

literature data. Finally, I wrote the original draft of this paper. 

5.3. Original paper III – Queueing theory model of mTOR complexes’ impact on 

Akt-mediated adipocytes response to insulin. 
The aim of the study was to create a computational model of the effects of mammalian 

target of rapamycin (mTOR) complexes on the signaling pathway of the adipocyte response to 

insulin. The model was based on queueing theory. Using the model, it is possible to real-time 

track the number of glucose transporter 4 (GLUT4) molecules involved in the transport of 

glucose from the blood into the cell. Insulin is a hormone produced by the pancreas that helps 

regulate blood sugar levels in the body. It stimulates the uptake of glucose in tissues like 

muscle and fat and inhibits the production of glucose from non-glucose sources. The signaling 

network of the cellular response to glucose is complex. The cascade of responses comprising 

the signaling process begins with insulin attachment to the insulin receptor, which is followed 

by a variety of signaling molecules that lead to GLUT4 activation and glucose transport. The 

studies I have conducted provide a better understanding of the interactions between different 

signaling molecules and their effects on the cellular response to insulin. Due to the complex 

network of interrelationships, the multi-step nature of the whole process, research conducted 

using computational models can provide valuable knowledge in research related to diabetes 

and its treatment. 

One of the protein complexes involved in this process is mTOR complex 1 (mTORC1). 

mTORC1 is a complex of proteins composed of mTOR, regulatory-associated protein of mTOR 

(Raptor), mammalian lethal with SEC13 protein 8 (mLST8), and the non-core components: 

PRAS40 and DEPTOR. It is a protein with a wide range of metabolic regulatory functions in 

tissue cells such as muscle, liver, and brown and white adipose tissue. One of the proteins that 
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regulates mTORC1 activity is Rheb. However, an enzyme found in the glycolytic pathway, 

GAPDH, has a high affinity for the Rheb protein. The combination of GAPDH with Rheb 

prevents mTORC1 activation. Depending on the degree of mTORC1 activity, the number of 

GLUT4 molecules involved in glucose transport varies. This model takes into account the 

random variations and fluctuations in cells that can affect signaling pathways. The model has 

been tested using experimental data and has shown good accuracy in predicting the number 

of active GLUT4 particles. 

The Akt-mediated insulin signaling pathway has well-defined endpoints, which can be 

used to test the accuracy of the computational model. The model was developed using 

information from the PubMed database and was tested using simulations of 50 independent 

cells, mimicking human adipocytes. The concentrations of the molecules involved in the 

signaling pathway were randomly chosen with a range limited by 10% Gaussian noise. The 

simulation results were obtained using 1ms time increments, but the model allows for the use 

of any time increment. The simulation was performed in C# 8.0 and the results were averaged 

over the entire cell population. The model uses a network based on queues to model reactions 

whose rates change dynamically and randomly. 

To test the validity of the model, the theoretical inhibition of mTORC1 activity was 

simulated. One inhibitor of mTOR activity is rapamycin, but it has a number of side effects, 

including an increased risk of infection, cancer, weight disorders, hyperlipidemia, and 

diabetes-like metabolic disorders. Therefore, it is important to develop drugs that selectively 

inhibit mTORC1 activity without significant side effects, such as astragaloside IV (As-IV). The 

data from the model can be used to study the kinetics of reactions in the insulin signaling 

pathway and to identify the most effective place for therapeutic intervention. In the absence 

of insulin, there are approximately 18,200 GLUT4 molecules near the cell membrane that are 

able to transport glucose into the cell when activated. However, insulin stimulation increases 

this number to approximately 195,000, or about 50% of total GLUT4. 

There are two scenarios for the regulation of mTORC1 activity through the insulin 

signaling pathway: when the concentration of glucose in the blood is high after eating and 

insulin signaling is functioning correctly, and when the organism is in a state of prolonged 

fasting and there is a decrease in extracellular glucose and insulin secretion. In the first 

scenario, GLUT4 molecules are activated by insulin and move to the cell membrane to 

transport glucose into the cell. The glucose is then phosphorylated to form G6P, which can 



33 
 

either enter the glycolytic pathway or be converted into glycogen. The sequence of reactions 

in glycolysis produces glyceraldehyde-3-phosphate (G3P), which is converted into 1,3-

bisphosphoglycerate by GAPDH. GAPDH is important for the regulation of mTORC1 activity 

because its concentration levels in the cell oscillate around a certain value and its state can 

change from processing G3P to being free to bind with Rheb protein and activate mTORC1. In 

the second scenario, when insulin signaling cascade is interrupted, GLUT4 remains stationary 

and unable to transport glucose, leading to the hydrolysis of stored glycogen and the 

maintenance of basic G6P levels. However, the glycolytic flux is decreased, resulting in fewer 

G3P molecules and more free GAPDH molecules that can bind with Rheb and inactivate 

mTORC1. Intermediate conditions between these two scenarios are more common in cells. 

A queueing theory-based model of the insulin signaling pathway was developed and 

tested to understand the relationships between the levels of GLUT4, GAPDH, and mTORC1. 

These relationships play a significant role in how the cell responds to insulin and extracellular 

glucose. The model's results were consistent with current knowledge and showed that the 

amount of GLUT4 molecules ready to transport glucose is heavily dependent on the amount 

of GAPDH "occupied" with processing its substrate. The model also demonstrated that both 

mTORC1 activity and the amount of "occupied" GAPDH can significantly influence the amount 

of GLUT4 and lower the amount of GLUT4 molecules involved in glucose transport. The 

scenario in which all GAPDH molecules are busy processing its substrate and mTORC1 is fully 

active keeps the amount of GLUT4 in vesicles at the maximum level. These results suggest that 

drugs that can significantly decrease mTORC1 activity may be important for increasing the 

amount of GLUT4 directed to the cell membrane for glucose transport. The insulin signaling 

pathway is complex and unstable, with small changes potentially leading to altered cell 

responses and diseases such as type 2 diabetes. The model also showed that many elements 

can contribute to glucose malabsorption and that the nodes of the pathway that influence 

AMPK activity, specifically IRS1/3, may be important targets for therapeutic intervention. 

The model I prepared shows the "big picture" and the complex interrelationships that 

occur between signaling molecules that lead to a differential response to insulin and 

consequent activation of different amounts of GLUT4 involved in glucose transport into the 

cell. 

My contribution to the research reported in this paper has been conceptualization and 

realization of the study. I performed a thorough state of the art analysis, designed the 
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structure of the algorithm. I collected the necessary numerical data for the research and 

model preparation regarding the concentrations of signaling proteins involved in the process 

of cellular response to insulin, as well as the kinetic constants. I then used these parameters 

to prepare kinetic equations based on mass-action law. Moreover, I performed analysis of 

simulation results and compared obtained results to the literature data. Finally, I wrote the 

original draft of this paper. 
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6. Publications that are the subject of the dissertation 

6.1. Original paper I – content of the publication “Queueing theory model of 

Krebs cycle.” 
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6.2. Original paper II – content of the publication “Queueing theory model of 

pentose phosphate pathway.” 
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6.3. Original paper III – content of the publication “Queueing theory model of 

mTOR complexes’ impact on Akt-mediated adipocytes response to 

insulin.” 
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7. Conclusions 
The main and secondary objectives of the work have been achieved. Using the queueing 

theory, I developed simulation models of the Krebs cycle, PPP, and signaling pathway of 

cellular response to insulin. In my research, by comparing the calculated values with literature 

data, I showed that these models can be effective in assessing and predicting the 

concentration of individual metabolites in real time, both in natural conditions and under the 

influence of inhibitors. The development of biological computational models could have a 

major impact on the development of personalized medicine. By understanding an individual's 

unique metabolic pathway, doctors can tailor treatment plans to optimize efficacy and 

minimize side effects. However, the accuracy of the models heavily depends on the accuracy 

of the input data and assumptions made during the modeling process, so it is important to 

carefully validate the models before drawing any firm conclusions. 

The models may help researchers to better understand the behavior of these systems 

under different conditions and to identify potential targets for therapeutic interventions. This 

can speed up the drug discovery process and improve the success rate of drug development.  

Computational models of the Krebs cycle can have several practical applications in biology 

and medicine. The Krebs cycle is a central metabolic pathway that is involved in the production 

of ATP and the generation of metabolic intermediates that are required for many cellular 

processes. One potential application of computational models of the Krebs cycle is to study 

the metabolism of cancer cells. Cancer cells have altered metabolic pathways, and the Krebs 

cycle is often dysregulated in these cells. Computational models of the Krebs cycle can help to 

identify the specific alterations in this pathway that occur in cancer cells, and can aid in the 

development of new cancer treatments that target these altered metabolic pathways. Krebs 

cycle models can also be used to study the effects of drugs and other compounds on cellular 

metabolism. By simulating the effects of different compounds on the Krebs cycle, these 

models can help to identify potential drug targets and optimize the pharmacological 

properties of drugs. The studies carried out on the Krebs cycle model performed on the 

purpose of this dissertation, confirmed that it can be used in the assessment of the effect of 

drugs used in anticancer therapy, such as Tamoxifen in combination with Metformin or 

Phenformin. Thanks to this model, it is possible to assess the effect of a specific drug dose on 

the concentration of Krebs cycle metabolites, which can be one of the methods of assessing 

their effectiveness. 
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Another potential application of Krebs cycle models is in the field of metabolic 

engineering. By simulating the activity of the Krebs cycle in different organisms or under 

different conditions, these models can help to identify strategies for optimizing metabolic 

pathways for the production of biofuels, chemicals, and other bioproducts. 

Overall, computational models of the Krebs cycle can have a wide range of practical 

applications in biology and medicine, from cancer research to metabolic engineering and drug 

discovery. By providing insights into the regulation of this central metabolic pathway and its 

role in health and disease, these models can help to identify new therapeutic targets and 

develop more effective treatments for a range of diseases.  

The developed PPP model is able to calculate the concentration of pathway metabolites 

and track changes in their concentration both under normal conditions and after knocking out 

the 6PGD gene. Computational models of the PPP can have several practical applications in 

medicine. Due to the fact that PPP is an important metabolic pathway that generates several 

biologically important molecules, which are necessary for many cellular processes, including 

biosynthesis and antioxidant defense, dysregulation of the PPP has been implicated in various 

diseases, such as cancer, neurodegeneration, and metabolic disorders.  

One potential application of computational models of the PPP in medicine is to aid in the 

development of new drugs that target this pathway. For example, by simulating the effects of 

different compounds on the PPP, potential drug candidates that can modulate PPP activity in 

a specific way can be identified. This can help the process of new drug development and 

optimize the pharmacological properties of drugs to enhance their efficacy and reduce side 

effects.  

Another potential application of PPP models in medicine is in the field of 

pharmacokinetics. Computational models of the PPP can help predict how drugs will be 

metabolized and eliminated from the body, which is important for optimizing drug dosing and 

reducing the risk of adverse effects. By integrating data on the activity of the PPP and other 

metabolic pathways, these models can predict drug metabolism and clearance in different 

tissues and under different conditions, which can help to optimize drug dosing and reduce the 

risk of toxicity.  

Overall, computational models of the PPP can have a wide range of practical applications 

in medicine, from drug discovery to pharmacokinetics. By providing insights into the 

regulation of the PPP and its role in disease, these models can help to identify new drug 
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targets, optimize drug efficacy and safety, and improve our understanding of cellular 

metabolism in health and disease. 

The model of the signaling pathway of the cellular response to insulin shows the influence 

of the interdependence between GAPDH, Rheb, and mTORC1, on the amount of active GLUT4 

molecules involved in intracellular glucose transport. This area is not fully known by the world 

of science, however, the developed model, due to their nature, can be modified with the 

emergence of new scientific knowledge, without the risk of losing its previous achievements.  

The Akt protein present in this model plays a crucial role in regulating a wide range of 

cellular processes, including cell growth, metabolism, and survival. In particular, this pathway 

has been linked to the aging process, as studies have shown that reducing Akt activity can 

extend lifespan in various model organisms, such as worms and mice. The PI3K/Akt pathway 

is known to influence several mechanisms that are thought to contribute to aging, such as 

oxidative stress, inflammation, and cellular senescence. For example, Akt activation can 

promote cell survival by inhibiting pro-apoptotic factors, which can protect cells from stress-

induced damage. On the other hand, excessive Akt activity can lead to an overgrowth of cells, 

which can contribute to the development of cancer and other age-related diseases.  

Therefore, I believe that given the important role of Akt-mediated signaling in aging, 

computational models of aging can be useful for understanding the mechanisms involved in 

Akt signaling and its impact on the aging process. By integrating data from various sources, 

such as genetic and epigenetic factors, environmental exposures, and lifestyle factors, these 

models can provide insights into the complex interplay between different factors that 

contribute to aging. Computational models of aging can also be used to identify potential 

interventions that can modulate Akt signaling to promote healthy aging. For example, by 

simulating the effects of drugs or lifestyle modifications on Akt activity, these models can help 

researchers to identify potential interventions that can extend lifespan and reduce the risk of 

age-related diseases.  

In summary, the impact of Akt-mediated signaling in the aging process highlights the 

importance of understanding the mechanisms involved in this pathway, and developing 

computational models of aging can be a useful tool for investigating these mechanisms and 

identifying potential interventions to promote healthy aging. 

Hereby, I was able to confirm the usefulness of the methods of modeling metabolic and 

signaling pathways, which allows for better understanding, learning, and conducting in silico 
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research. In addition, apart from the scientific papers described in this dissertation, two more 

are under review in reputable scientific journals. They concern the model of beta-oxidation of 

fatty acids and the comprehensive model of metabolism integrating glycolysis, Krebs cycle, 

PPP, and beta-oxidation of fatty acids. 

One potential direction for further research involving the application of queueing theory 

to computational biology is to assess the effects of environmental stressors on metabolic 

pathways. In my study, I addressed the impact of different concentrations of metabolites or 

the availability of enzymes present in a given pathway. However, metabolic pathways are 

affected by many factors. External conditions or environmental stressors can significantly 

affect the level of a cell's metabolic activity. Therefore, an extension of my research may 

contribute to the state of the art in this area. 

Moreover, metabolic models can be used to optimize the pharmacokinetics, by providing 

a better understanding of the metabolic pathways involved in the production of bioproducts 

such as drugs and other biologically active products. By developing accurate models of these 

pathways, researchers can identify potential bottlenecks and limitations in the process, and 

identify opportunities to increase yields, reduce costs, and improve efficiency. For example, 

in the pharmaceutical industry, metabolic models can be used to optimize the production of 

drugs by identifying the most efficient metabolic pathways for the production of drug 

intermediates or precursors. This can help to reduce the cost and time required to produce 

the drug, and ensure a consistent and reliable supply of the drug.  
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Streszczenie 
Rozprawa omawia zastosowanie teorii kolejek jako metody modelowania ścieżek 

biologicznych takich jak cykl Krebsa, szlak pentozofosforanowy (PPP) i szlak odpowiedzi 

komórkowej na insulinę. Modele biologii obliczeniowej mogą być wykorzystywane do 

symulacji zachowania systemów biologicznych i przewidywania wyników różnych 

ingerencji/interwencji w badany układ. Metoda teorii kolejek jest wykorzystywana do 

śledzenia zależności pomiędzy poszczególnymi metabolitami powstającymi na różnych 

etapach szlaków metabolicznych oraz do obserwacji zmian spowodowanych fluktuacjami 

stężeń metabolitów i ich wpływem na cały szlak. Tego typu model może być wykorzystany do 

przewidywania wpływu terapii, co może przyczynić się do zwiększenia jej skuteczności. W 

rozprawie wykazano również, że model uzyskał stabilność na podstawie danych pochodzących 

z literatury naukowej.  

Modele biologii obliczeniowej mogą być niezwykle przydatne w medycynie precyzyjnej, 

ponieważ mogą pomóc przewidzieć, jak pacjent odpowie na konkretne leczenie. Symulując 

biologię pacjenta, modele te mogą zidentyfikować konkretne geny, białka i ścieżki, które 

napędzają chorobę i przewidzieć, które leki lub inne metody leczenia będą najbardziej 

skuteczne. Może to prowadzić do poprawy wyników pacjentów, zmniejszenia skutków 

ubocznych i obniżenia kosztów opieki zdrowotnej. Modele te mogą być wykorzystywane do 

symulacji interakcji pomiędzy metabolitami, białkami i innymi biomolekułami. 

Opracowane modele zostały oparte na równaniach kinetyki, które opisują szybkość reakcji 

katalizowanych przez enzymy. W modelach cyklu Krebsa i PPP wykorzystano równania kinetyki 

Michaelisa-Menten, które są powszechnie stosowane do opisu kinetyki enzymów i 

uwzględniają stężenia substratów i produktów oraz właściwości kinetyczne danych enzymów. 

Natomiast model szlaku sygnalizacyjnego insuliny oparty był na prawie zachowania mas, które 

opisuje szybkość reakcji na podstawie stężeń reagentów i produktów. Taki wybór równania 

kinetyki odzwierciedla specyficzne cechy każdego ze szlaków oraz cele prezentowanych 

badań. 
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Summary 
The text discusses the use of queueing theory methods in computational biology, 

specifically in the modeling of biological pathways like the Krebs cycle, pentose phosphate 

pathway (PPP), and the insulin signaling pathway. Computational biology models can be used 

to simulate the behavior of biological systems and predict the outcomes of different 

treatments or interventions. The queueing theory method is used to track the relationships 

between individual metabolites formed at different stages of the pathway and to observe 

changes caused by fluctuations in metabolite concentrations and their impact on the entire 

pathway. This type of model can be used to predict the impact of therapy, which in turn will 

lead to an increase in its effectiveness. The text also mentioned that the model obtained 

stability based on the data derived from scientific papers.  

Computational biology models can be extremely useful in precision medicine, as they can 

help predict how a patient will respond to a particular treatment. By simulating the patient's 

biology, these models can identify the specific genes, proteins, and pathways that are driving 

a disease and predict which drugs or other treatments will be most effective. This can lead to 

improved patient outcomes, reduced side effects, and reduced healthcare costs. These 

models can be used to simulate the interactions between metabolites, proteins, and other 

biomolecules. 

The developed models were based on different kinetics equations that describe the rate 

of enzyme-catalyzed reactions. The models of the Krebs cycle and PPP used Michaelis-Menten 

kinetics equations, which are commonly used to describe enzyme kinetics and take into 

account the substrate and product concentrations and kinetic properties of given enzymes. 

On the other hand, the model of the insulin signaling pathway was based on mass action law, 

which describes the rate of reactions based on the concentrations of the reactants and 

products. This choice of kinetics equation reflects the specific characteristics of each pathway 

and the goals of the presented research. 


