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3. Introduction
Computational biology is the application of computational methods and tools to the study

of biological systems [1]. It is a rapidly growing field that is increasingly being applied to
medicine, particularly in the areas of drug discovery and precision medicine [2,3].
Computational biology plays an important role in the development of new medical treatments
and therapies, by providing a deeper understanding of the underlying biological mechanisms
of disease and by identifying new targets for drug development.

At the intersection of computational biology and medicine, a new field is emerging —
computational medicine. Computational medicine is an interdisciplinary field that utilizes
computational methods and tools to better understand, diagnose, and treat diseases. It
combines expertise from computer science, mathematics, and engineering with knowledge
from the biomedical sciences and clinical medicine to develop new methods for analyzing
large and complex biomedical data. By combining the knowledge provided by the above-
mentioned fields, it is possible to mathematically track and infer the effects of research and
treatment. One of the methods that make it possible to track the dynamics of metabolic
reactions, changes in the concentrations of metabolically active molecules present in the cell,
is modeling. This mathematical modeling can be used to understand the dynamics of
metabolic pathways [4]. The ultimate goal of computational medicine is to improve patient

care and outcomes by providing more accurate and personalized diagnoses and treatments.

3.1. Computational modeling of metabolism
Computational biology can be used to understand the dynamics of metabolites flow in

various metabolic and signaling pathways by developing mathematical models that simulate
the interactions between molecules in the cells, tissues, and organisms [5]. These models can
be used to test new treatments in silico, and to identify new targets for drug development.
Modeling makes it possible to predict changes in the cell that are a consequence of
interference with the biological system. An example of such interference can be the delivery
of a specific biologically active molecule involved in metabolic pathways (delivery of an
excessive amount of the substrate or product of a given enzyme) or the use of an enzyme
inhibitor that deactivates enzyme molecules, which on a macroscopic scale will be evident by
slowing down the reaction catalyzed by the enzyme. Slowing down the course of an enzymatic
reaction can also be achieved by genetic knockdown of the gene encoding the enzyme in

guestion. Following the gene knockdown, the cell will lack functionally correct molecules of
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the enzyme in question, leading to a reduction in the speed of the reaction in which the
enzyme participates or even a complete stop of the reaction.

In clinical settings, the inhibitor is often a therapeutic substance [6]. Predicting the
changes induced by a drug as a function of its dose in theory allows for more accurate dosing
to achieve the best possible therapeutic effects. This is an advantage that can be drawn upon
as early as the initial molecular research stage. Having knowledge of the target molecule that
a drug interacts with and the effect it is expected to have on it will enable better planning of
experiments. One of the apparent benefits of modeling is the reduction in the number of
laboratory animals on which experiments will be conducted. These experiments often lead to
the deterioration of the health of laboratory animals or even their death [7-9]. Availability of
a proper digital model for some of the studies needed to approve a drug and confirm its
therapeutic ability could allow for their replacement with simulation studies.

The main difficulties faced by computational biology researchers are the limited
availability of reliable data and its inconsistency. Depending on the source of the data, they
can differ significantly from each other. Differences in the concentration data or kinetic
parameter values of the enzymes in question can be due to, among other things, inaccurate
measurements, which can be influenced by a number of different reasons, such as data
acquisition methodology, equipment limitations, lack of adequate training of the scientist, or
even the source of the data. Concentrations of biological molecules depend on a wide variety
of factors, even as simple as the time of year in which the material for the study was collected

[10], the diet, or the type, size, and location from which the tissue under study originated [11].

3.2. Methods used in computational modeling
There are several different methods that can be used for creating computational models

of metabolic systems. The choice of method will depend on the specific characteristics of the
metabolic system being studied and the research question being addressed. ODE-based
modeling is the most commonly used method, but other methods such as chemical master
equations (CMEs), constraint-based modeling, kinetic modeling [12], flux balance analysis
(FBA) [13-15], Petri net modeling [16], rule-based Modelling (RBM) [17], and agent-based

modeling can be useful in specific cases.
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3.2.1. Ordinary differential equations
Ordinary differential equations (ODEs) are a mathematical tool commonly used in

computational biology to model the dynamics of metabolic systems [18—25]. These equations
describe how the concentrations of different molecules in a system change over time and can

be used to simulate the interactions between different metabolic pathways.

In computational models of metabolism, ODEs are used to represent the rate of change
of the concentration of a given molecule, which is determined by the balance of the influx
(from other pathways) and outflux (towards other pathways or products) of that molecule.

The rate of change is described by a set of ODEs one for each metabolite [26].

To construct a model of metabolism using ODEs, the first step is to identify the set of
metabolic pathways and reactions that are relevant to the system being studied. Next, a set
of ODEs can be written to describe the rate of change of the concentration of each metabolite
in the system, taking into account the fluxes of the reactions. Once the ODEs have been
written, they can be solved numerically to simulate the dynamics of the metabolic system.
The results of these simulations can be used to make predictions about how the system will
behave under different conditions and can be useful in understanding the underlying
mechanisms of metabolic disorders. Additionally, ODE models can be used to analyze the
effect of genetic mutations, environmental factors and drug interventions on metabolic

pathways, and identify potential therapeutic targets.

While ODEs are a powerful tool for computational modeling of metabolic systems, there

are several limitations and potential disadvantages to consider:

1. ODEs are based on the assumption of continuity and smoothness, which might not be
valid for some biological systems, especially if they have a discrete, stochastic nature.
In these cases, other mathematical frameworks such as stochastic differential
equations or agent-based models might be more appropriate.

2. ODEs are based on the assumption of mass balance, which means that the total
amount of each metabolite is conserved. This might not be true for all systems,
especially in cases where the system is open to the environment or where there are

significant amounts of influx or outflux.
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3. ODEs require the estimation of kinetic parameters. These parameters are often
difficult to measure experimentally, and the estimation process can be time-
consuming and uncertain.

4. ODEs often require a large number of equations and variables, which can make the
model complex and difficult to analyze. The complexity of the models increases with
the number of reactions and metabolites considered, making it harder to understand
the underlying mechanisms of the system.

5. ODEs can have a high computational cost, especially for large models with a large
number of equations. This can make it difficult to simulate the model over a long time
period or to perform sensitivity analysis to determine the impact of different

parameters on the system.

It is worth noting that ODEs models are deterministic in nature, while biological systems
are inherently stochastic, this lack of randomness might not reflect the real system. ODE
models are a simplification of reality. Therefore, in some cases, ODEs might not capture the

complexity, variability, and uncertainty of the real metabolic systems.

3.2.2. Chemical master equations
Chemical master equations (CMEs) are a mathematical tool that can be used to model

the dynamics of chemical reactions, including metabolic pathways [27]. CMEs are a type of
kinetic modeling, which means that they describe the kinetics of the reactions, including the
rate laws and the Michaelis-Menten constants.

One of the main advantages of CMEs is that they can account for the stochastic nature
of biochemical reactions, which can be important in metabolic pathways where the number
of reactants is small [28]. CMEs also can take into account the discreteness of the molecules,
which is a feature that ODEs lack. CMEs can be used to calculate the probability distribution
of the number of molecules for each reactant in the reaction network at any given time. This
can be useful in understanding the behavior of the system under different conditions and in
identifying potential bottlenecks or rate-limiting steps in the pathway.

However, CMEs also have some limitations that should be considered. One of the main
disadvantages of CMEs is that they can be computationally expensive, especially for large
systems with many reactions and many states [29]. Additionally, the solution of CMEs can be

challenging and might require approximations.
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In conclusion, CMEs are a powerful tool for computational modeling of metabolic
pathways, particularly in cases where the stochastic and discrete nature of the system is
important. However, their computational cost and the difficulty of solving them should be

taken into account when deciding whether to use CMEs for a specific problem.

3.2.3. Bypassing the limitations of the most common modeling methods
Due to the fact that the above-described methods are not without flaws, researchers are

looking for other, competitive ways and methods to create more accurate computational
models. There are several strategies that can be used to cope with the limitations of ODEs and
CMEs models [27]. One strategy is to use a hybrid model that combines the strengths of ODEs
and CMEs. For example, one can use ODEs to describe the dynamics of the system at the
macroscopic level, and use CMEs to describe the dynamics of the system at the microscopic
level. This can allow for the inclusion of both deterministic and stochastic behavior in the
model. Another strategy is to reduce the complexity of the model by simplifying the system
or by using model reduction techniques such as lumping or moment-closure approximations.
This can help to make the model more computationally tractable while still capturing the

essential dynamics of the system.

It is worth noting that there is no one-size-fits-all solution and the best approach will
depend on the specific characteristics of the metabolic system being studied, the research

guestion being addressed, and the available computational resources.

3.3. Queueing theory
Queueing theory is a branch of mathematical modeling that deals with the study of

waiting lines (queues) and the behavior of systems that involve waiting (servers) [30]. It can
be used to analyze systems where resources are limited and there is a need to wait for their
availability. It was realized that queueing theory, which had been widely used in
telecommunications and other fields to model systems with limited resources, could be
applied to metabolic pathways [31]. It provided a new perspective on the analysis of metabolic
pathways, showing that concepts and mathematical tools originally developed for other fields
can be adapted and applied to biological systems [32,33]. Queueing theory can be used to
create computational models of metabolic pathways by modeling the enzymes in the pathway
as servers and the molecules as customers in a queue [34]. This can help to understand the

behavior of the system under different conditions, such as changes in the enzyme
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concentration or the substrate availability. The concept of using queueing theory in
metabolism modeling has been expanded and refined by researchers over the years, and it
has become a valuable tool for understanding the behavior of metabolic pathways, evaluate
the impact of different parameters on the system performance, and identifying potential

bottlenecks in the system and targets for drug development.

)
. Output 1,
Input 1, pi,1 § g
P g i, Li+1
f+\
. Metabolite Output 2
Input 2 pi.2 Ci(t) i, Li+2
—— A
g % Outputi
Input i, pi, Li : ui, Ki
— R i

Processes not
included, influence
tuned with GA

Figure 1 Example queue, which represents concentration Ci(t) of the metabolite. Arrival rates
are presented as inputs, while metabolite depleting rates are outputs. Due to the complexity
of the metabolic network, some simplifications were adopted. The influence of processes not

included in the model were calculated using a genetic algorithm (GA).

Using the Michaelis-Menten kinetic equations, the adaptation parameter p(t) was
calculated. The behavior of metabolites of the studied metabolic pathways and reactions
occurring in the model can be considered as a network of heterogeneous Poisson processes
described by Equation 1:

e HOT(u(t)D)*
k!

(1.)

P[(N(t+17)=N(D) =k, t] =

where:
P[(N(t +1)— N(t)) =k, t] — probability of k arrivals in the interval (¢, t + 7]
u(t)t — expected number of arrivals in a time interval duration of (¢, t + 7]
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The queue processing time of metabolite increment (Eg. 2) is described by the
exponential distribution of the random variable T in the terms of the rate parameter u(t).

FTncey) = fHOe T 20 2)

Various metabolic pathways, which are incorporated in the presented model can be
mimicked by a composition of interconnected queues based on the Michaelis-Menten
equations. The flow of metabolite concentration from one queue to another is sequential, so
that a decrease in concentration in one queue will cause an increase in the next queue. Thus,
a network of interrelated queues can be equivalent to a set of differential equations [35].

The probability of a reaction occurring and moving to the next queue depends on factors
such as metabolite-substrate concentration and kinetic constants. Each of the Michaelis-
Menten kinetics equations relates to a specific substrate and affects whether a reaction occurs
at a specific time point [34]. One of the advantages of basing the model on queueing theory
is the possibility for its further development and addition of more reactions/metabolic
pathways without interfering with the previously optimized reactions. This is particularly
interesting because the model can be developed with further metabolomics discoveries or
combined with pathways not included in this study.

Queueing theory-based models [17] are able to bypass some of the errors generated by
models based on ODEs and CMEs. Moreover, the models based on queueing theory do not
require addressing the issues that arise from using ODEs, such us dealing with negative results,
which are not possible in the living cells. Such issues can be resolved quite easily, however,
they require non-negative ODE solvers [36], available in e.g., MATLAB. Using queueing theory,
one can analyze the average waiting time for a substrate to be processed by an enzyme, the
probability of substrate being processed, the probability of substrate being blocked by
another substrate and the maximum capacity of the enzyme. There are several benefits of

using queueing theory in computational modeling of metabolic pathways:

1. Identification of bottlenecks: Queueing theory can be used to identify bottlenecks in
the metabolic pathway by analyzing the average waiting time for a substrate to be
processed by an enzyme and the probability of substrate being blocked by another
substrate. This can help to understand the behavior of the system under different

conditions, such as changes in the enzyme concentration or the substrate availability.
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2. Evaluation of system performance: Queueing theory can be used to evaluate the
performance of the metabolic pathway by analyzing the average waiting time for a
substrate to be processed, the probability of substrate being processed, and the
maximum capacity of the enzyme. This can help to identify potential limitations of the
system and to evaluate the impact of different parameters on the system
performance.

3. Modeling of the enzyme saturation: Queueing theory can be used to model the
saturation of enzymes, which occurs when the enzymes are saturated by the substrate,
and the substrate molecules have to wait to be processed. This can provide insights
into the behavior of the system under different conditions, such as changes in the
substrate availability or the enzyme concentration.

4. Analysis of the system under different scenarios: Queueing theory can be used to
analyze the system under different scenarios, such as changes in the enzyme
concentration or the substrate availability. This can help to understand the behavior
of the system under different conditions, and to identify potential limitations of the
system.

5. Computationally efficient: Queueing theory models can be computationally efficient,
especially when compared to other methods, such as ODEs or CMEs, which can be
more computationally intensive.

6. Provides a framework for modeling regulation mechanisms: Queueing theory can
provide a framework for modeling regulation mechanisms, such as feedback inhibition
or allosteric regulation, by changing the rate of the processing of the molecules by the
enzymes.

7. Accounting for randomness: In modeling using queueing theory, it is easy to take into
account the randomness of biological systems. This can be done by applying Gaussian
noise to concentration values and kinetic parameters. Moreover, its application
additionally allows one to face possible measurement errors that are consequences of

various factors including apparatus errors or human factor.

It is worth noting that queueing theory is a mathematical framework that can be used to

model the behavior of systems, but it is an abstraction of the real-world systems, so the
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assumptions made and the parameters used in the model should be carefully considered and
validated against experimental data.

In conclusion, queueing theory can be useful in creating computational models of
metabolic pathways by modeling the enzymes as servers and the molecules as customers, it
can provide insight into the system behavior and help identify potential bottlenecks in the
pathway, but it is an abstraction of the real-world systems, so the assumptions made and the
parameters used in the model should be carefully considered and validated against
experimental data in order to achieve the highest possible accuracy and reality of the
computation. This can help to identify any limitations or inaccuracies in the model and guide

the model development process.

3.4. Kinetics of enzymatic reactions
The kinetics of enzymatic reactions describes how the rate of the reaction changes with

respect to the concentration of the reactants, products, and enzymes. Enzymatic reactions are
catalyzed by enzymes, which are specific proteins that lower the activation energy required
for a reaction to occur, thus increasing the rate of the reaction. The kinetics of an enzymatic
reaction can be described by the Michaelis-Menten equation [37], which describes the
relationship between the rate of the reaction and the concentration of the substrate

(reactant). The Michaelis-Menten equation is given by Equation 3:

51(t)52(t) P1(t)P2(t)
f

) Ks Ks, " Kp, Kp,
vl = S.(0) . Pi(t) S,(0) . P,(D) (3.)
(%2 + ) (52 %)

where:

v(t) — reaction speed (velocity)

V¢ — forward reaction speed

V. — reverse reaction speed

S1(t),S,(t), ..., S, (t) — substrate concentration in mmol/L at time instant t
P;(t), P,(t), ..., P.(t) — product concentration in mmol/L at time instant t
Ks,, Ks,, ..., Ks, — kinetic constant of substrate

Kp,,Kp,, ..., Kp, — kinetic constant of product
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It is worth noting that the Michaelis-Menten equation is a simplification of the reality, it
assumes that the enzymes are in excess, and the enzymes are not affected by the substrate
concentration, which might not be true for all cases.

The parameters used in the equations were derived from the scientific literature. To
obtain them, | performed an extensive literature review in article databases such as PubMed
[38] and Google Scholar [39]. The sources of the parameters were scientific articles from
journals with high scientific reputation. Obtaining parameters from peer-reviewed journals
deemed the parameters as reliable. The data came from two types of publications, original
research and review articles. The information they contained was from research and was
experimental data, or (in the case of review type articles) it was a literature review done by
another research team that provided the data used to calculate the enzyme kinetics
equations. Another sources of kinetic parameters used in the Michaelis-Menten equations
were the KEGG Pathway [40], BRENDA [41], and BioNumbers [42] databases. These sources
provided information on metabolite concentrations, kinetic data of the enzyme, i.e. V;,,,, and
K,,. The parameters from the scientific articles also served as a source of data as a means for
model validation, to verify the accuracy of the calculations.

The so-called “balancing flow” was used to determine the flow of molecules having many
different roles in cellular metabolism and participating in several metabolic pathways/other
biochemical reactions. These were equations that took into account, among other things, the
flow of a molecule to other cellular compartments, such as from the mitochondrion to the

cytoplasm.

3.5. Law of mass action
The law of mass action is a principle in chemistry that describes the equilibrium state of a

chemical reaction. It states that the reaction rate is proportional to the product of the
concentrations of the reactants raised to their stoichiometric coefficients (Eq. 4) [43,44]. This
means that the rate of the reaction is determined by the number of reactant particles present
and their likelihood of colliding and reacting with each other. The law of mass action is used
to derive mathematical equations that can be used to predict the equilibrium state of a
chemical reaction given the initial concentrations of the reactants and the rate constants for
the forward and reverse reactions. The law of mass action is based on the assumption that

the particles in a chemical reaction are in constant, random motion and that the rate of the
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reaction is directly proportional to the number of collisions between the reactant particles. It

is a fundamental principle that is widely used in chemical kinetics and thermodynamics.

rate = k[A]™[B]" (4.)

where:

k — rate constant of the reaction,

[A], [B] — concentrations of the reactants A and B,

m, n — stoichiometric coefficients of reactants A and B in the reaction.

The law of mass action is a useful tool for understanding and predicting the behavior of
chemical reactions, but it is not always applicable in real-world situations where other factors
such as enzymes or catalysts can affect the rate of a reaction. Enzymes catalyze reactions by
binding to the reactants and lowering the activation energy needed for the reaction to occur
[45,46]. The rate of the reaction is not solely determined by the concentration of the
reactants, but also by the presence and activity of the enzymes. Therefore, the mass action
law is not useful in describing enzyme-catalyzed reactions. For this reason, | used the
equations described by mass action law only in developing the insulin signaling pathway

model.

3.6. The Krebs cycle
The Krebs cycle, also known as the citric acid cycle (CAC) or the tricarboxylic acid cycle

(TCA), is a series of chemical reactions that take place in the mitochondrial matrix of eukaryotic
cells. It is the central metabolic pathway that generates energy through the oxidation of
acetyl-CoA, derived primarily from carbohydrates, fats, and proteins thus linking the metabolic
pathways of these compounds. The reactions of the citric acid cycle were identified in 1937
by Hans Adolf Krebs, in whose honor the cycle is commonly called the Krebs cycle after him
[47].

The source of acetyl-CoA in the Krebs cycle is pyruvate formed in glycolysis, which
undergoes a reaction catalyzed by pyruvate dehydrogenase [48]. The Krebs cycle starts with
the condensation of acetyl-CoA and oxaloacetate to form citrate. Citrate then goes through a
series of transformations, including the conversion to isocitrate, alpha-ketoglutarate, succinyl-
CoA, succinate, fumarate, malate, and back to oxaloacetate, and the cycle continuously

repeats (Fig. 2). These reactions are catalyzed by eight different enzymes, including citrate
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synthase, aconitase, isocitrate dehydrogenase, a-ketoglutarate dehydrogenase, succinyl-CoA

synthetase, succinate dehydrogenase, fumarase, and malate dehydrogenase.

Pyruvate mmmmp Acetyl-CoA mmmmp Citrate ™  Cis-

/ Aconitate

Oxaloacetate Isocitrate

The Krebs cycle

Malate a-ketoglutarate
Fumarate Succinyl-CoA

~ Succinate *

Figure 2 Overview of the Krebs cycle presenting the flow of metabolic intermediates in the

cycle.

During each turn of the cycle, electrons are removed from the intermediates and
transferred to the electron transport chain, ultimately leading to the production of adenosine
triphosphate (ATP) through oxidative phosphorylation. Additionally, the cycle produces
several important molecules, such as guanosine triphosphate (GTP), as well as reduced
nicotinamide adenine dinucleotide (NADH), and reduced flavin adenine dinucleotide (FADH>),
which are used in the electron transport chain, where they are involved in reactions that lead
to the generation of ATP. Each molecule of NADH and FADH; generated in the Krebs cycle
leads to the production of 2.5 and 1.5 molecules of high-energy ATP, respectively. The Krebs
cycle also produces carbon dioxide (COz), which is released as a waste product. Additionally,
the cycle also generates important intermediates that can be used for other metabolic
pathways such as gluconeogenesis, the biosynthesis of amino acids, and the synthesis of
nucleotides.

To summarize, the Krebs cycle is an important source of energy for cells, as it generates
GTP (which is the equivalent energy carrier as ATP) and other high-energy molecules that can

be used to drive other metabolic reactions. It also plays a key role in the regulation of glucose
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and lipid metabolism, and has been implicated in a wide range of physiological processes,

including aging and cancer [49,50].

3.7. The pentose phosphate pathway
The pentose phosphate pathway (PPP) is a metabolic pathway that plays a crucial role in

the metabolism of carbohydrates. It is also known as the hexose monophosphate pathway,
the phosphogluconate pathway, or the Warburg-Dickens pathway. The main substrate of the
PPP is glucose-6-phosphate (G6P), which is converted into various products such as
nicotinamide adenine dinucleotide phosphate (NADPH) and ribose 5-phosphate (R5P). NADPH
is used in the biosynthesis of fatty acids, while R5P is a precursor in the synthesis of
nucleotides which are the building blocks of DNA and RNA. Another biologically significant
molecule formed in PPP is erythrose 4-phosphate (E4P), which is used in the synthesis of
aromatic amino acids (phenylalanine, tyrosine, and tryptophan).

The PPP can be divided into two phases: the oxidative phase and the non-oxidative phase
(Fig. 3). In the oxidative phase, NADPH is produced via the action of the enzyme glucose-6-
phosphate dehydrogenase (G6PD). In the non-oxidative phase, various simple sugars are
synthesized via the action of transketolase and other enzymes. 5-carbon sugars derived from
the digestion of nucleic acids can be utilized in the PPP, where their carbon backbones are

metabolized into intermediates for glycolysis or gluconeogenesis.
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Figure 3 Overview of the pentose phosphate pathway illustrating the interconnections
between metabolites and their flux to glycolysis and other metabolic pathways, where they
are  utilized. G6PD -  glucose-6-phosphate  dehydrogenase, PGLS - 6-
phosphogluconolactonase, PGD — 6-phosphogluconate dehydrogenase, RPIA — ribose-5-
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transketolase.

The PPP plays an important role in maintaining cellular levels of NADPH, which is
necessary for maintaining cellular redox balance and preventing oxidative stress thus limiting
the harmful effects of reactive oxygen species (ROS) in the cell. ROS can damage cellular lipids,
proteins, and nucleic acids, and eventually cause cell death [51-53]. It is estimated that as
much as 60% of NADPH comes from the PPP [54]. The pathway is active in many tissues,
including the liver, adrenal cortex, and mammary glands. It is also particularly active in red
blood cells, where it helps to reduce oxidative stress [55]. Due to the lack of mitochondria, the
only source of NADPH in erythrocytes is PPP. NADPH is used in erythrocytes to reduce
glutathione (GSH), which, in its reduced form, is crucial for normal function. When GSH levels
in erythrocytes are too low, hemolysis can occur [56].

Studies have shown that the activity of the PPP is significantly increased in cancer cells
compared to normal cells [57]. Elevated PPP activity is important for cancer cells to maintain

their high proliferative state [58,59]. Therefore, many drugs aimed at blocking metabolic
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pathways that supply cancer cells with substances necessary for proliferation target PPP [60—

62].

3.8. Signaling pathway of cellular response to insulin
Insulin signaling is a process that allows cells to respond to changes in blood glucose levels

by regulating the uptake, storage, and utilization of glucose. The insulin signaling pathway is a
complex network of interactions between proteins (Fig. 4) [63,64]. Itis initiated by the binding
of insulin to its receptor on the cell surface. This binding triggers a cascade of molecular events
inside the cell, ultimately leading to changes in gene expression and metabolism.

The insulin receptor is a tyrosine kinase receptor, meaning that it has an intrinsic kinase
activity that phosphorylates tyrosine residues on target proteins. When insulin binds to the
receptor, the receptor's intracellular domain becomes activated and phosphorylates specific
tyrosine residues on intracellular proteins. This phosphorylation creates binding sites for other
intracellular signaling molecules, such as insulin receptor substrates (IRS) proteins [26].

The phosphorylated IRS proteins then recruit and activate other intracellular signaling
molecules such as the phosphoinositide 3-kinase (PI3K) enzyme. PI3K is activated by binding
to the IRS proteins and it converts phosphatidylinositol 4,5-bisphosphate (PIP2) to
phosphatidylinositol 3,4,5-triphosphate (PIP3), which acts as a second messenger that recruits
other downstream proteins such as Akt (also known as PKB) to the membrane. Akt is a
serine/threonine kinase that phosphorylates a variety of target proteins to regulate various
cellular functions such as glucose uptake, glycogen synthesis, and protein synthesis. It is also
responsible for activation of the downstream elements of signaling pathway that lead to
changes in gene expression and glucose uptake.

One important downstream signaling pathway activated by insulin is the mTOR
(mammalian target of rapamycin) pathway [65]. This pathway regulates cell growth and
metabolism and is activated by the PI3K-PKB/Akt pathway [66]. mTOR ultimately leads to the
activation of S6K1 (S6 kinase 1) and 4E-BP1 (eukaryotic initiation factor 4E-binding protein 1),
which are key regulators of protein synthesis and glucose uptake, respectively.

Another important downstream signaling pathway activated by insulin is the MAPK
(mitogen-activated protein kinase) pathway. This pathway is activated by the IRS-PI3K-
PKB/Akt pathway and ultimately leads to the activation of the transcription factors Elk-1 and

c-Fos, which are key regulators of gene expression and glucose uptake. In addition, insulin also
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activates other signaling pathways, such as the JAK2-STAT5 pathway, which leads to the

activation of genes involved in glucose uptake and metabolism.
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Figure 4 Insulin signaling pathway — a complex interconnected network of signaling proteins.
Blocks marked in gray were characterized in [67]. Blocks marked in blue were included in an
extended model that takes into account the relationship between the insulin signaling

pathway and mTORC1 [68].

The activation of the insulin signaling pathway leads to an increase in the amount of
activated glucose transporter 4 (GLUT4) molecules, which then translocate to the plasma
membrane and increase glucose uptake into the cell [67,69,70]. The PI3K/Akt pathway,
activated by insulin binding to its receptor, phosphorylates and activates the v-SNARE protein

VAMP2, which in turn mediates the fusion of GLUT4-containing vesicles with the plasma
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membrane. This leads to an increase in glucose uptake by the cell, which is a key component
of the cellular response to insulin in terms of glucose metabolism. It also promotes the
expression of genes involved in glucose transport and metabolism, and by activating enzymes
involved in glucose metabolism. This results in a decrease in blood glucose levels and an
increase in energy storage in the form of glycogen and fat.

One of the proteins involved in the regulation of mTORC1 activity is Ras homolog enriched
in brain (Rheb). Rheb is a small GTP-binding protein that is involved in the regulation of cell
growth and proliferation. One of its known interactions is with the enzyme glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). GAPDH is an important enzyme in both glycolysis and the
pentose phosphate pathway (PPP), and it has been shown that Rheb can modulate GAPDH
activity. Rheb can bind to GAPDH and activate its enzymatic activity, leading to an increase in
glucose metabolism. This interaction between Rheb and GAPDH plays a critical role in cell
growth, as well as in the Warburg effect, a phenomenon where cancer cells preferentially use
glycolysis for energy production even in the presence of oxygen [60,71,72]. This interaction
between GAPDH-Rheb-mTORC1 is not fully understood yet, however, it does have a significant
impact on mTORC1 activity, thus affecting the amount of GLUT4 particles involved in the

glucose transport.
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4. Study aims

The primary objective of the work was to prepare and develop simulation models of cellular
metabolic pathways and signaling pathway of cellular response to insulin using queueing
theory and to assess the feasibility of simulating the inhibition of these pathways.

The partial objectives were:

1. Assessment of the ability of computational models to simulate and track changes in
metabolite concentrations in real time.

2. Evaluation of the possibility of simulating pyruvate dehydrogenase inhibition induced by
drugs used in breast cancer therapy, using the combination of Tamoxifen with Metformin
or Phenformin as an example, by comparison of model concentration changes of Krebs
cycle metabolites and literature data.

3. Evaluation of the feasibility of simulating 6-phosphogluconate dehydrogenase (6PGD)
inhibition induced by 6PGD gene knockdown in lung cancer therapy by comparing model
changes in the pentose phosphate pathway metabolite concentrations and literature
data.

4. Assessment of the effect of GAPDH as a regulator of mTORC1 activity, mediated by the
regulatory protein Rheb, which is an essential activator of mTORC1. Evaluation of the

effect of mTORC1 activity on the amount of GLUT4 molecules used in glucose transport.
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5. Summary of works included in the series of publications

5.1.  Original paper | — Queueing theory model of Krebs cycle.
This paper describes a research project that uses computational modeling to study the

Krebs cycle. The model is based on queueing theory. A detailed process description for
creating a simulation model of the Krebs cycle, including a literature review, the use of a
genetic algorithm to optimize kinetic constants, and a description of the model itself is
presented in this paper. It was highlighted, that the benefits of using computational models
include reduction of the amount of the animals used during laboratory experiments, could
possibly accelerate the diagnosis and treatment of metabolic diseases, and contribute to the
cost reduction of drug approval process.

The Michaelis-Menten equations of enzyme kinetics were used to create the model.
These kinetic equations were combined together and formed a Krebs cycle model based on
gueueing theory. The metabolites of the Krebs cycle are an interconnected system of vessels;
a metabolite that is a product of one reaction becomes a substrate for another enzyme in a
following reaction. Therefore, using and basing the model on queueing theory seemed to be
the correct approach.

Existing literature data of molecular concentrations of metabolites were taken as initial
concentration values for the model [18,25,34,42,73—75]. The kinetic properties of enzymes
that catalyze the reactions in the Krebs cycle were derived from the literature in order to
calculate the reaction rates using Michaelis-Menten kinetics. The stability of the model was
tested by simulating it for 5.5 hours and observing the difference between the model's
predictions and available biological data. Further, the model was tested to emulate changes
in enzyme activity associated with diseases such as cancer, which can influence metabolism.
The model was used to simulate the effects of drugs used in the cancer therapy on the
concentrations of individual metabolites in the cycle. The drugs used during validation process
are known to affect enzyme reactions in the cycle by slowing them down as a competitive
inhibitors. The experiment used existing research on substances that affect enzymes involved
in the Krebs cycle reactions to reflect the effect of the drug on the rate of enzymatic reaction
and the concentration of metabolites in order to understand the kinetic properties of
inhibitors and predict its effect on cell metabolism.

The queueing theory proved to be an effective method of modeling the interactions

between enzymes, molecules, and other biomolecules in metabolic pathway. This approach
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allowed for a creation of a mathematical simulation model that resembles the biological one,
and copes with the issues that would arise from using ODE-based models of biological systems.
It was found that the largest relative difference between modelled and real-life data was -
11.33% in the case of the combined concentrations of succinyl-CoA and succinate, while the
calculated concentrations of most other metabolites differed from experimental data by less
than 5%. These results were very satisfying.

During validation, the obtained computational results were compared to the
experimental results published in a study of Janzer et al [76]. This study was a basis to compare
the predictions of the model to the experimental data. In [76] the concentrations of several
Krebs cycle metabolites were measured after administration of drugs used in anti-cancer
therapy. The study tested the effects of anti-cancer drug, Tamoxifen, in combination with
Metformin and Phenformin, respectively. These drugs are used to treat diabetes and have
been observed to increase the anti-cancer effects of Tamoxifen.

Another improvement was the use of the so-called "balancing flow" in the model.
Balancing flow imitates the drainage of metabolites due to their various uses in cell
functioning, in order to stabilize the concentrations of Krebs cycle metabolites. Using a
computational model, | was able to determine the percentage of inhibition induced by specific
drugs used in cancer therapy. By comparing the simulation and measurement results, it was
concluded that the drugs administration in the doses used in the study [76] inhibit the reaction
catalyzed by pyruvate dehydrogenase by about 30%. Because reactions in the Krebs cycle are
interrelated, and metabolites that are products in one reaction become substrates in the
following reactions, inhibition of pyruvate dehydrogenase activity also affected changes in the
concentrations of other metabolites that are not substrates of the aforementioned enzyme.
It was concluded that the model accurately reflects the stochastic nature of biological
reactions and provides an accurate and time-efficient representation of the Krebs cycle.

To summarize, the development of a model that mimics the conditions of metabolic
reactions in living cells was presented in this paper. The model used data on metabolite
concentrations and enzyme constants from different sources, but we have made efforts to
ensure the data was as accurate and compatible as possible. The model can be used as a virtual
laboratory to study interdependencies between substances and metabolites and their
influence on cellular functions. It can also provide knowledge on how chemical compounds

obtain their therapeutic efficacy and be used to improve drug development safety by
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determining which reactions of the metabolic pathway are the best candidates for disturbing
and what doses of the drug have a significant effect. The model can also be used to observe
the dose above which the effect of the drug is imperceptible.

My contribution to the research reported in this paper has been conceptualization and
realization of the study. | performed a thorough state of the art analysis, designed the
structure of the algorithm. | collected the necessary numerical data for the research and
model preparation regarding the concentrations of metabolites present in the pathway, as
well as the kinetic constants of the enzymes catalyzing the reactions occurring in the modelled
pathway. | then used these data to prepare Michaelis-Menten equations of enzyme kinetics.
Moreover, | performed analysis of simulation results and compared obtained results to the

literature data. Finally, | wrote the original draft of this paper.

5.2.  Original paper Il — Queueing theory model of pentose phosphate
pathway.
The paper describes the creation of queueing theory-based computational model of a

pentose phosphate pathway (PPP). PPP is a metabolic pathway that produces biologically
important molecules such as nicotinamide adenine dinucleotide phosphate (NADPH), ribose
5-phosphate (R5P), and erythrose 4-phosphate (E4P). The PPP plays an important role in
maintaining cellular levels of NADPH under stress, and the pathway is active in many various
types of human cells, including hepatocytes, adrenal cortex, and mammary glands, as well as
in red blood cells. NADPH generated by the PPP is used to prevent oxidative stress and the
formation of dangerous free radicals that could harm the cell. The aim of the work was to
prepare a PPP model that can track concentration changes of specific metabolites in the
pathway over time.

Data on the concentrations of PPP metabolites, as well as the kinetic parameters of the
enzymes in this pathway, came from a scientific publication [77]. The created model became
stable within one hour and simulated the pathway using 1,000 simulations per second,
averaged over 50 simulated cells. The model also used a feature called "balancing flow" to
better mimic the flow of metabolites in a living cell. The accuracy of the model was assessed
by comparison of the model results and literature data of PPP’s metabolites concentration.
We identified 6-phospho-gluconolactone (PGL) to be the bottleneck of the model, as it was
found to have a high relative difference between literature and computational data. It can be

explained by the fact that PGL is rapidly hydrolyzed, so the practical equilibrium between
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glucose-6-phosphate (G6P) and 6-phosphogluconate (6PG) is directed towards the formation
of 6PG [78].

One of the reasons we created the PPP model was that this is one of the pathways that
has increased activity in cancer cells, and drugs that block this pathway can inhibit tumor
growth [79]. The model was validated by comparing it to a study [79] that used small hairpin
RNA (shRNA) to reduce the expression of 6-phosphogluconate dehydrogenase (PGD) gene. As
a result of the PGD knockdown, an accumulation of metabolites preceding the blocked
reaction occurred. It was a result of the reduced expression of the PGD enzyme. A bottleneck
is created at this stage of the pathway, leading to a reduced efficiency of this stage, as there
are not enough protein molecules in the cell to process all metabolite molecules. The enzyme,
in turn, was followed by a decrease in metabolites, such as sedoheptulose-7-phosphate (S7P),
because the reactions preceding its formation were slowed/blocked, making it impossible to
preserve the natural production of S7P.

In this study we have performed several measurements to evaluate the level of inhibition
of the GPD catalyzed reaction in neoplastic cells. The results show that the knockdown of GPD
caused inhibition of 95-98%. These results are consistent with current biological knowledge
and comparable to those obtained experimentally. We have also performed simulations with
100% inhibition but this led to a significant reduction in the concentration of downstream
metabolites. The results from the model suggest that knockdown efficiency in vitro was likely
near 95% which is common for shRNA expression knockdown. By conducting this type of
study, | confirmed the potential of using queueing theory to understand the impact of gene
knockdown on metabolic pathways. This model, although it uses some simplifications, is able
to faithfully reproduce the shRNA-induced changes occurring in real cells.

To summarize, the model used queueing theory and took into account the effects of
fluctuations in metabolite concentrations on the entire PPP. The model proved to be useful
for testing the effectiveness of new drugs and predicting the impact of therapy. The study also
indicated that most studies on blocking the PPP pathway in cancer patients have focused on
blocking the first reaction of the pathway catalyzed by glucose-6-phosphate dehydrogenase
(G6PD), but that was not very effective. The presented study explored the effects of
knockdown of the PGD, which results in inhibition of tumor growth. The proposed model is
believed to be able to predict the impact of therapy, which will lead to an increase in its

effectiveness. Moreover, presented model can be used to determine the effects of the
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inhibition of particular enzymes on the concentration of metabolites with considerably high
accuracy.

My contribution to the research reported in this paper has been conceptualization and
realization of the study. | performed a thorough state of the art analysis, designed the
structure of the algorithm. | collected the necessary numerical data for the research and
model preparation regarding the concentrations of metabolites present in the pathway, as
well as the kinetic constants of the enzymes catalyzing the reactions occurring in the modelled
pathway. | then used these data to prepare Michaelis-Menten equations of enzyme kinetics.
Moreover, | performed analysis of simulation results and compared obtained results to the

literature data. Finally, | wrote the original draft of this paper.

5.3.  Original paper Ill — Queueing theory model of mTOR complexes’ impact on
Akt-mediated adipocytes response to insulin.
The aim of the study was to create a computational model of the effects of mammalian

target of rapamycin (mTOR) complexes on the signaling pathway of the adipocyte response to
insulin. The model was based on queueing theory. Using the model, it is possible to real-time
track the number of glucose transporter 4 (GLUT4) molecules involved in the transport of
glucose from the blood into the cell. Insulin is a hormone produced by the pancreas that helps
regulate blood sugar levels in the body. It stimulates the uptake of glucose in tissues like
muscle and fat and inhibits the production of glucose from non-glucose sources. The signaling
network of the cellular response to glucose is complex. The cascade of responses comprising
the signaling process begins with insulin attachment to the insulin receptor, which is followed
by a variety of signaling molecules that lead to GLUT4 activation and glucose transport. The
studies | have conducted provide a better understanding of the interactions between different
signaling molecules and their effects on the cellular response to insulin. Due to the complex
network of interrelationships, the multi-step nature of the whole process, research conducted
using computational models can provide valuable knowledge in research related to diabetes
and its treatment.

One of the protein complexes involved in this process is mMTOR complex 1 (mTORC1).
mMTORC1 is a complex of proteins composed of mTOR, regulatory-associated protein of mTOR
(Raptor), mammalian lethal with SEC13 protein 8 (mLST8), and the non-core components:
PRAS40 and DEPTOR. It is a protein with a wide range of metabolic regulatory functions in

tissue cells such as muscle, liver, and brown and white adipose tissue. One of the proteins that
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regulates mTORC1 activity is Rheb. However, an enzyme found in the glycolytic pathway,
GAPDH, has a high affinity for the Rheb protein. The combination of GAPDH with Rheb
prevents mTORC1 activation. Depending on the degree of mTORC1 activity, the number of
GLUT4 molecules involved in glucose transport varies. This model takes into account the
random variations and fluctuations in cells that can affect signaling pathways. The model has
been tested using experimental data and has shown good accuracy in predicting the number
of active GLUT4 particles.

The Akt-mediated insulin signaling pathway has well-defined endpoints, which can be
used to test the accuracy of the computational model. The model was developed using
information from the PubMed database and was tested using simulations of 50 independent
cells, mimicking human adipocytes. The concentrations of the molecules involved in the
signaling pathway were randomly chosen with a range limited by 10% Gaussian noise. The
simulation results were obtained using 1ms time increments, but the model allows for the use
of any time increment. The simulation was performed in C# 8.0 and the results were averaged
over the entire cell population. The model uses a network based on queues to model reactions
whose rates change dynamically and randomly.

To test the validity of the model, the theoretical inhibition of mTORC1 activity was
simulated. One inhibitor of mTOR activity is rapamycin, but it has a number of side effects,
including an increased risk of infection, cancer, weight disorders, hyperlipidemia, and
diabetes-like metabolic disorders. Therefore, it is important to develop drugs that selectively
inhibit mMTORC1 activity without significant side effects, such as astragaloside IV (As-IV). The
data from the model can be used to study the kinetics of reactions in the insulin signaling
pathway and to identify the most effective place for therapeutic intervention. In the absence
of insulin, there are approximately 18,200 GLUT4 molecules near the cell membrane that are
able to transport glucose into the cell when activated. However, insulin stimulation increases
this number to approximately 195,000, or about 50% of total GLUT4.

There are two scenarios for the regulation of mTORC1 activity through the insulin
signaling pathway: when the concentration of glucose in the blood is high after eating and
insulin signaling is functioning correctly, and when the organism is in a state of prolonged
fasting and there is a decrease in extracellular glucose and insulin secretion. In the first
scenario, GLUT4 molecules are activated by insulin and move to the cell membrane to

transport glucose into the cell. The glucose is then phosphorylated to form G6P, which can
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either enter the glycolytic pathway or be converted into glycogen. The sequence of reactions
in glycolysis produces glyceraldehyde-3-phosphate (G3P), which is converted into 1,3-
bisphosphoglycerate by GAPDH. GAPDH is important for the regulation of mTORC1 activity
because its concentration levels in the cell oscillate around a certain value and its state can
change from processing G3P to being free to bind with Rheb protein and activate mTORCL1. In
the second scenario, when insulin signaling cascade is interrupted, GLUT4 remains stationary
and unable to transport glucose, leading to the hydrolysis of stored glycogen and the
maintenance of basic G6P levels. However, the glycolytic flux is decreased, resulting in fewer
G3P molecules and more free GAPDH molecules that can bind with Rheb and inactivate
mMTORCL. Intermediate conditions between these two scenarios are more common in cells.

A queueing theory-based model of the insulin signaling pathway was developed and
tested to understand the relationships between the levels of GLUT4, GAPDH, and mTORC1.
These relationships play a significant role in how the cell responds to insulin and extracellular
glucose. The model's results were consistent with current knowledge and showed that the
amount of GLUT4 molecules ready to transport glucose is heavily dependent on the amount
of GAPDH "occupied" with processing its substrate. The model also demonstrated that both
MTORC1 activity and the amount of "occupied" GAPDH can significantly influence the amount
of GLUT4 and lower the amount of GLUT4 molecules involved in glucose transport. The
scenario in which all GAPDH molecules are busy processing its substrate and mTORC1 is fully
active keeps the amount of GLUT4 in vesicles at the maximum level. These results suggest that
drugs that can significantly decrease mTORC1 activity may be important for increasing the
amount of GLUT4 directed to the cell membrane for glucose transport. The insulin signaling
pathway is complex and unstable, with small changes potentially leading to altered cell
responses and diseases such as type 2 diabetes. The model also showed that many elements
can contribute to glucose malabsorption and that the nodes of the pathway that influence
AMPK activity, specifically IRS1/3, may be important targets for therapeutic intervention.

The model | prepared shows the "big picture" and the complex interrelationships that
occur between signaling molecules that lead to a differential response to insulin and
consequent activation of different amounts of GLUT4 involved in glucose transport into the
cell.

My contribution to the research reported in this paper has been conceptualization and

realization of the study. | performed a thorough state of the art analysis, designed the
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structure of the algorithm. | collected the necessary numerical data for the research and
model preparation regarding the concentrations of signaling proteins involved in the process
of cellular response to insulin, as well as the kinetic constants. | then used these parameters
to prepare kinetic equations based on mass-action law. Moreover, | performed analysis of

simulation results and compared obtained results to the literature data. Finally, | wrote the

original draft of this paper.
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6. Publications that are the subject of the dissertation

6.1. Original paper | — content of the publication “Queueing theory model of
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Abstract

Motivation: Queueing theory can be effective in simulating biochemical reactions taking place in living cells, and the
article paves a step toward development of a comprehensive model of cell metabolism. Such a model could help to
accelerate and reduce costs for developing and testing investigational drugs reducing number of laboratory animals
needed to evaluate drugs.

Results: The article presents a Krebs cycle model based on queueing theory. The model allows for tracking of
metabolites concentration changes in real time. To validate the model, a drug-induced inhibition affecting activity of
enzymes involved in Krebs cycle was simulated and compared with available experimental data.

Availabilityand implementation: The source code is freely available for download at https://github.com/UTP-WTIiE/

KrebsCycleUsingQueueingTheory, implemented in Ci# supported in Linux or MS Windows.

Contact: 503013@stud.umk.pl or twysocki2@unl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Modeling metabolic pathways can be extremely useful in the scien-
tific world (Ederer et al., 2014; Nazaret et al., 2009; Theodosiou
etal., 2015; Wu et al., 2007). The ability to predict a cell’s response
to changes in the surrounding environment, i.e. changes in metabol-
ite levels or external stimulus, would greatly improve the designing
of experiments, Therefore, the impact of these changes on the whole
cell metabolism should be assessed in the experiment planning stage.
Modeling, combined with the ever-evolving metabolomics, could
help speed up the diagnosis and treatment of metabolic diseases.
Often, drugs are tested on animals, given in various doses and
assessed for their impact and effects. Such tests can be lethal ro la-
boratory animals and are responsible for the majority of their deaths
(Hajar, 2011; Hawkins et al,, 2019; Lynch and Slaughter, 2001).
Developing an accurate metabolism model could reduce the need for
animal studies and reduce animal cruelty. In addition, before drugs
reach medical use, and after in silico, in vitro andfor in vivo testing,
they undergo a series of long-term clinical trials during which their
impact and long-term effects are carefully assessed. An effective me-
tabolism model could accelerate the process and achieve cost reduc-
tions. Animal testing and human clinical trials are both necessary
for validating the effectiveness of a drug, however, a long-term goal
of our effort is to reduce our reliance on these tests and present in sil-
ico methods as a sufficient alternarive.

Queueing theory is mainly used for issues related to telecommu-
nications and engineering, yet queueing theory is suitable for model-
ing stochastic changes occurring in biological systems. Until now,
the queueing theory has been used, for example, to model insulin
levels and the number of insulin receptors needed. Such studies can
help to understand insulin-dependent diseases (Cavas and Cavas,
2007). Interestingly, thanks to the queueing theory, it was also pos-
sible to model the impact of ethanol consumption and remove the
side effects caused by its consumption (sobering) (Guang, 1998).
Such studies indicate a multitude of applications of queueing theory,
also in modeling metabolic pathways. Queueing theory has been
previously used to model a simple merabolism nerwork and mimic
chemical interactions between substrates and products (Evstigneev
et al., 2014). Recently, a model of glycolysis based on queueing the-
ory has been presented (Clement et al., 2020). The use of queueing
theory is also beneficial from the computational perspective as it
requires less compuring power, thus accelerating computing time
and allows simulations to be carried out in real time. Due to the na-
ture of reactions in Krebs cycle, reaction products become substrates
for the next reaction in the cycle. In addition, biological systems
have well-organized ways to transform molecules, pass them down
the pathway and transport them to where they are needed to main-
tain normal cell function (Tsitkov et al., 2018), much like transmit-
ting packets in the internet from one node to another one. For this
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reason, we decided it would be reasonable to use queueing theory,
which has been proven a useful modeling technique in communica-
tion systems, to model this metabolic cycle.

In this article, we present the entire process for creating a Krebs
cycle simulation model: from a literature review to obrain empirical
data on metabolites and enzymes necessary to model the reaction
according to the Michaelis-Menten kinetics, through the description
of the genetic algorithm used to optimize the kinetic constants found
in different sources (Siess et al., 1976; Singh and Ghash, 2006}, and
finally the description of the model itself—the obrained concentra-
tion results and their comparison against the available dara, as well
as confirmation of the model’s effectiveness simulating the inhib-
ition of the Krebs cycle induced by drugs.

The Krebs cycle, also known as the tricarboxylic acid cycle
(TCA) or the citric acid cycle (CAC), takes place in a mitochondrial
matrix. The purpose of the Krebs cycle is to produce energy in a
form of guanosine triphosphate (GTP) which also releases carbon
dioxide (CO,)(Fig. 1, Table 1) as a byproduct. GTP is the energetic
equivalent of adenosine triphosphate (ATP) (Korla and Mitra, 2014;
Ponizovskiy, 2016; Smith and Robinson, 2011). Summarized equa-
tion of the Krebs cycle: acetyl-CoA + 3 NAD' + FAD + GDP + P;
+2 H,0 — 2 CO; + 3 NADH + FADH, + GTP + 2H" + CoA.
Formulas of Krebs cycle reactions and the enzymes caralyzing these
reactions are presented in Table 1. Reaction 1 in Table 1 is the first
reaction in which the cell may obrain its energy in the form of ace-
tyl-CoA. The reaction that completes the cycle is the transfer of two
acetyl groups from acetyl-CoA to a four-carbon compound—oxa-
loacetate and the formation of a six-carbon molecule—citrate.
Citrate then undergoes a series of reactions, during which energy is
produced and CO; released. Acetyl-CoA serves as fuel for the Krebs
cycle and can be derived from various sources including fats, carbo-
hydrates and proteins, thus connecting the metabolic pathways of
these elements. Aceryl-CoA can also be derived from pyruvate, the
main product of the glycolysis. Nevertheless, the Krebs cycle is also
a source of amino acid precursors, as well as a molecule that is ex-
tremely important for metabolism, the reduced form of NAD—
NADH, which plays a role in many other reactions in the cell like
oxidative phosphorylation (Krebs and Johnson, 1937). Due to the
use of individual metabolites as intermediates for the synthesis of
further compounds necessary for the proper cell function, these
metabolites have the ability to leave the cycle by means of transport
mechanisms that move them to the appropriate site. The criticality
of the Krebs cycle in mammalian physiology is the primary reason
we have sought to undertake the development of the model
described herein. Additionally, dysregulation of the Krebs cycle
would be deleterious, and could result in large energy losses and
overproduction of cofactors like NADH. Cycle regulation is based
on the cellular assessment of the amount of available substrates and
resulting products. A low concentration of substrates or a high con-
centration of products will decrease reaction rates. Cellular ADP

n, = rate{PYR AcCoa)
/9
= rate(PYH, X,
by = balance rate(0X0)+
1 = rate(MAL, 0X0) @

n = racc(FUM, ""” 2 § 7 = rew (T, I150)

= rute(SUC, Fll!l) = r, = rate{ISO.KETO)

(AcCou, OX0), CIT)

« by = balance_rate(CIT)

]

7o = rate(KETOSUC)  * b, = balance rate(KETO)
Fig. 1, Krebs cycle scheme using queueing theary. Molecules of the same type are
quenes, Reactions of the same type are servers. The queunes are linked together, and
the server output from one queue is connected to the input of the other queve

availability and its conversion to ATP also affects the speed of reac-
tions. Lower ADP concentrations cause accumulation of NADH,
which has inhibitory properties for many enzymes. A high concen-
tration of citrate also affects the course of the cycle because it canin-
hibit glycolysis reactions, thereby preventing metabolite flow.

2 Methodology

2.1 Obtaining data on metabolite concentrations and

characterization of enzymes catalyzing cycle reactions
Interest in metabolomics has grown rapidly due to the development
of mass spectrometry (MS), which makes it possible to assess the
concentrations of individual metabolites despite the fact that some
of them occur in very small amounts, including those in the Krebs
cycle (Ahn et al., 2017; Albe et al., 1990; Bennetr et al., 2009; Ishii
etal., 2007; Milo et al., 2010; Mogilevskaya et al., 2006; Park et al.,
2016). The model developed by our team is based on existing know-
ledge of molecular concentrations as initial values to the model
(Table 2). The kinetics of enzy matic reactions are calculated accord-
ing to Michaelis-Menten kinetics (1) (Singh and Ghosh, 2006). Our
model enables tracking the course of reactions—both reaction speed
and product growth over time. The speed of the enzymatic reaction
depends on factors such as the maximum speed at which the enzyme
can convert substrate into a product, the concentration of substrate
and the enzymatic constant.

[Sts
ps L T
Vf K3, As -V, Ky, Ky,
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(1)

Yimm

where v is the reaction speed, V; is the forward reaction speed, V, is
the reverse reaction speed, $1. 55, .. ., S, - substrate concentration in
mmoll, PPy, .... P, is the substrate concentration in mmolll,
K, . Kg,o oo os Ks, is the kinetic constant of substrate and
Kp,. kp oo Kp_is the kinetic constant of product.

Enzyma[ic properties of enzymes that are involved in Krebs cycle
reactions are presented in Supplementary Table S1 (Singh and
Ghosh, 2006). If enzymatic data was unavailable, appropriate
assumptions were made. For example, if Kp is unknown, it can be
calculated as 10*Kg; the reverse speed of reaction is 100x slower

than forward reaction (V, = m)] These assumptions are based on
previous research and empirical observations (Singh and Ghosh,
2006) and have been adapted in our model. The reaction equations
based on the Michaelis-Menten kinetics are presented in
Supplementary Table S2. The reaction rates were calculated using
kinetic constants and metabolite concentrations available in litera-
ture (Ahn et al., 2017; Albe et al., 1990; Bennert et al., 2009; Ishii
etal., 2007; Milo et al., 2010; Mogilevskaya et al., 2006; Park et al.,
2016; Siess et al., 1976; Singh and Ghosh, 2006). The concentra-
tions of the following metabolites were combined: isocitrate and cis-
aconitate, as well as succinyl-CoA and succinate. Combined concen-
trations were 0.0216 and 0.73 mmol/l, respectively. Isocitrate and
cis-aconitate, as well as succinyl-CoA and succinate are transient,
and once produced they are immediately used in the next reaction in
the cycle. Combining them for simulation purposes with the metab-
olites adjacent to them in the cycle accelerated the calculation proc-
esses of the model and improved its stability.

2.2 Queueing theory

There are many studies examining trials of individual metabolic
pathways modeling, but the large amount of interactions between
metabolites, enzymes and other biomolecules make modeling meta-
bolic pathways an extremely difficult task. Until now, the preferred
method used in systems modeling was ordinary differential equa-
tions (ODEs) (Ahn et al., 2017; Cohen and Bergman, 1995; Ederer
et al., 2014; Foster et al., 2019; Jahan et al., 2016; Jeffrey et al.,
1999; Korla and Mitra, 2014; Kurara and Sugimoto, 2018;
Mogilevskaya et al., 2006). Several approaches used scenario-based
modeling (SBM) in connection with already existing platforms and
tools, like PlayGo (Driger et al., 2008; Lapid et al., 2019; Nazaret
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Table 1. Krebs cycle and related reactions—stoichiometric formulas
Number Reaction Enzyme
1 Pyruvate + CoA + NAD ™ -

acetyl-CoA + CO2 + NADH Pyruvate dehydrogenase
2 Pyruvate + HCO3 + ATP —

oxaloacetate -+ ADP + P, Pyruvate carboxylase
3 Oxaloacetate + acetyl-CoA + HyO —

citrate + CoA + H* Citrate synthetase
4 Citrate —

cis-aconitate + H ,0 Aconitase
5 Cis-aconitate + H ,0 —

1socitrate Aconitase
6 Isocitrate + NAD* —

a-ketoglutarate 4+ CO, + NADH Isocitrate dehydrogenase
7 a-Ketoglutarate + NAD* + CoA —

succinyl-CoA + CO, + NADH Ketoglutarate dehydrogenase
8 Succinyl-CoA + P, + GDP

succinate 4+ GTP + CoA Succinate thiokinase
9 FAD + succinate —

fumarate + FADH, Succinate dehydrogenase
10 Fumarate 4+ H,O —

malate Fumarase
11 Malate + NAD" «

oxaloacetate + NADH + H* Malate dehydrogenase
Table 2. Initial concentration values of Krebs cycle metabolites
Metabolite, biomolecule Concentration (mmol/l) Reference

Coenzyme A 0.044 Park etal. (2016)
Pyruvate 0.0586 Clement et al. (2020)
Acetyl-CoA 0.5 Milo et al. (2010)

Citrate 0.19 Ahnetal. (2017)
Cis-aconitate 0.0016 Bennettetal. (2009)
Isocitrate 0.02 Milo et al. (2010)
a-ketoglutarate 0.54 Mogilevskaya et al. (2006)
Succinyl-CoA 0.66 Mogilevskaya et al. (2006)
Succinate 0.07 Albe etal. (1990)
Fumarate 0.485 Park et al. (2016)

Malate 0.495 Mogilevskaya et al. (2006)
Oxaloacetate 0.006 Mogilevskaya et al. (2006)
ATP 0.159 Clement et al. (2020)

ADP 0.0937 Clement et al. (2020)

Gbp 0.0012 Milo et al. (2010)

NAD* 0.099 Milo et al. (2010)

NADH 0.025 Milo et al. (2010)

H,O 0.170 Milo et al. (2010)

H* 52x107% Milo et al. (2010)

P, 0.05 Milo et al. (2010)

HCO; 0.003 Milo et al. (2010)

et al., 2009; Wu et al., 2007). However, despite many trials and
many years of research on metabolism, it has still not been accurarte-
ly represented in any model. Researchers focus on individual meta-
bolic pathway fragments to understand the metabolites and enzymes
that transform them as accurately as possible (Berndr et al, 20123
lacobazzi and Infantino, 2014; Korla et al, 2015; Tretter and
Adam-Vizi, 2005). Thanks to this type of research, existing know-
ledge can be used in the model we propose. The use of queueing the-
ory together with the grouping of molecules of the same type
(queuve) and reactions of the same type (server) allow a simpler
model than the use of the Gillespie algorithm (Gillespie, 1977; Vair,
2017), where each reaction and each molecule is described by a sep-
arate node in Markov chains (Massey, 1985). Queueing networks
can be considered and called as hidden Markov chain. As a result,

the mathematical-simulation model is identical to the biological
one, asshown in Figure 2. Another advantage of using this approach
is that it is impossible to achieve negative results in biological sys-
tems, as is sometimes the case with ODE-based models. There are
methods forcing the system to obrain non-negative values
(Shampine et al., 2005), however, they could cause calculation
errors. Usage of queueing theory as the basis for a Krebs cycle simu-
lation model aims at providing a possible realization of stochastic
Markovian processes representing variations in the concentration
over a given metabolite. The average change in concentration can be
achieved by averaging the simulation results for several simulation
runs. At the heart of this stochastic model is Michaelis=Menten kin-
etic equations describing the relationship between quantities of sub-
strate-product pairs and reaction velocities. In this theory, the
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Fig. 2. Concentration level change aver 24 h simulation under unperturbed condi-
tions. ‘PYR'—pyruvate; *ACCOA—acetyl-Cod; ‘OXO'—axaloacetate; ‘ClI'T'—<cit-
rate; 'I1SO"—isocitrate and cis-aconitate; ‘KETO'—a-ketoglurarate; ‘SCA'—
succinyl-CoA and succinate; ‘FUM'—fumarate; ‘MAL'—malate

velocity of a reaction is a macroscopic representation of the aggrega-
tion of numerous microscopic reactions that may or may not ex-
change a fixed quantity of substances in a particular period of time.
As a result, the speed of a reaction is described as a frequency of the
reaction’s occurrence and its relationship with the probability of
increasing a certain substance by invoking reaction, in which the
aforementioned metabolite is a product, and the probability of
decreasing the substance by performing reaction, where it is a sub-
strate. By describing the behavior of the Krebs cycle as probabilities
of increasing and decreasing each of its substrates and correlating
ones' reduction with others’ accumulation, we achieved a self-regu-
lating, stochastic process simulating the actual Krebs cycle.
Michaelis-Menten kinetic equations are used to calculate the prob-
ability that a certain reaction occurs in the current time interval
based on the amount of substrate, product and kinetic constants
describing the reaction and the duration of the time interval. The
results of these equations can be interpreted as the arrival and ser-
vice rates in the Poisson processes, while an exponential distribution
models the service time (the time intervals berween two consecutive
output events). These assumptions are consistent with classical
queueing theory approaches. Therefore, the number of arrivals in
any given time interval (t, ¢+ | follows a Poisson distribution with
a parameter (ut) such that:

()t
k!

where P[(N{t + t)-Njt})=k] is the probability of k arrivals in the
interval (t, t + t]and pris the expected number of arrivals in a time
interval of duration .

The time required for the queue to process the metabolite incre-
ment is described by the exponential distribution using the probabil-
ity distribution of random varable X in the terms of the rate
parameter pas follows:

P[(N(t + 1) — N(t)) = k] = (2)

flx: p) = pe ™ max(x,0) (3)

Therefore, the resulting arrival process at the input of a subse-
quent queue to which that outpur of the considered server is con-
nected, follows a Poisson distribution. This a single multivariable
stochastic process. All the vanables are correlated. The process is
described by a queueing nerwork as shown in Figure 1, which con-
sists of a queue describing arrivals and departures of discrete
amounts of substances. For example, isocitrate (ISO), which is a
product in the reaction citrate — isocitrate (CIT — ISO) and a sub-
strate in reaction isocitrate — a-ketoglutarate (ISO — KETO). This
means that the increment of ISO produced in the previous time
interval adds to the queue of ISO for the ISO — KETO reaction, ef-
fectively increasing the length of I1SO queuve. The Krebs cycle is a
looped system constructed from queues, with increments of concen-
tration of consecutive metabolites circulating, departing from one
queue and arriving at another queue. According to Michaelis-

Menten kinetic equations, the probability of each packert arriving at
the metabolite’s queue is correlated with the amount of product and
inversely correlated with amount of substrate, creating a self-regu-
lating system, reacting to the imbalances of metabolites and equaliz-
ing the arrivals and departures from every queue.

2.3 Use of the genetic algorithm to find optimal values

of kinetic constants

The generic algorithm was used to find optimal values of kinetic
constants for the Krebs cycle simulation. The genetic algorithm is a
heuristic search inspired by Charles Darwin’s theory of natural evo-
lution and uses competing ‘chromosomes’ in order to find optimal
parameters that minimize a fitness function (Man et al., 1999). A
‘chromosome’ in this implementation is the rtable of constants
required for reaction rates calculation. "The chromosome’ is made
of 'genes’, which are constants used in one reaction. For example,
the first gene in the ‘chromosome’ consists of constant values used in
PYR — AcCoA reaction. There are one hundred ‘chromosomes’ in
the population and each of them is a candidate for rable of kineric
constants. The fitness function was designed to force the genetic al-
gorithm to find a table of kinetic constants that allows values of
products’ concentrations to settle at stable points and to minimize
the distance berween start values and stable points. The designed fit-
ness funcrion is expressed as:

1g 1 &
fiX)= ;Z [Xio— mz X gix-pl (4)

=0} =0

where X is the table of values of simulation product concentrations
in time.

Evaluation of one ‘chromosome’ requires running a simulation
using its set of genes as a table of kinetic constants. The simulation
function retums the values of substrates’ concentrations at each se-
cond. This table is used by the equation above to output the 'chro-
mosome’s’ score. The funcrion calculates an average vector of the
last 100 recordings and computes absolute difference with initial
simulation concentrations. In the last step, there is a calculated aver-
age of differences. The 'chromosome’ minimizing this function is
selected as the optimal table of kinetic constant values. Evaluation
of each *chromosome’ is computed by simulating the Krebs cycle
through the first one hour. There are 100 ‘chromosomes’ in the
population in each step of optimization and after evaluation only
the 10 sets of constants that minimizes the fitness funcrion are
selected for reproduction. The reproductive algorithm is a variation
of the standard crossover with additional mechanism preventing the
finding of a trivial solution to minimize the loss function problem,
which is to zero the probability of every reaction. A step-by-step de-
scription of reproduction algorithm is presented in Supplementary
Darta. The main disadvantage of the fitness function described above
is the existence of a trivial solution for its minimization problem. If
the *chromosome’ contains only zeros, then no reaction would be
performed, so the settling points of concentrations of products in the
Krebs cycle would have the same values as initial concentrations,
thus finding a global minimum. To prevent the genetic algorithm
from converging to this solution, the reproduction mechanism
requires that each reaction at t=0 has probability of being per-
formed berween 1% and 10%. Reaction and balancing flow rates
have ranges from 1 to 10% at the beginning of the simulation
started from substrates concentration values described in the litera-
ture. Applying these constraints to the reaction rates prevent them
from being zeroed at the start and also prevents saturation of reac-
tions. The reproduction algorithm has a 10% chance to perform a
mutation with the muration amplitude equal to 1.0.

2.4 Krebs cycle simulation pseudocode

The pseudocode describing the computation process of the Krebs
cycle simulation is included in Supplementary Data. This code
assumes that:
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Table 3. Comparison of concentration data: literature and model (mmol/1)

Metabolite Initial concentration Final concentranon Standard deviation over Absolute Relative difference
(literature) {model) mean difference (%)
Pyruvate 0.0586 0.0586 0.0033 0.0 0.0
Acetyl-CoA 0.05 0.5028 0.0145 0.0028 0.55
Oxaloacetate 0.006 0.0059 0.0167 ~0.0001 ~1.5
Citrate 0.19 0.1994 0.018 0.0094 4.96
Isocitrate + cis-aconitate 0.0216 0.0216 0.0554 0.0 0.01
a-ketoglutarate 0.54 0.5346 0.0256 ~0.0054 ~1.01
Succinyl-CoA + succinate 0.73 0.6473 0.0167 ~0.0827 -11.33
Fumarate 0.485 0.467 0.0161 ~0.018 -3.72
Malate 0.495 0.4847 0.0107 ~0.0103 ~2.08

Note: Calculated relative difference shows similarity of obtained results and literature data.

* Kinetic constants are grouped into a table of vectors of constant
values. There are 11 vectors in the table corresponding to nine
different reactions and two balancing flows. Each of the reac-
tions has a unique, four-dimensional vector and every balancing
flow conrtains a one-dimensional rable. The vecror describing
pyruvate carboxylase and citrate synthetase are the exceptions
from this rule as they have eight and six elements, respectively.
These exceptions are due to the nature of the reactions catalyzed
by these enzymes. While most of the reactions require only four
coefficients to be optimized the reactions catalyzed by pyruvate
carboxylase and citrate synthetase involve more constants that
need to be optimized.

* Concentration increment exchanged during the reactions is
called *delta’ and is equal to 0.0001 mmol. 'Delta’ is significantly
lower than the initial value of the lowest substrate concentration.
Delta value must be chosen in a way that it corresponds to a
change of more than a single molecule for the rare species, in fact
for rare species it should be always chosen to be a positive integer
number of molecules.

* Simulation assumes that the concentration of pyruvate in the
cycle is varying with 10% Gaussian noise around the constant
value of 0.0586 mmol/l. Such signal-to-noise ratio depicts meta-
bolic conditions inside the cell. Due to the various living condi-
tions of the cell, pyruvate is consumed faster or slower. The
pyruvate level is dependent on the blood glucose level, which
also affects the glucose level in the cell, so the variation of 10%
was assumed. It is an arbitrary choice, and the variation range
can be changed if there are good reasons to do so, as was done
with the drug effect simulation.

The scatchin%{or optimal kinetic constants was performed using
a PC with Intel™ Core i7-7700HQ @ 2.80 GHz, RAM 16 GB.
Code was written in C# 8.0. One search epoch simulating one hour
for 100 different tables of kinetic constants using all 8 logic cores
took approximately 10 min.

2.5 Inhibition of a specific stage of the cycle and its
influence on the concentrations and kinetics of other

reactions

To validate the model, we simulated the outcome of various drugs
on the Krebs cycle, which are known to affect the concentrations of
individual metabolites in the Krebs cycle. This approach may also
emulate changes in enzyme activity associated with the progression
of varous diseases, including mertabolic disorders or cancer
(Tolstikov et al., 2014); Surtendra and Michelakis, 2013; Zhang
et al., 2018). Drugs that affect enzyme reactions in the Krebs cycle
are usually comperitive inhibitors. Ultimately, the drug slows down
the reaction carried out by a particular enzyme because the enzyme

Table 4. Comparison of concentration values during Phenformin
treatment: empirical data and model based onthe queueing theory

Metabolite Concentration change after Phenformin Model
administration in comparison to simulation
non-treatment (Janzer et al., 2014) (%) results (%)

Pyruvate ~65 ~65

Citrate ~60 ~59.28

Isocitrate ~65 -63.91

a-ketoglutarate ~80 ~79.38

Fumarate ~50 ~50.84

Malate ~53 ~53.22

processes smaller amounts of substrate than it would under regular
conditions, without an inhibitor. Understanding the kinetic proper-
ties of inhibitors would be sufficient to predict its effect on cell me-
tabolism. Using the existing research on substances affecting various
enzymes involved in the Krebs cycle reactions, an experiment was
conducred to reflect the effect of the drug on the rate of enzymaric
reaction and the concentration of metabolites.

3 Results

To validate the model, we have tested first its stability. The system
becomes stable after approximately 5.5 h of simulation as shown in
Figure 2. During this time, for every millisecond of simulation time
one simulation step was performed.

In our opinion, these results are satisfactory. The largest relative
difference observed in our model in comparison with available bio-
logical data is -11.33% in the case of the combined concentrations
of succinyl-CoA and succinate (Table 3).

To reflect the kinetics of the Krebs cycle during inhibition
induced by a drug that blocks one of the cycle reactions, we selected
one of the studies based on the measurement of metabolite concen-
trations after administration of drugs in anti-cancer therapy (Janzer
et al., 2014). This study provided the most detailed information on
the concentrations of several metabolites included in the Krebs cycle.
Therefore, the study served as the basis for the model to check
whether it achieves similar results (Table 4). This study tested the
effects of Tamoxifen, already used in the treatment of breast cancer,
in combination with the drugs used by diabetics—Metformin and
Phenformin, The idea to use these drugs in cancer therapy resulted
from clinical observations (Evans et al., 2005; Jiralerspong et al.,
2009; Kim et al., 2018; Pollak, 2012). According to these observa-
tions, cancer diagnosis incidence rate was lower in patients using the
drugs, as well as the mortality rate due to cancer was lower in the
diagnosed patients. This observation prompted the idea of combin-
ing Metformin and Phenformin together with the standardized
Tamoxifen. Metformin and Phenformin doses were 300 and 10 uM,
respectively. One of the methods of assessing the effectiveness of the
therapy was the measurement of the concentration of Krebs cycle

39



Queueing theory model of Krebs cycle

2917

metabolites. This metabolic cycle is extremely important for cancer
cells due ro the high energy demands of these cells. Therefore, a re-
duction in the Krebs cycle efficiency and lowering the concentration
of individual metabolites, may prove the effectiveness of the used
treatment method. Simulatons present changes in concentration lev-
els of each Krebs cycle metabolite during treatment (Figs 3 and 4).
Due to the difficulty of obtaining measurements, the article
(Janzer et al., 2014) did not include all the Krebs cycle merabolites.
The data presented in Tables 4 and § confirm the accuracy of the
proposed solution. The prepared model based on the queueing the-
ory was designed to accurately reflect the stochastic nature of
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Fig. 3. Concentration levels change during inhibition: reflection of Tamoxifen +
Phenformin treatment. ‘PYR'—pyruvate; ‘ACCOA—acetyl-CoA; *OXO'—aoxaloa-
cetate; ‘CIT"—citrate; 'ISO"—isocitrate and cis-aconitate; ‘KETO —a-ketoglutarate;
‘SCA'—succinyl-CoA and succinate; ‘FUM'—fumarate; ‘MAL'—malate
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Fig. 4. Concentration levels change during inhibition: reflection of Tamoxifen +
Metformin weatment. PYR'—pyruvate; ‘ACCOA—acetyl-CoA; *OXO'—oxaloa-
cetate; ‘CIT"—citrate; ‘ISO'—isocitrate and cis-aconitate; ‘KETO'—a-ketoglutarate;
‘SCA'—succinyl-CoA and succinate; 'FUM'—fumarate; ‘MAL'—malate

biological reactions. For this reason, training and adapting it to the
conditions and phenomena that may occur during biochemical reac-
tions in the cell, also under the influence of pharmaceuticals,
allowed to obrain results similar to the experimental values, Tables
6 and 7 present the results of a six-hour simulation of the concentra-
tions (with 10% gaussian noise) of all Krebs cycle metabolites for
Tamoxifen + Phenformin and Tamoxifen + Metformin treatment.
To obrain the presented results, the so-called ‘balancing flow® was
used in the model. It imitates the drainage of metabolites due to their
various uses in cell functioning (e.g. being precursors for other com-
pounds). Balancing flow was used to stabilize the concentrations of
oxaloacetate and citrate. Oxaloacerate is used in gluconeogenesis, in
the urea cycle and in the synthesis of fatry acids to create citrate in
the form of which it is transported; this happens when there is no de-
mand for energy at the moment. Citrate is transported beyond the
mitochondria to the cytoplasm, then broken down into acetyl-CoA
and oxaloacetate for the synthesis of fatty acids. Probability rates of
balancing flows for oxaloacetate and citrate are linearly correlated
with the concentrations of respective metabolites. Such a compos-
ition of arriving, departing and balancing rates forms a stochastic
representation of the Krebs cycle and provides an accurate and time-
efficient model. By comparing the simulation and measurement
results, we stipulate that the drugs administration in previously men-
tioned doses inhibits the reaction catalyzed by pyruvate dehydrogen-
ase by about 30%. a-ketoglutarate and malate have been shown as
examples of the metabolites which concentration was measured dur-
ing the studies on the effects of these drugs (Figs 5 and 6). The model
allows for the observation of pharmaceurical influence on the kinet-
ics of the cycle reactions and their influence on metabolite levels.

4 Discussion

The presented results demonstrate the preparation of a model cap-
able of mimicking the conditions of metabolic reactions in living
cells. A disadvantage of our model is that the data on metabolite
concentrations and enzyme constants come from different sources.
Measurements carried out on different measuring devices by differ-
ent research teams may not be fully compatible. However, to the

Table 5. Comparison of concentration values during Metformin
treatment: empirical data and model based onthe queueing theory

Metabolite Concentranon change after Metformin Model
administration in comparison to simulation
non-treatment (Janzer etal., 2014) (% results (%)

Pyruvate ~35 -35

Citrate ~15 ~16.18

Isocitrate ~40 -39.17

a-ketoglutarate ~55 ~5447

Fumarate ~37 ~37.03

Malate -39 ~39.43

Table 6. Comparison of concentration data: literature and model (mmol/l) under inhibition caused by Tamoxifen and Phenformin

Metabolite Initial concentraton Final concentration Standard deviation over  Absolute Relative difference
(literature) (model) mean difference (%)

Pyruvate 0.0205 0.0205 0.0039 0.0 0.03
Acetyl-CoA 0.5 0.4129 0.0161 ~0.0871 -17.42
Oxaloacetate 0.006 0.0025 0.0239 ~0.0035 ~58.7
Citrate 0.1899 0.0773 0.0267 ~0.1126 ~59.28
Isocitrate + cis-aconitate 0.0056 0.002 0.0636 ~0.0036 ~63.91
a-ketoglutarate 0.3764 0.0776 0.042 ~0.2988 ~79.38
Succinyl-CoA + succinate 0.73 0.1113 0.0308 ~0.6187 ~84.75
Fumarate 0.1825 0.0897 0.0315 ~0.0928 ~50.84
Malate 0.4335 0.2028 0.0164 -0.2307 -53.22
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Table 7. Comparison of concentration data: literature and model (mmol/l) under inhibition caused by Tamoxifen and Metformin

Metabolite Initial concentration Final concentration Standard deviation over  Absolute Relative difference
(literature) (model) mean difference (%)
Pyruvate 0.0381 0.0381 0.0036 0.0 0.0
Acetyl-CoA 0.5 0.3676 0.0139 ~0.1324 ~2649
Oxaloacetate 0.006 0.0044 0.015 ~0.0016 ~27.46
Citrate 0.1466 0.1229 0.0232 ~0.0237 ~16.18
Isocitrate 4 cis-aconitate 0.0081 0.0049 0.0709 ~0.0032 -39.17
a-ketoglutarate 0.35%6 0.1637 0.0274 ~0.1959 ~5447
Succinyl-CoA + succinate 0.73 0.2346 0.0228 ~0.4954 ~67.86
Fumarate 0.3272 0.206 0.0227 -0.1212 -37.03
Malate 0.5235 0.3171 0.0139 ~0.2064 ~39.43
100 above which the effect is imperceptible, something like *maximum
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Fig. 5. a-Ketoglutarate concentration change in regards to pyvate dehydrogenase
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best of our knowledge there is no publication which presents meta-
bolic data for every Krebs cycle metabolite derived from one re-
search group. We have made every effort to ensure that the data
used are as accurate and compatible with each other as possible.
The models can be a kind of virtual laboratory where one can con-
sider interdependencies between specific substances and metabolites
and their influence on basic cellular functions. The developed model
may provide knowledge on how chemical compounds obrain their
therapeutic efficacy, which may result in improved safety from the
early stages of drug development, e.g. setting up experiments before
tests on living organisms, and between preclinical testing and clinic-
al trials. The model allows to determine which reactions of the meta-
bolic pathway are the best candidates for disturbing the metabolic
pathway. In addition, we can observe what doses of the drug have a
significant effect on the metabolic pathway, as well as the dose

effective dose’. There are many studies proving the usefulness of
various drugs affecting cell metabolism. These drugs are used, in
conjunction with others, in bacterial infections and in neoplastic dis-
cases. The available literature data on the kinetic properties of
enzymes and the concentration of metabolites can be used in this
model. As mentioned before in the inhibition modeling section,
Metformin and Phenformin are drugs that lower the level of metab-
olites in the Krebs cycle. This is associated with a reduction in the
supply of pyruvate that could be transformed and enter the Krebs
cycle, as well as an increase in the amount of lactate produced under
anaerobic conditions. Previous studies have suggested that the Krebs
cycle is not inhibited by metformin and changes the source of cellu-
lar ‘fuel’ (Janzer et al., 2014). However, the possibility that this ap-
parent difference in inhibition of the Krebs cycle may be due to the
analysis of stably transformed cancer cells as opposed to cells at an
early stage of transformartion was considered. However, biguanide
treatment of the stably transformed CAMA-1 breast cancer cell line
leads to a reduction in the concentrations of cycle intermediates.
This suggests that metabolic reduction of the Krebs cycle by bigua-
nides may be important for inhibiting transformation (Janzer et al.,
2014).

5 Conclusions

The combination of knowledge available in the literature and the
programming of the model provided a tool capable of mimicking
Krebs cycle-related mertabolic processes in living cells in real time.
We demonstrated that metabolic pathways can be effectively simu-
lated using methods based on queueing theory and affected by simu-
lated application of drug. However, in self-criticism we found a
place where the described model could be improved. We assume
that access to data obtained under the same conditions on specific
cells could potentially improve the obrained results, bur due to lim-
ited access to such dara, our model was prepared based on the most
accurate available data. Future research efforts will be devoted to
combining the Krebs cycle model with the previously developed gly-
colysis model (Clement et al., 2020) and adding the pentose phos-
phate pathway to obtain a comprehensive model of cellular
carbohydrate metabolism,
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Due to its role in maintaining the proper functioning of the cell, the pentose phosphate pathway (PPP)
is one of the most important metabolic pathways. It is responsible for requlating the concentration of
simple sugars and provides precursors forthe synthesis of amino acids and nucleotides. In addition,

it plays a critical role in maintaining an adequate level of NADPH, which is necessary for the cell to
fight oxidative stress. These reasons prompted the authors to develop a computational model, based
on queueing theory, capable of simulating changes in PPP metabolites’ concentrations. The model
has been validated with empirical data from tumor cells. The obtained results prove the stability and
accuracy of the model. By applying queueing theory, this model can be further expanded to include
successive metabolic pathways. The use of the model may accelerate research on newdrugs, reduce
drug costs, and reduce the reliance on laboratory animals necessary for this type of research on which
new methods are tested,

In recent years, there has been significant progress in metabolomics. New and improved test methods allow for
the measurement of many important biochemical parameters. The acquired data can be used to create simula-
tion models of biochemical reactions and entire metabolic pathways. Queueing theory can successfully model
metabolic processes, as demonstrated by the example of the glycolysis pathway' and Krebs eycle’. The preparation
ofanaccurate model simulating the course of PPP could potentially reduce the time needed for drug testing and
reduce the number of laboratory animals on which new drugs are tested”.

The PPP is a metabolic pathway whose main substrate is glucose- 6-phosphate (G6P). Throughout the reac-
tions that make up this pathway, numerous molecules are formed, such as: nicotinamide adenine dinucleotide
phosphate (NADPH), which is used in the biosynthesis of fatty acids, ribose 5-phosphate (R5P), whichis a
precursor in the synthesis of nucleotides, and erythrose 4-phosphate (E4P), which is used in the synthesis of
aromatic amino acids®®. Products of the PPP are essential for the formation of new cells. However, under stress,
cell growth is slows down and the PPP is responsible for maintaining cellular levels of NADPH. In fact, such con-
ditions increase the reliance of the PPP in the cell over glycolysis to maintain the needed ratio between NAD P!
and NADPH". In most living organisms, this pathway takes place in the cell eytosol.

There are two phases in the PPP: the oxidative phase and the non-oxidative phase. During the oxidative phase,
NADPH is produced”. In the non-oxidative phase, various simple sugars are synthesized. 5-carbon sugars derived
from the digestion of nucleic acids can be utilized in the PPF, where their carbon backbones are metabolized into
intermediates for glycolysis or gluconeo genesis. In the non-oxidative phase, one of the enzymes- transketolase—is
responsible for catalyzing two different reactions, with two sets of substrates. Therefore, these substrates act as
inhibitors to each other, since they are competing for the same active site of the enzyme.

It is estimated that as much as 60% of NADPH comes {rom the PPP®. The PPP is most active in the liver,
adrenal cortex, and mammary glands. The activity for this pathway is high in red blood cells, making it extremely
important in erythrocytes’. NADPH formed by the PPP is used in the cell to prevent oxidative stress and the for-
mation of dangerous free radicals that could harm the eell'”. Reactive oxygen species (ROS) can damage cellular
lipids, proteins, and nucleic acids, and eventually cause cell death'. It is worth noting that ROS are associated
with many diseases'* ", Since erythrocytes do not have mitochondria, they have no other source of reducing
oxidative stress other than the PPP. For example, large amounts of NADPH generated in erythrocytes are used
to reduce glutathione (GSH). This reduced form of GSH is essential for maintaining the proper state ofthe cell.
IfGSH level is lowered in erythrocytes, hemolysis may oceur™.
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of Science and Technology, 85-796 Bydgoszcz, Poland. *Department of Electrical and Computer Engineering,
University of Nebraska-Lincoln, Omaha, NE 68182, USA. "Department of Biology, University of Mebraska at
Omaha, Omaha, NE 68182, USA. “email: 503013 @stud.umk.pl; twysocki2@unl.edu
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Initial conc. Standard deviation Relative difference
Metabolite (literature) Final conc. (model) | over mean (%) Absolute difforence | (%)
Glucose-6-1 (GaP) 00026 00026 3 u L]
NADE 0.001 0.001 3 0 0
NADPH 0.0002 0.0002 3 0 0
6-Pgl lact
u:mu A LR T 93 107" 3 43 107" 86
6 P-gluconate (6PG) | 018 0019 2 0,001 55
Ribukyse-5-P (RuSP) | 0,012 0012 2 ) )
Ribes e-5-P (R5P) 0.009 0.009 1 0 0
Kylubse-5-P (X5P) | oo 0018 1 0 0
:51.3:\?; ']m‘d"hyd‘“j P oz 0.00242 3 000008 34
Sedoheptulose-7-F - f 5 g 0.062 1 0006 8.8
(571}
lirylhr\:m.'—:l- P{E4F 04 000 3 ) 0
Fructose-6-P (FGP) | 0,083 0.079 0 0004 45

Table 1. Comparison of concentration data: literature and model (mmaol/L). Calculated relative difference
shows similarity of obtained results and literature data.

The most common approach used to model metabolic changes in a cell is to use Ordinary Differential Equa-
tions (ODE). For metabolic reactions, ODEs provide quantitative information on interactions that occur between
metabolites in specific reactions taking place in the cell. Previously, OD Es have been successfully used in simula-
tion studies of biochemical kinetics and biochemical connections' ™%, The authors in'” presented a PPP model
based on ODEs. This approach was beneficial because it did not require complicated operations that strained
the capabilities of computers in the past, resulting in lower computing power. However, the simplifications
and assumptions made when using ODEs in metabolic simulations do not reflect the stochastic nature of cell
biochemistry™. The Chemical Master Equation (CME) was another approach used to model the stochasticity of
biological reactions®. However, due to the complexity and computing requirements, networks based on these
maodels cannot be too extensive. A relatively new approach to computational metabolic modeling is the use
of queueing theory. Queueing theory has wide applications in telecommunications, but also in biological and
medical science topics, such as modeling drug pharmacokineties™ or HIV infectivity®. Using this method, it
was possible to accurately model a simple metabolic network and mimic the interactions between metabolites™,
as well as the Krebs cycle’. A genetic algorithm was used to optimize the kinetic coefficients. A variety of Al
methods can be used for this purpose, but genetic algorithm was chosen because it was used with success when
modeling the Krebs cycle.

The aim of this work was to prepare a PPP model capable of tracking concentration changes of specific
metabolites occurring in this pathway over time. Additionally, the useful ness of the genetic algorithm for finding
values of the kinetic constants used in the model was confirmed®. A genetic algorithm was used to find values
corresponding to those in the literature.

Results

The generated model becomes stable within approximately one hour. Every second, there are 1000 simulations
of each pathway reaction {or 1 simulation step per millisecond ), averaged over 50 simulated cells. This number
has been selected experimentally. However, the model is designed to vary this number depending on the needs
of the researcher. Figure 1 shows concentration changes of individual metabolites over time. Due to the various
conditions of theliving cell, GaP and NADP are consumed faster or slower depending on the blood glucose level,
since glucose is phosphorylated to G6P to stay inside the cell and prevent diffusion out of the cell. This affects the
glucoselevel in the cell, so the variation of 10% was assumed. The variation level is an arbit rary choice; meaning
it can be changed. The purpose for the use of variation is to represent the concentration fluctuations in the cell.
For this model to reflect the flow of metabolites in the cell as accurately as possible, the so-called “balancing
flow” was used'~. This feature allows for proper simulation of metabolite flow depending on the current needs
of the cell (Fig. 2). Thus, the level of metabolites that occur in more than one metabolic pathway, e.g. F6P and
G3P being part of the PPP and glycolysis, better mimics biological conditions. Table 1 presents the comparison
of model generated data and literature data regarding concentration of individual metabolites.

PGLis rapidly hydrolyzed, so the practical equilibrium between G6P and 6PG is directed towards the forma-
tion of 6PG*. Any existing PGL is almost immediately converted to 6PG, therefore the variance is very high.
The relative difference of PGL is high because it depends on the measurement time. In the future, we intend to
combine the PPP with the already developed Krebs cycle and glycolysis models, so the results of the PPP model
are likely to be closer to the experimental results.

Due to the high demand of glucose and its metabolites by cancer cells, many drugs are aimed at blocking
metabolic pathways that supply cancer cells with substances necessary for proliferation. The PPP is one of the
pathways with significantly increased activity inneoplastic cells. Compared to healthy cells, the activity of the PPP
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Figure 1. Concentration level change over time under unperturbed conditions. G6P glucose-6-phosphate,
NADP NADP+, PGL 6-P-gluconolactone, 6PG 6-phosphogluconate, Ru5P ribulose-5-phosphate, R5P ribose-5-
phosphate, X5P xylulose-5-phosphate, G3P glyceraldehyde-3-phosphate, S7P sedoheptulose-7-phosphate, E4P
erythrose-4-phosphate, F6P fructose-6-phosphate.
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Figure 3. The effects of GPD gene expression knockdown on PGL concentration™. The X axis presents level of
simulated GPD inhibition. The Y axis presents fold change in concent ration in comparisonto the natural state
(without inhibition).
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Figured. The effects of GPD gene expression knockdown on 6PG concentration™. The X axis presents level of
simulated GPD inhibition. The Y axis presents fold change in concentration in comparison to the natural state
{without inhibition ).

incancer cells can be increased up to 8 times. The oxidative part of the pathway provides cells with a lar ge amount
of NADPH, helping the cell can effectively fight excess oxidative stress. Effects that reduce the effectiveness of
the production of NADPH in the cell, in combination with factors that induce this stress, such as radiotherapy
or chemotherapy, can kill cancer cells.

To validate the model, model results were compared to those obtained empirically. The paper® serving as
the benchmark for our model described the effect of athird PPP enzyme, PGD, in lung cancer cells. Inhibition
of this enzymes activity does not significantly affect the level of NADPH, but inhibits tumor growth. The gene
encoding PGD is characterized by increased expression in neoplastic cells. ShRNA molecules were used to reduce
PGD expression. This approach resulted in inhibition of tumor growth , indicating an important role for PGD
in cancer cell metabolism. Concentrations of several PPP metabolites were measured, however, not all ofthem
had significant changes. Metabolites of the oxidative phase of the PPP, such as 6-phosphogluconolactone (PGL)
and 6-phosphogluconate (6P G) had concentrations 7.9 and 11 times higher than their regular concentrations,
respectively (Figs. 3 and 4). These metabolites accumulated due to the absence/decreased activity of PGD. The
concentrations of metabolites of the non-oxidative phase of the pathway such as S7P or X5P were not measured,
but no significant changes in the concent rations of ribose phosphate and nucleotide triphosphate were detected.

Theaccumulation of metabolites preceding the blocked reaction is because the expression of the PGD enzyme
has been reduced A bottleneck is created at this stage of the pathway, leading to a reduced efficiency of this stage,
as there are not enough protein molecules in the cell to process all metabolite molecules. As a further conse-
quence, a decrease in the concentration of metabolites occurring further down the pathway, e.g., G3P, can be
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Figure5. The effects of GPD gene expression knockdown on G3P concentration™. The X axis presents level of
simulated GPD inhibition. The ¥ axis presents fold change in concent ration in comparison to the natural state
(without inhibition).

Experimental data
concentration change™

Model data concentration
change using 90% inhibition

Model data concentration
change using 95 % inhibition

Model data concentration
change using 98% inhibition

Maodel data concentration
change using 100% inhibition

GaP

L&

18

18

18

18

FGL

7.9

483

524

608

TA9

PG

9.59

11.88

1455

21.8

Gap

kX }

185

243

385

14.29

Table 2. Comparison of metabolite concentration changes (fold changes) caused by knockdown of the PGD
gene.

observed (Fig. 5). For the validation of the model, measurements of the concentrations of metabolites obtained
empirically were used. The model makes it possible to simulate and track the changes in the concentrations of
the metabolites.

Several measurements were performed to evaluate the level of inhibition of the GPD catalyzed reaction. The
obtained results show that the GPD knockdown caused inhibition at the level of 95-98%. These assumptions
are based on the results presented in Table 2. The results for these inhibition levels are the closest to the empiri-
cal results. The paper™ used shRNA to achieve expression knockdown, which is an incomplete mechanism to
reduce (but not eliminate) expression. This form of knockdown is not expected to achieve 100% silencing.
Indeed, 80-99% knockdown of expression is normal and expected. The calculated results are comparable to
those obtained experimentally and are consistent with current biological knowledge. Another point to consider
is that the glucose metabolism of neoplastic cells remains unknown in some aspects and these cells may possibly
bypass a blocked reaction in the metabaolic pathway. Simulations using 100% inhibition were also performed,
but this led to a significant reduction in the concentration of metabolites downstream of the bottleneck of the
pathway. However, it can be observed that due to the bidirectional character of reactions of the second phase of
the PPP and the flux of metabolites from other pathways, e.g., F6P generated in glycolysis, we do not observe a
complete zeroing’ of metabolite concent ration.

The results generated in our model { Table 2) follows the trend of changes in concentration observed in vitro,
and suggests that knockdown efficiency in vitro was likely near 95%, which is common for shRNA expression
knockdown.

Discussion
As mentioned in the introduction, most previous models simulating metabolic pathways, not anly PPE, have
been based on the use of OD Es. However, due to the advantages offered by queueing theory, it seems reasonable
to use this method in modeling The preparation of a quantitative model of a biological pathway such asthe PPP
requires the necessary information on starting concentrations and Kinetic data of the enzymes that catalyze the
pathway reactions. The presented model can be viewed as a “virtual laboratory’ This model tracks the relation-
ships between individual metabolites formed at different stages of the pathway. It is possible to observe changes
caused by fluctuations in metabolite concent rations and their impact on the entire pathway.

It can also be used to test the effectiveness of new drugs if their influence on the kinetics of the reaction
they affect is known. In this way, one can also theoretically get answers to questions such as which reactions are
worth blocking to obtain the best possible therapeutic result. Most studies aimed at blocking the PPP pathway
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Number | Reaction Enzyme

1 G6P 4 NADPT = PGL4 NADPH 4 H* Glucose 6 phosphate dehydrogenase
2 PGL4 H20 = 6PG 4 HT 6-Phospho gluconolac tonase

3 GPG 4 NADPY < RSP 4 NADPH 4 HY 4 €0, | 6-Phosphogluconate dehydrogenase
44 RuS P = RSP Ribose-5-phosphate isomerase

L RuSP = X5P Ribulose 5-phosphate 3-¢pimerase

5 RSP 4 X5P = G3F 4 S7P Transketohse

[ X5P 4 E4P = G3F 4 F6P Transketolase

7 G3P 4 57P = E4P 4 F&F Transaklolase

Table 3. Stoichiometric reactions of the PPP. Reactions 1-3 form the oxidative branch of PPE, reactions 4-7 are
in the non-oxidative branch.

in cancer patients have focused on blocking the first reaction of the pathway catalyzed by GePD**%, However,
clinical data indicate that this therapy is not very effective without additional exposure to oxidative stress™". For
this reason, the results of studies on the knockdown of the gene encoding PGD in this paper were used*". Even
though the knockdown of the GEP D gene does not affect the amount of NADPH, which is important for tumor
development, the knockdown of this gene alone results in inhibition of tumor growth. Perhaps the metabolites
that accumulate in the cell prior to the blocked reaction are responsible for this situation. Their concentration
in cells reaches values significantly greater than their natural concentrations. The exact mechanism of tumor
growth inhibition is unknown, however, the effect achieved is important.

The proposed model obtained stability based on the data from the above-mentioned paper. We believe that
this type of model can be used to predict the impact of therapy, which in turn will lead to an increase in its
effectiveness.

‘Thanks to the use of experimental data together witha computational process based on the queueing theory,
a model was obtained that can track the metabolic pathway that takes place in the cells of living organisms. In
this paper, we present a separate PPP model without detailed analysis of the relationship between PPP and glyco-
lysis. The metabolites common to both pathways have been identified and several principles have been adopted
to create a functional PPP model. In the future, our plan is to connect the existing glycolysis, Krebs cycle, and
PPP models together. We believe that such a procedure may also positively affect the consistency of simulation
and experimental results.

‘The presented results indicate that the model can be used to predict changes in metabolite concentrations. For
this purpose, it is sufficient to enter the concentration value of one of the metabolites. In this way, the entire study
can prove to be more cost-effective—no need to determine each metabolite separately, which also saves time.

As demonstrated by the knockdown of one of the genes encoding the enzyme catalyzing the PPP reaction,
this model is adapted to follow the trend of metabolite changes. Moreover, it can determine the specific effect of
the inhibition of particular reactions on the concentration of metabolites with relatively high accuracy. Further
research providing data on how inhibition of a particular pathway step may affect kinetic constants could con-
tribute to an increase in the accuracy of the presented model.

Methods
Obtaining metabolic data and the use of enzymatic reaction kinetics. This work focuses on the
reflection of changes in PPP metabolite concentrations over time. For this purpose, a literature review was car-
ried out to provide data on these concentrations (Table 1). Presented concentrations were measured with the
use of mass spectrometry’’. Several kinetic constants, and enzymatic properties, like maximum velocity ( Vi),
necessary for the correct operation of the model were used to calculate the speed of chemical reactions™. Reac-
tion rates were calculated using equations based on Michaelis—Menten kinetics (for more information please
check Supplementary Information).

NADPH is formed from 2 NADP* molecules in the oxidative phase. The energy generated during the con-
version of G6P into ribulose 5-phosphate (Ru5P) is used in the reaction. The overall reaction ofthe first phase
of the pathway is as follows:

G6P + 2NADPY 4 H,0 — RuSP + 2NADPH 4 2H"Y + CO;

Ru5F, which is one of the products of the first phase of the PP, is the first substrate for the non-oxidative
phase. Ribose-5-phosphate isomerase can convert Ru5P to RSP On the other hand, ribulose 5-phosphate epime-
rase converts Ru5P to xylulose 5-phosphate (X5F). The next reactions involve changing the length of the carbon
chain in the carbohydrates. These two five-carbon sugars then undergo a transketolase-catalyzed reaction. The
resultis production of glyceraldehyde 3-phosphate (G3P) and sedoheptulose 7-phosphate (S7P). Then G3P and
S7P undergo a transaldolase-catalyzed reaction, which produces E4P and fructose 6-phosphate (F6P) (Fig. 2;
Table 3).

Queveing theory. The complicated nature of metabolic pathways, in which there are huge amounts of bio-
chemical substances constituting the substrates and reaction products, makes modeling metabolism extremely
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challenging. Methods commonly used to model metabolic pathways require supervision and the use of appro-
priate constraints, like forcing ODEs not to reach negative values. Such treatments may cause small calculation
errors which could accumulate in long-term modeling and result in incorrect calculations. Biological systems
are organized to pass the products of individual metabolic reactions further down the pathway, so that they
become substrates for downstream reactions or are used by the cell to support necessary life processes™”. For this
reason, the use of queueing theory in metabolic pathway modeling seems to be the right approach.

Queueing networks can be thought of as hidden Markov chains, similar to Gillespies modelling tech nique®®*'.
The advantage of using queueing theory to model metabolic pathways is that they do not require enhanced
computing power. Therefore, the results can be obtained dose to real time. Networks based on queueing theory
can be applied with ease to a significantly greater number of molecules, grouped into the queues representing
different molecular species. Due to the nature of this approach, it is capable of combining individual pathways
inte larger, more complex groups of metabolic pathways.

Averaging the results from several simulation runs provides information on the average changes inthe con-
centrations of the individual pathway metabolites. The proposed model is based on calculations of the kinetics
of Michaelis-Menten enzymatic reactions, which focus on the relationship between the concentrations of the
substrate and the product, and the velocity of the reaction. According to this theory, the macroscopic concept of
enzymatic reaction speed is the sum of many microscopic reactions that can exchange specific amounts of sub-
stances per time unit. The description of the PPP as the probability of decreasing and increasing the concentration
of each of the substances present in the pathway and the correlation of their reduction with the accumulation
of other substrates results in a self-regulating, stochastic process that imitates the actual course of the PPP. The
Michaelis-Menten kinetic equation was used to calculate the probability of the reaction. A detailed description
of the methodology used is described in the work describing the Krebs eycle model.

The probability of the reaction can be converted to an average amount of arrivals when measured fora sig-
nificant amount of time. Therefore, the kinetic equations can be used to calculate the adaptive parameter p(f)
utilized for modelling PPP behavior by a network of inhomogeneous Poisson processes described by equation (1):

e 0T (K

k! W

PIIN{t+ 1) — N(t)) =k, 1] =
Where:

PIN(t 4 ) — N(1)) = k, t]—probability of k arrivals in the interval (f,{ 4 1)
i) r—expected number of arrivals in atime interval duration of (¢, f + 1)

The queue processing time of metabolite increment is described by the exponential distribution of the random
variable T in the terms of the rate parameter p( ) as follows (2):

. e 0T when T =0
ST p(t)) = {G whendl <0 (@)

Therefore, the PPP is modelled by the composition of interconnected queues. Departure of substrate’ increment
from one queue is followed by the arrival at the successive queue. It is worth noting that the network of intercon-
nected queues is equivalent to the set of ODEs as proven by™.

Probability of substrates increment departure from each queue depends on the current concentration of
the substrates and the kinetic constants of the reaction causing that departure. Every queue uses its individual
Michaelis- Menten kinetic equation with kinetic constants normalized according to the method based on the
formula described in', to determine the likelihood that in this time step the reaction occurs. Since the reaction
rates de pend on the current concentration of molecules that change from step to step, the resulting inhomoge ne-
ous Poisson process implements the feedback loop, which results in a system with memory.

Use of a genetic algorithm to optimize model parameters.  Values of enzyme kinetic constants were
found with the use of a genetic algorithm starting from literature data. Every ‘gene’ in the ‘chromosome’ is a vec-
tor of kinetic constants describing each Michaelis- Menten kinetic equation. The new values of kinetic constants
are found by randomly selecting from which “parent’ ‘offspring’ inherits ‘gene’ (set of kinetic constants for a
particular reaction ). However, mutation occurs on each kinetic value regardless to which parent it belongs. The
loss function optimized by the algorithm is the sum of the squared distances between PPP state described by the
literature and the current optimization step of the simulation using kinetic constants that makes an individual
‘chromosome’. The formula of loss function is as follows (3):

XX =Y 06— X7 (3)

Where: Xj—vector of substrates described by a literature; X —vector of substrates describing stable state of
simulation.

The loss function described above has a trivial solution. If all kinetic constants that are used in Michae-
lis-Menten reactions as multipliers (instead of dividers) are zeroed, then the results of these equations are equal
to zero. As a result, no reactions occur, so the simulation’s stable point is equal to the original literature vector.
To prevent such a solution, the genetic algorithm sets a constraint on newly generated ‘chromosomes. Each
reaction parametrized by values ofthe ‘chromosome’ for a literature vector of substrates must have a probability
of occurrence between 0.00005 and 0.05.
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The first setof ‘chromosomes’ are made of Michaelis- Menten kinetic constants defined in the literature with
added gaussian noise. Given the selected starting point, the genetic algorithm is set on finding the optimal value
in the proximity of the already established values. This reduces the risk of the algorithm generating an output
that minimizes theloss function, but produces Kinetic constants significantly different from the literature values.

Pseudocode of the PPP model.  The pseudocode describing the computational processes can be found in
the Supplementary Information. This code assumes that:

* Kinetic constants are grouped into a table of vectors of constant values. There are 14 vectors in the table
corresponding to eight different reactions and six balancing flows. Each of the reactions has a unique vec-
tor of dimension equal to the number of kinetic constants used in the reaction rate computation and every
balancing flow contains a one-dimensional vector.

* Concentration increment exchanged durmg_the reactions is denated ‘delta’ and is unique for each reaction.
It ranges from 2.3 x 10°® mM to 5.0 x 107" mM. "Deltd is significantly lower than the initial value of the
lowest substrate concentration. The ‘delta’ value must be chosen in a way that corresponds to a change of
more than asingle molecule for the rare species; in fact, for rare species, it should always be a positive integer
number of molecules.

® the concentrations of G6P and NADP in the cycle vary with 10% Gaussian noise around the constant values
of 0.001 mM and 0.0026 mM, respectively. This signal-to-noise ratio aims to reflect metabolic conditions
inside the cell

The search for optimal Kinetic constants was performed using a PC with AMD Ryzen 7 3800X 8-Core Proces-
sor, 3900 MHz, RAM 32 GB. Code was written in C# 8.0. One search epoch simulating one hour for 50 different
tables of kinetic constants using all 8 logic cores, took approximately 7 hours.

Model validation based on the use of experimental data. GeP dehydrogenase is the enzyme that
catalyzes the first reaction of the pathway™. Therefore, it is the enzyme that controls the starting velocity of the
pathway. This enzyme is strongly inhibited by NADPH™. Drugs aimed at reducing the intensity of the reac-
tion mainly focus on reducing the activity of this enzyme, which leads to a reduction in the velocity of the
entire pathway”™. However, clinical results indicate that inhibiting this enzyme is not an effective therapeutic
approach®. Forthis reason, data obtained from the study of knockdown expression ofthe 6-phosphogluconate
dehydrogenase (PGD) enzyme were selected for model validation®.

Data availability
The dataset supporting the conclusions of this article is available in the GitHub repository, httpsy//github.com/
UTP-WTLE/PPP QueueingTheory.
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Abstract

A gueueing theory based model of MTOR complexes impact on Akt-mediated cell response
toinsulin is presented in this paper. The model includes several aspects including the effect
of insulin on the transport of glucose from the blood into the adipocytes with the paricipation
of GLUT4, and the role of the GAPDH enzyme as a regulator of mTORC1 activity. A genetic
algorithm was used to optimize the model parameters. It can be observed thatmTORCH
activity is related to the amount of GLUT4 involved in glucose transport. The results show
the relationship between the amount of GAPDH in the cell and mTORC1 activity. Moreover,
obtained results suggest that mTORC1 inhibitors may be an effective agent in the fight
against type 2 diabetes. However, these results are based on theoretical knowledge and
appropriate experimental tests should be performed before making firm conclusions.

Introduction
Biological importance
A key hormone that controls blood glucose levels is insulin. This hormone is secreted by the i
cells of pancreatic islets. Insulin facilitates glucose uptake in peripheral tissues including the
muscle, and adipose tissue [L]. It inhibits glucose production from non-glucose sources by
inhibiting gluconeogenesis and glycogenolysis, while stimulating glycogen synthesis. The hor-
mone with the opposite effect of insulin is glucagon [2]. Both of these hormones together are
primarily responsible for the maintenance of glucose homeostasis in mammals.

The attachment of insulin to the insulin receptor starts a cascade of reactions responsible
for the absorption of glucose inside the cell [3]. One of the main effects of this cascade is the
translocation of glucose transporter 4 (GLUT4) from the center of the cell towards the cell
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membrane. GLUT4 is a protein that facilitates the diffusion of glucose along a concentration
gradient—from a higher concentration in the blood to a lower concentration in the cell. The
participation of GLUT4 in the transport of glucose inside the cell increases the amount of
transported glucose molecules by 30 times [4, 5].

Adequate management of glucose levels in the cell is crucial to maintain a healthy environ-
ment in the cell and its function. One of the mechanisms that supervise the maintenance of
adequate blood glucose levels is through mammalian target of rapamycin (mTOR) kinase.
mTOR links with other proteins and forms two protein complexes described as mTORCI and
mTORC2. These complexes are responsible for regulation of various important processes
inside the cell, including cell growth regulation, cell proliferation, cell motility, cell survival,
protein synthesis, autophagy, DNA transcription, and metabolism [6]. The dysregulation and
incorrect activity of mTOR complexes can lead to diseases such as obesity, diabetes and even
cancer [Z, 8]. One of the proteins that regulate the mTORC1 complex is the Rheb protein [9,
10]. It is one of the key mTORC] activating proteins. However, one enzyme in the glycolytic
pathway-glyceraldehyde 3-phosphate dehydrogenase (GAPDH), has a high affinity for the
Rheb protein [11]. When GAPDH enzyme molecules are not involved in the reaction that pro-
duces 1,3-bisphosphoglycerate (1,3-BPG) from glyceraldehyde 3-phosphate (G3P), they com-
bine with Rheb protein molecules, depriving the mTORC 1 complex its key activator, leading
to inactivity of the mTORCI. When the cell has normal/high concentrations of G3P, GAPDH
molecules are busy processing G3P, so Rheb can freely bind to mTORC1 and activate it.
Depending on the above-described mTORCI activation process, the amount of GLUT4 parti-
cles varies. For this reason, we decided to prepare a computational model capable of predicting
the number of active GLUT4 particles that are capable of participating in glucose transport.

Queueing theory

Typically, cellular signaling networks have been modeled using a set of ordinary differential
equations (ODEs) [L2]. Using these equations, it is possible to demonstrate the changes that
occur in the cell during rest and in response to external stimuli causing upstream signals.
However, when using ODEs, the fluctuations in the cell leading to local changes (e.g., tempera-
ture) are not taken into account, which influences the values of the kinetic constants that affect
the way the cell responds. To map the intracellular environment more accurately, as well as the
random variation, a model based on the queueing theory can be useful. Queueing theory was
mainly used in telecommunications and engineering [13-16]. Additionally, it is suitable for
modeling stochastic processes in cells. The idea to use a method commonly used in telecom-
munications comes from the fact that signaling paths, similar to the transmission of internet
packets, transmit information from node to node. Likewise, in a cell, signaling molecules are
passed on, activating subsequent elements (proteins) of the cascade. To date, the queueing the-
ory approach has been used to model simple metabolic networks [17], metabolic pathways
such as glycolysis (18] and the Krebs cycle [19]. The presented model is an extension of the
work [20] to include loops related to the regulation of cellular metabolism by mTOR com-
plexes and mTORCI regulation via GAPDH availability, or more precisely-‘occupancy’. In
the case of models such as the one presented here, which use a large number of variables, the
application of the queuing theory seems to be more optimal than the use of ODEs. The model
is capable of achieving stability. Another advantage of using queueing theory to model signal-
ing pathways is that they require significantly less computing power compared to ODE mod-
els. For this reason, simulation can be carried out practically in real time. Due to the short
duration of the simulation, it can be used to learn about the relationships caused by manipula-
tions of specific kinetic constants or concentrations, which also has its advantages when
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considering the reactions that are not well studied/established. To confirm the correctness of
the obtained simulation results, the simulated data were compared with the results of labora-
tory experiments [21]. Finally, using the queueing theory gives the possibility of expanding the
model with further reactions, without major interference in the course of the previously
described, due to the fact that they are based on empirically obtained values. Therefore, the
model is adapted to be supplemented with the development of the state of knowledge about
the given signaling or metabolic pathways. Moreover, it can be used to theoretically test the
kinetic changes brought about by potential mTORC inhibitors [22].

The aim of this work is to present a comprehensive model of cellular response to insulin,
which leads to GLUT4 translocation and mTORC activation as a part of processes responsible
for maintaining proper cellular glucose concentration. Fig 1 shows the links between mole-
cules involved in the insulin signaling pathway. The research hypothesis of this work is the
ability to simulate the cellular response to insulin and track changes in the concentrations of
proteins involved in this response using queueing theory based simulation model. The pre-
sented model shows the mechanism of mTORCI influence on mobilization of GLUT4
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Fig 1. Diagram illustrating the computational model of the insulin signaling pathway. The cascade of reactions
begins when insulin binds to the insulin receptor. The scheme includes the most important proteins in the PI3K/Akt/
mTOR pathway which play a role in the cellular response to insulin.

https://doi.org/10.1371/journal.pone.0279573 001
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particles. Since mTORCI has been reported in literature as having an impact on glucose
uptake [23, 24].

The presented model is an extension of previously described simulation of insulin mediated
GLUT4 translocation [20]. Since then the mTORCI signaling pathway connections with Akt-
mediated insulin response has been described [25, 26]. This work presents a model where
those connections have been included. Moreover, the paper studies regulation of mTORC1
activity by the glycolytic enzyme GAPDH, which has high affinity for the mTOR activator pro-
tein-Rheb. To train the model we have used genetic algorithm (GA) to optimize the kinetic
coefficients. The achieved results allow to conclude that artificial intelligence (AI) algorithms,
in this case the genetic algorithm, can be effective tools for optimizing computational models.
In order to validate the obtained results, we present multiple variants of mTORCI activity that
can be practically obtained through the administration of an mTORC1 inhibitor, such as rapa-
myein [27].

Methodology

The endpoints of the Akt-mediated insulin signaling pathway are well characterized [28-30].
Therefore, by comparing the experimental and computational results, it can be assessed
whether the model works properly. The values of kinetic constants and concentrations of sig-
naling molecules were obtained by searching the PubMed database. Simulations were per-
formed separately for 50 independent cells, which mimic human adipocytes. This type of cell
was chosen because of the availability of literature data, which was used in the development of
the model. For each of the cells, the concentrations of all molecules participating in the signal-
ing pathway were randomly chosen from the given range, limited by 10% Gaussian noise.
According to the queueing theory, the current concentrations of individual molecules in each
cell are separate ‘stores’—queues [18, 31]. The speed of the response determines the probability
of passing from one queue to the next. The simulation results are averaged over the entire cell
population. A network based on queues can be used to model reactions whose rates change
dynamically and randomly. The simulation was performed in C# 8.0. All the results were
obtained using Ims time increments; however, the simulation allows the choice of any user-
selected time increment. While changing the time increment, one should pay attention to the
fact that the probabilities of the reaction occurrence are < 1. Detailed information on the equa-
tions, kinetic constants, and initial concentrations can be found in the S§1 File.

The Genetic Algorithm [32, 33] was used to tune the model of interconnected queues realiz-
ing Michaelis-Menten equations. Each ‘chromosome’ consisted oflinear coefficients for
selected group of queues scaling their probability of reaction occurrence. The population of
GA consists of ten ‘chromosomes”. In each epoch, every ‘chromosome’ is evaluated and the
two ‘chromosomes’ with the best scores are chosen. The process of ‘chromosome’ evaluation
consists of performing three simulations with a set of kinetic constants, linear coefficients
stored in each ‘chromosome’, and a value of available GAPDH. Each simulation used a differ-
ent value of available GAPDH taken from a set {0%, 20%, 50%, 100%}. One simulation was
formed emulating 50 cells working in parallel to each other. The evaluation step was added to
measure, 1) how many cells reached the maximum value of GLUT4 in vesicles for available
GAPDH equal to 100%, 2) how many cells reached the minimum value of GLUT4 in vesicles
for available GAPDH equal to 0%, and 3) how distant is the number of cells that reached the
maximum value of GLUT4 in vesicles for available GAPDH equal to 50% from aforemen-
tioned results for GAPDH equal to 100% and 0%.

To validate the model, theoretical inhibition of mTORC1 was used to test the effects of
changes in reduction of its activity. One of the inhibitors of mTOR complexes’ activity is
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rapamycin. Previous studies show that rapamycin causes a number of side effects, including
increased risk of infection [34], increased incidence of cancer [35], weight disorders, hyperlip-
idemia, and diabetes-like metabolic disorders [36]. For this reason, it seems necessary to
develop drugs that selectively affect mTORCI activity, while at the same time not having such
significant side effects, like astragaloside IV (As-IV) [37]. As-IV was proven to be effective
mTORC1 inhibitor and reduced mTORCI signaling in mice. The data obtained from the pre-
sented model can be used in the study of the kinetics of reactions in the insulin signaling path-
way, which will help to select the appropriate place where the influence of therapeutics could
have the best effect.

Without insulin activating the cascade and mobilizing GLUT4 to move towards the cell
membrane, there are approximately 18,200 GLUT4 molecules proximate to the cell membrane
[38], ready to transport glucose inside the cell. This number increases to approximately
195,000 as a result of insulin-stimulated activation [38, 39]. However, these are not total
GLUT4 stocks. In fact, the cell has a large reservoir that it can use in extreme cases. The said
number 195,000 accounts for approximately 50% oftotal GLUT4 [21].

Taoillustrate the changes caused by the influence of GAPDH molecules on mTORC]1 activa-
tion, two varying scenarios are described below (Fig 2). These scenarios focus on different cel-
lular conditions such as glucose levels and the intensity of glycolysis.

Scenario I-the concentration of glucose in the blood is elevated after eating and the insulin
signaling pathway works correctly. As a result, GLUT4 molecules are mobilized to migrate to
the cell membrane, where they facilitate the flow of glucose from the blood to inside the cell.
The glucose level in the blood drops, while the cellular level of glucose rises. To avoid the situa-
tion where glucose molecules leave the cell, glucose is phosphorylated and becomes G6P.
There are two destinations for G6P molecules: 1) the glycolytic pathway or 2) glycogenesis, the
formation of glycogen.
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Fig 2. Various scenarios of mTORC1 activity depending on GAPDH *occupancy’.
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When G6P enters glycolysis, the sequence of reactions takes place and glyceraldehyde
3-phosphate (G3P) molecules are formed. G3P is converted into 1,3-bisphosphoglycerate
(1,3BPG) by GAPDH.

GAPDH is particularly important because it is involved in regulation of mTORCI activity.
GAPDH concentration levels in the cell do not change drastically rather they oscillate around
the same values. However, what changes is their state-they can be either ‘occupied’ with pro-
cessing G 3P molecules, or if there are more enzyme molecules than substrate molecules, the
excessive amount of enzyme molecules is free. Those free GAPDH molecules connect with
Rheb protein and activate mTORCI. It remains unknown how Rheb stimulates the activity of
mTORCI.

Scenario [1-the organism is in state of prolonged fasting causing a decrease in the supply of
extracellular glucose and ceasing insulin secretion. Without the release of insulin from the
blood, the reaction remains inactivated and GLUT4 remains stationary and unable to trans-
port glucose. In this situation, the stored amounts of glycogen are hydrolyzed and the basic lev-
els of G6P are maintained. As previously described, glycolysis runsas normal. However, the
amount of formed G3P molecules is lower than in Scenario L In fact, there is larger amount of
GAPDH molecules than G3P molecules. Therefore, the free GAPDH molecules can freely
bind with Rheb protein, resulting in mTORCI inactivation.

To conclude, increased extracellular supply of glucose activates insulin signaling. The glyco-
Iytic flux is increased and the GAPDH molecules are occupied with processing G3P molecules.
As a result, Rheb molecules are floating freely and can bind to and activate mTORCI.

However, the conditions presented in both scenarios are extreme and practically unrealistic
in the cell, as the probability of such extreme conditions as 0 or 100% “occupancy” of GAPDH
is low. In a cell, most often intermediate conditions prevail.

Results

Effect of GAPDH and mTORC1 on the amount of GLUT4 involved in
glucose transport

A working, stable queueing theory-based model of the insulin signaling pathway was obtained.
The presented study was aimed at illustrating the interrelationships between the levels of
GLUT4, GAPDH, and mTORCI. These relationships have a significant impact on how the cell
responds to insulin and extracellular glucose supply. The results obtained with the use of the
model are consistent with the current state of knowledge [10, 40]. The amount of GLUT4 par-
ticles ready to take part in the glucose transport process is significantly dependent on the
amount of ‘occupied” GAPDH. When the system is not inhibited, less than 200,000 GLUT4
molecules are involved in the transport of glucose to the cell. However, depending on the level
of activity that is influenced by both GAPDH and indirectly by mTORCI, this number fluctu-
ates. Fig 3 shows the relationship between the level of GLUT4 in the vicinity of the cell mem-
brane and the level of ‘occupied’ GAPDH. Depending on the condition of the cell, as well as
mTORC1 activity, the amount of GLUT4 mobilized can vary considerably (Figs 4 and 5). The
greater amount of GAPDH involved in substrate processing allows Rheb to link freely with
mTORCL. mTORCI activity and GLUT4 level are correlated with each other [41, 42]. The
same conclusions can be drawn by analyzing the obtained results on the charts.

We also tested the effect of lowering mTORCI activity, e.g., through the use of drugs, on
the amount of GLUT4 particles, while assuming different levels of GAPDH ‘occupancy’ (Fig
4). Analogous studies were performed for different levels of GAPDH with respect to mTORCI
activity (Fig 5). Both mTORCI activity and the amount of ‘occupied’ GAPDH significantly
influences the amount of GLUT4 and can contribute to lowering the amount of GLUT4
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particles involved in glucose transport {Fig 5). The scenario in which all the GAPDH particles
present in the cell are busy processing its substrate so that the mTORCI can be fully active,
keeps the amount of GLUT4 in vesicles at the maximum level (Eig 5). The presented results
indicate that drugs that can significantly decrease mTORCI activity (at least 50% inhibition)
are of great importance for the amount of GLUT4 particles directed to the cell membrane for
glucose transport inside the cell. Similar conclusions can be drawn from the results presented
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by Rajan et al [43] and Veilleux et al. [44] which confirms the validity of the method we

presented.

Discussion

Identification of key nodes in insulin signaling

Practical application of the conclusions of the described scenarios for GAPDH and mTORC1
allowed the identification of key nodes for the appropriate cell response to insulin, and con-
firmed previous experimental results described in [45]. In [45] the authors explained and
proved the important role of 56 kinase (S6K). mTORCI participates in its phosphorylation.
56K is crucial because it is the link between the mTORCI loop and the rest of the proteins
responsible for insulin signaling, Signaling between mTORCI and S6K causes a negative-feed-
back loop which lowers cellular sensitivity for insulin. The activation of the mTORC1/S6K
loop leads to increased degradation of insulin receptor substrate 1/3 (IRS1/3) and therefore
influences the amount of GLUT4 in vesicles. This entire process affects how many glucose
molecules enter the cell from the bloodstream.

The experimental results, as well as those obtained in the presented model, indicate that the
insulin response system is very complex and depends on many elements that regulate it. It is
characterized by high instability, small changes that can lead to a greatly altered cell response,
causing disease such as type 2 diabetes, where the cells become insensitive to insulin. As shown
in the above model, there are many elements that can cause glucose malabsorption.

Sonntag et al. [46] focused on determining which of the ‘nodes’ of the insulin signaling
pathway influences AMP-activated protein kinase (AMPK) activity. The equations described
in the [46] are based on the mass action law. The obtained results state that [RS1/3 is the ‘node’
influencing AMPK. The model proposed by Sonntag et al. focused on simplifying the insulin
signaling pathway and it does not take into account several ‘nodes’ that play a significant role
in this process. Therefore, the combination of the data and results presented by [46] was a
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valuable source in the preparation of the model based on the queueing theory. GA was used to
find an appropriate scaling of the values so that the model as a whole would work properly.

The presented model has several limitations. It does not take into account other signaling
pathways or individual reactions that are also connected to and influence signaling proteins.
This is especially true for the Akt protein, which is the central node in the presented signaling
model. Moreover, a model based on literature data will only be as good as the available data.
However, we do not question the reliability of other research teams and their published results.
Another of the limitations is that in queueing theory, each simulation gives one realization of
the stochastic process, while ODE gives an averaged solution. Therefore, a limitation is that
depending on the number of cells for which one runs simulations and then averages them, this
is how accurate the result will be. Therefore, the model presented here is for averaged results
for 50 cells.

mTORC1 activity and related treatment strategies
The results of the described model could be used as a suggestion in the process of developing new
drugs, including drugs that increase insulin-sensitivity in peripheral tissues such as the muscle
and adipose tissue (e.g., Metformin). Identifying key ‘nodes’ throughout the signaling pathway
could guide researchers in helping cells regain their original insulin sensitivity. However, due to
the complexity of connections between all signaling molecules, this task is very difficult.
mTORCI plays an important role in the maintenance of an adequate level of glucose in the
blood. When necessary, i.e., in a nourished state, mTORCI activity stimulates pancreatic fi-
cells to secret insulin, thus maintaining adequate glucose tolerance. However, studies in mice
[47, 48] show that mTORCI overactivity may cause a faster deterioration in fi-cell function
and consequently complications with glucose homeostasis. Therefore, the use of mTORC1
inhibitors to improve glucose tolerance has been considered. Previous studies in mice have
shown that 56K knockdown or inhibitors that reduce 56K phosphorylation make cells more
insulin sensitive [49, 50]. The results obtained with the use of the queueing theory model con-
firm earlier reports [45] that mTOR/S6K inhibition could be a therapeutic target in type 2
diabetes.

One of the most common prototype mTOR inhibitors is rapamycin. However, the use of
rapamycin has been counterproductive, inducing insulin resistance and disrupting glucose
homeostasis in the body [51]. Rapamycin is an effective inhibitor of mTORCI. Most research-
ers agree that rapamycin does not inhibit mTORCZ? at least in the acute stimulation [52]. Few
researches suggest that rapamycin inhibits mTORC2 only in some cell types and only with
chronic administration due to inhibiting to mTORC2 assembly [53, 54]. Knowing the function
and the importance of this complex in signaling pathway, it is no wonder that long-term
mTOR inhibition interferes with the body’s response to insulin. Due to the fact that rapamycin
affects both mTORC1 and mTORC2, it can be concluded that it is worth testing substances
that act selectively on only one of these complexes.

Research by Tao et al. [22] provided useful information on the influence of inhibitors on
mTORC kinetics and activity. mTORCI activity can be completely inhibited by ATP competi-
tive inhibitors, like BEZ235 or P1103, while non-competitive ATP inhibitars, like rapamycin,
inhibits mTORCI activity only partially by interacting with the FRB (FKBP-rapamycin-bind-
ing) domain. By affecting kinetic properties of mTOR, they influence the process of glucose
absorption in the cell. These types of results and information can provide data that can be
complemented by the presented model. In this way, it will be possible to characterize changes
in the entire signaling pathway induced by the use of mTORCI inhibitors and evaluate the
effect of this inhibition on the amount of GLUT4 in vesicles.
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Increased mTORCI activity has been also reported in many types of cancer [8]. mTOR is
one of the factors influencing the development and growth of cells. Its excessive activity
encourages cancer cells to further grow, divide and invade other healthy tissues. For this rea-
son, it was decided to test mTORC] inhibitors in cancer therapy [27], as they appeared to be
an effective tool for coercing cancer cells into apoptosis. Although many mTORC inhibitors
have been tested, some of them have been approved for therapy, however, their therapeutic
capacity is relatively low. For this reason, they are most often used in combination with other
anticancer drugs. In addition, their side effects must be considered. Palm et al. [55] demon-
strated on mouse model of pancreatic cancer that rapamycin may even promote cell prolifera-
tion at poorly vascularized sites of the tumor. In view of all this information, it remains vital to
study mTOR more thoroughly because its participation in cancer metabolism is undeniable
[56], which is why it seems to be such an important research direction. The presented model
can be used for this type of research, during the theoretical phase, where the likely results of
their use can be determined using the data on the influence of new drugs on mTOR kinetics.

Conclusions

A queueing theory model of mTORCI and mTORC2 impact on Akt-mediated cell response to
insulin was prepared. The presented results show that quening theory can effectively model
the manipulation of mTORCI kinase activity influences the amount of GLUT4 used to trans-
port glucose inside the cell, and therefore influences the concentration of glucose in the cell.
The work shows suggestions of alternative targets for treating type 2 diabetes. Due to the num-
ber of people with diabetes and the existing methods of relieving symptoms, without treating
the disease, any new therapeutic target may prove to be crucial. However, it should be noted
that due to the nature of the studies performed, our findings must be confirmed in clinical
trials.

Supporting information

S1 File. Additional supporting information may be found in the online version of this arti-
cle. Supporting Information file contains values of literature concentrations used in the model
and reaction equations and kinetic constants used in the model. The source code isfreely avail-
able for download at https:// github.com/UTP-WTIiE/TrsMtorcQueuesSimulation, imple-
mented in C# supported in Linux or MS Windows.
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7. Conclusions
The main and secondary objectives of the work have been achieved. Using the queueing

theory, | developed simulation models of the Krebs cycle, PPP, and signaling pathway of
cellular response to insulin. In my research, by comparing the calculated values with literature
data, | showed that these models can be effective in assessing and predicting the
concentration of individual metabolites in real time, both in natural conditions and under the
influence of inhibitors. The development of biological computational models could have a
major impact on the development of personalized medicine. By understanding an individual's
unique metabolic pathway, doctors can tailor treatment plans to optimize efficacy and
minimize side effects. However, the accuracy of the models heavily depends on the accuracy
of the input data and assumptions made during the modeling process, so it is important to
carefully validate the models before drawing any firm conclusions.

The models may help researchers to better understand the behavior of these systems
under different conditions and to identify potential targets for therapeutic interventions. This
can speed up the drug discovery process and improve the success rate of drug development.

Computational models of the Krebs cycle can have several practical applications in biology
and medicine. The Krebs cycle is a central metabolic pathway that is involved in the production
of ATP and the generation of metabolic intermediates that are required for many cellular
processes. One potential application of computational models of the Krebs cycle is to study
the metabolism of cancer cells. Cancer cells have altered metabolic pathways, and the Krebs
cycle is often dysregulated in these cells. Computational models of the Krebs cycle can help to
identify the specific alterations in this pathway that occur in cancer cells, and can aid in the
development of new cancer treatments that target these altered metabolic pathways. Krebs
cycle models can also be used to study the effects of drugs and other compounds on cellular
metabolism. By simulating the effects of different compounds on the Krebs cycle, these
models can help to identify potential drug targets and optimize the pharmacological
properties of drugs. The studies carried out on the Krebs cycle model performed on the
purpose of this dissertation, confirmed that it can be used in the assessment of the effect of
drugs used in anticancer therapy, such as Tamoxifen in combination with Metformin or
Phenformin. Thanks to this model, it is possible to assess the effect of a specific drug dose on
the concentration of Krebs cycle metabolites, which can be one of the methods of assessing

their effectiveness.
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Another potential application of Krebs cycle models is in the field of metabolic
engineering. By simulating the activity of the Krebs cycle in different organisms or under
different conditions, these models can help to identify strategies for optimizing metabolic
pathways for the production of biofuels, chemicals, and other bioproducts.

Overall, computational models of the Krebs cycle can have a wide range of practical
applications in biology and medicine, from cancer research to metabolic engineering and drug
discovery. By providing insights into the regulation of this central metabolic pathway and its
role in health and disease, these models can help to identify new therapeutic targets and
develop more effective treatments for a range of diseases.

The developed PPP model is able to calculate the concentration of pathway metabolites
and track changes in their concentration both under normal conditions and after knocking out
the 6PGD gene. Computational models of the PPP can have several practical applications in
medicine. Due to the fact that PPP is an important metabolic pathway that generates several
biologically important molecules, which are necessary for many cellular processes, including
biosynthesis and antioxidant defense, dysregulation of the PPP has been implicated in various
diseases, such as cancer, neurodegeneration, and metabolic disorders.

One potential application of computational models of the PPP in medicine is to aid in the
development of new drugs that target this pathway. For example, by simulating the effects of
different compounds on the PPP, potential drug candidates that can modulate PPP activity in
a specific way can be identified. This can help the process of new drug development and
optimize the pharmacological properties of drugs to enhance their efficacy and reduce side
effects.

Another potential application of PPP models in medicine is in the field of
pharmacokinetics. Computational models of the PPP can help predict how drugs will be
metabolized and eliminated from the body, which is important for optimizing drug dosing and
reducing the risk of adverse effects. By integrating data on the activity of the PPP and other
metabolic pathways, these models can predict drug metabolism and clearance in different
tissues and under different conditions, which can help to optimize drug dosing and reduce the
risk of toxicity.

Overall, computational models of the PPP can have a wide range of practical applications
in medicine, from drug discovery to pharmacokinetics. By providing insights into the

regulation of the PPP and its role in disease, these models can help to identify new drug
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targets, optimize drug efficacy and safety, and improve our understanding of cellular
metabolism in health and disease.

The model of the signaling pathway of the cellular response to insulin shows the influence
of the interdependence between GAPDH, Rheb, and mTORC1, on the amount of active GLUT4
molecules involved in intracellular glucose transport. This area is not fully known by the world
of science, however, the developed model, due to their nature, can be modified with the
emergence of new scientific knowledge, without the risk of losing its previous achievements.

The Akt protein present in this model plays a crucial role in regulating a wide range of
cellular processes, including cell growth, metabolism, and survival. In particular, this pathway
has been linked to the aging process, as studies have shown that reducing Akt activity can
extend lifespan in various model organisms, such as worms and mice. The PI3K/Akt pathway
is known to influence several mechanisms that are thought to contribute to aging, such as
oxidative stress, inflammation, and cellular senescence. For example, Akt activation can
promote cell survival by inhibiting pro-apoptotic factors, which can protect cells from stress-
induced damage. On the other hand, excessive Akt activity can lead to an overgrowth of cells,
which can contribute to the development of cancer and other age-related diseases.

Therefore, | believe that given the important role of Akt-mediated signaling in aging,
computational models of aging can be useful for understanding the mechanisms involved in
Akt signaling and its impact on the aging process. By integrating data from various sources,
such as genetic and epigenetic factors, environmental exposures, and lifestyle factors, these
models can provide insights into the complex interplay between different factors that
contribute to aging. Computational models of aging can also be used to identify potential
interventions that can modulate Akt signaling to promote healthy aging. For example, by
simulating the effects of drugs or lifestyle modifications on Akt activity, these models can help
researchers to identify potential interventions that can extend lifespan and reduce the risk of
age-related diseases.

In summary, the impact of Akt-mediated signaling in the aging process highlights the
importance of understanding the mechanisms involved in this pathway, and developing
computational models of aging can be a useful tool for investigating these mechanisms and
identifying potential interventions to promote healthy aging.

Hereby, | was able to confirm the usefulness of the methods of modeling metabolic and

signaling pathways, which allows for better understanding, learning, and conducting in silico
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research. In addition, apart from the scientific papers described in this dissertation, two more
are under review in reputable scientific journals. They concern the model of beta-oxidation of
fatty acids and the comprehensive model of metabolism integrating glycolysis, Krebs cycle,
PPP, and beta-oxidation of fatty acids.

One potential direction for further research involving the application of queueing theory
to computational biology is to assess the effects of environmental stressors on metabolic
pathways. In my study, | addressed the impact of different concentrations of metabolites or
the availability of enzymes present in a given pathway. However, metabolic pathways are
affected by many factors. External conditions or environmental stressors can significantly
affect the level of a cell's metabolic activity. Therefore, an extension of my research may
contribute to the state of the art in this area.

Moreover, metabolic models can be used to optimize the pharmacokinetics, by providing
a better understanding of the metabolic pathways involved in the production of bioproducts
such as drugs and other biologically active products. By developing accurate models of these
pathways, researchers can identify potential bottlenecks and limitations in the process, and
identify opportunities to increase yields, reduce costs, and improve efficiency. For example,
in the pharmaceutical industry, metabolic models can be used to optimize the production of
drugs by identifying the most efficient metabolic pathways for the production of drug
intermediates or precursors. This can help to reduce the cost and time required to produce

the drug, and ensure a consistent and reliable supply of the drug.
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Streszczenie
Rozprawa omawia zastosowanie teorii kolejek jako metody modelowania S$ciezek

biologicznych takich jak cykl Krebsa, szlak pentozofosforanowy (PPP) i szlak odpowiedzi
komodrkowej na insuline. Modele biologii obliczeniowej mogg byé wykorzystywane do
symulacji zachowania systemow biologicznych i przewidywania wynikow rdéznych
ingerencji/interwencji w badany uktad. Metoda teorii kolejek jest wykorzystywana do
Sledzenia zaleznos$ci pomiedzy poszczegdlnymi metabolitami powstajgcymi na réznych
etapach szlakdw metabolicznych oraz do obserwacji zmian spowodowanych fluktuacjami
stezen metabolitow i ich wptywem na caty szlak. Tego typu model moze by¢ wykorzystany do
przewidywania wptywu terapii, co moze przyczyni¢ sie do zwiekszenia jej skutecznosci. W
rozprawie wykazano réwniez, ze model uzyskat stabilnos$¢ na podstawie danych pochodzgcych

z literatury naukowej.

Modele biologii obliczeniowej mogg by¢ niezwykle przydatne w medycynie precyzyjnej,
poniewaz mogg pomodc przewidzieé, jak pacjent odpowie na konkretne leczenie. Symulujac
biologie pacjenta, modele te mogg zidentyfikowa¢ konkretne geny, biatka i Sciezki, ktore
napedzajg chorobe i przewidzieé, ktore leki lub inne metody leczenia beda najbardziej
skuteczne. Moze to prowadzi¢ do poprawy wynikéw pacjentéw, zmniejszenia skutkow
ubocznych i obnizenia kosztéw opieki zdrowotnej. Modele te mogg by¢ wykorzystywane do

symulacji interakcji pomiedzy metabolitami, biatkami i innymi biomolekutami.

Opracowane modele zostaty oparte na réwnaniach kinetyki, ktére opisujg szybkos$é reakcji
katalizowanych przez enzymy. W modelach cyklu Krebsa i PPP wykorzystano rownania kinetyki
Michaelisa-Menten, ktére sg powszechnie stosowane do opisu kinetyki enzyméw i
uwzgledniajg stezenia substratow i produktéow oraz wiasciwosci kinetyczne danych enzymaéw.
Natomiast model szlaku sygnalizacyjnego insuliny oparty byt na prawie zachowania mas, ktére
opisuje szybkos¢ reakcji na podstawie stezen reagentow i produktéw. Taki wybdr réwnania
kinetyki odzwierciedla specyficzne cechy kazdego ze szlakéw oraz cele prezentowanych

badan.
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Summary
The text discusses the use of queueing theory methods in computational biology,

specifically in the modeling of biological pathways like the Krebs cycle, pentose phosphate
pathway (PPP), and the insulin signaling pathway. Computational biology models can be used
to simulate the behavior of biological systems and predict the outcomes of different
treatments or interventions. The queueing theory method is used to track the relationships
between individual metabolites formed at different stages of the pathway and to observe
changes caused by fluctuations in metabolite concentrations and their impact on the entire
pathway. This type of model can be used to predict the impact of therapy, which in turn will
lead to an increase in its effectiveness. The text also mentioned that the model obtained
stability based on the data derived from scientific papers.

Computational biology models can be extremely useful in precision medicine, as they can
help predict how a patient will respond to a particular treatment. By simulating the patient's
biology, these models can identify the specific genes, proteins, and pathways that are driving
a disease and predict which drugs or other treatments will be most effective. This can lead to
improved patient outcomes, reduced side effects, and reduced healthcare costs. These
models can be used to simulate the interactions between metabolites, proteins, and other
biomolecules.

The developed models were based on different kinetics equations that describe the rate
of enzyme-catalyzed reactions. The models of the Krebs cycle and PPP used Michaelis-Menten
kinetics equations, which are commonly used to describe enzyme kinetics and take into
account the substrate and product concentrations and kinetic properties of given enzymes.
On the other hand, the model of the insulin signaling pathway was based on mass action law,
which describes the rate of reactions based on the concentrations of the reactants and
products. This choice of kinetics equation reflects the specific characteristics of each pathway

and the goals of the presented research.
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