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1. Abstract 

 

In contrast to organismal evolution, human cancers are subjected to similar initial conditions 

and follow a limited range of possible evolutionary trajectories. Until now, the predictable 

patterns of how cancer progresses have not been utilized for therapeutic benefits. 

Evolutionary trajectories of clear cell renal cell carcinoma (ccRCC) have been recently 

described. I proposed strategies to take advantage of the evolving nature of these tumors for 

patients’ benefit. 

One of these strategies is to modulate tumor’s genomic instability. In search for the best 

candidates for molecular targeting, I identified two proteins, TRIP13 and KIF11, and explored 

the relationships between their expressions and clinical course of ccRCC using the tissue 

microarrays (TMAs). 

The TMAs contained specimens from 90 patients followed up for 7 years. All the tumor 

samples were evaluated for TRIP13 and KIF11 expression using immunohistochemistry and 

the H-score method. The overall survival (OS) was analyzed using the Kaplan-Meier method 

and log-rank statistics. Univariate and multivariate analyses were conducted using Cox 

proportional hazard models.  

Cytoplasmic expressions of TRIP13 and KIF11 in ccRCC tissues were lower than those in 

adjacent controls (P < 0.05). I dichotomized the cytoplasmic expressions of these proteins to 

low and high expression using the tool Cutoff Finder. Both the elevated expressions of TRIP13 

and KIF11 served as independent unfavorable prognostic indicators of survival in ccRCC (P < 

0.05). 

Elevated expressions of TRIP13 and KIF11 predict poor clinical outcome in ccRCC patients. Our 

results may serve as a starting point for translational research, in which the modulation of 

TRIP13 and KIF11 expressions could provide new therapeutic strategies for ccRCC. 
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1. Streszczenie 

 

W przeciwieństwie do ewolucji organizmów, nowotwory podlegają podobnym początkowym 

warunkom i podążają ograniczonym zakresem możliwych trajektorii ewolucyjnych. Do tej pory 

przewidywalne wzorce rozwoju nowotworu nie były wykorzystywane do uzyskania korzyści 

terapeutycznych.  

Niedawno opisano trajektorie ewolucyjne raka jasnokomórkowego nerki (ccRCC). 

Zaproponowałem strategie wykorzystania ewoluującego charakteru tych nowotworów z 

potencjalną korzyścią dla pacjentów. 

Jedną z tych strategii jest modulowanie niestabilności genomowej guza. W poszukiwaniu 

najlepszych kandydatów do celowania molekularnego zidentyfikowałem dwa białka, TRIP13 i 

KIF11, i zbadałem zależności między ich ekspresją a przebiegiem klinicznym ccRCC przy użyciu 

mikromacierzy tkankowych (TMA). 

TMA zawierały próbki od 90 pacjentów, których obserwowano przez 7 lat. Wszystkie próbki 

guza oceniłem pod kątem ekspresji TRIP13 i KIF11 przy użyciu immunohistochemii i metody 

H-score. Całkowite przeżycie (OS) zanalizowałem przy użyciu metody Kaplana-Meiera i 

statystyki log-rank. Analizy jednowymiarowe i wieloczynnikowe przeprowadziłem przy użyciu 

modeli proporcjonalnego hazardu Coxa. 

Cytoplazmatyczne ekspresje białek TRIP13 i KIF11 w tkankach ccRCC były niższe niż w 

sąsiednich kontrolach (P <0,05). Podzieliliśmy cytoplazmatyczne ekspresje tych białek na niską 

i wysoką ekspresję za pomocą narzędzia Cutoff Finder. Zarówno podwyższone/a ekspresje/a 

TRIP13, jak i KIF11 służyły jako niezależne niekorzystne wskaźniki prognostyczne przeżycia w 

ccRCC (P <0,05). 

Podwyższone ekspresje TRIP13 i KIF11 przewidują złe wyniki kliniczne u pacjentów z ccRCC. 

Nasze wyniki mogą służyć jako punkt wyjścia do badań translacyjnych, w których modulacja 

ekspresji TRIP13 i KIF11 może zapewnić nowe strategie terapeutyczne dla ccRCC. 
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2. Abbreviations. 

 

 

 

ccRCC clear cell renal cell carcinoma 

HR homologous recombination 

ITH intratumor heterogeneity 

NHEJ non-homologous end joining 

DDR DNA damage response 

PARP poly(ADP)-ribose polymerase 

OS overall survival 

SAC spindle assembly checkpoint 

DSBs double-strand breaks 

TMA tissue microarray 

wGII weighted genome instability 

index 

CIN chromosomal instability 

HDACi histone deacetylase inhibitor 
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3. Introduction. 

3.1. Key cancer statistics and projections. 

In 2020, there were an estimated 19.3 million new cases of cancer and 10 million 

deaths from cancer worldwide. This accounted for 1 out of every 6 deaths. Breast 

cancer was the most commonly diagnosed cancer, with 2.3 million new cases, followed 

by lung, colorectal, prostate, and stomach cancers. Lung cancer was also the leading 

cause of cancer deaths, with 1.8 million deaths. The incidence of cancer was higher in 

transitioning countries compared to transitioned countries, but the mortality rate 

varied less. The global cancer burden is expected to increase by 47% by 2040, with a 

larger increase in transitioning countries due to demographic changes and increasing 

risk factors associated with globalization and economic growth [1].  

 

3.2. Kidney cancer and its exceptional resistance to systemic therapies. 

Kidney cancer is a prevalent form of cancer that is becoming more common. In 2022, 

it is estimated that 79,000 new cases and 13,920 deaths from kidney cancer will occur 

in the United States alone, and globally there will be over 400,000 new cases. It is 

among the 10 most common types of cancer for both men and women [2].  

In only 10% of cases, kidney cancer presents with the typical symptoms of a mass on 

the flank, pain in the flank area and blood in the urine, which is known as the "classic 

triad" of symptoms [3]. Due to the kidney's ability to function even when part of it is 

damaged, it is usually not possible to detect kidney cancer early based on loss of 

function. This means that the cancer often goes unnoticed for a long time and is often 

not diagnosed until it has spread to other parts of the body. About one-third of patients 

are diagnosed with metastatic disease at the time of diagnosis. Even when the tumor 

is found early and removed surgically, there is still a significant chance (40%) of the 

cancer returning [4, 5].  

The most well-researched type of kidney cancer is clear cell renal cell carcinoma 

(ccRCC), which starts in the lining of the proximal convoluted tubule and makes up 70% 

of all kidney cancer cases [6].  
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In the past two decades, there have been significant advances in the treatment of 

unresectable kidney cancer, including the development and improvement of targeted 

and immunotherapies that are now considered the standard of care. However, despite 

the relatively high response rates to these treatments, only a small percentage (up to 

9%) of patients with poor- or intermediate-risk cancer may achieve a complete 

response, according to the results of a subgroup analysis of the CheckMate 214 clinical 

trial [7]. Most patients with metastatic ccRCC ultimately succumb to cancer 

progression within 1.5 years [8].  
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4. Aims of the doctoral thesis. 

 

 

I. To propose a novel approach to cancer therapy on the example of kidney cancer. 

 

 

II. To identify novel therapeutic targets for kidney cancer therapy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

5. Publications included in the dissertation. 
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Simple Summary: In contrast to organismal evolution, human cancers are subjected to similar initial
conditions and follow a limited range of possible evolutionary trajectories. Therefore, the repetitive
nature of cancer evolution may prove to be its greatest weakness. Evolutionary trajectories of clear cell
renal cell carcinoma (ccRCC) have been recently described. In this review, we will discuss the relevance
of estimating the trajectory of ccRCC evolution as a readout for a response to therapy. Next, we will
propose strategies to take advantage of the evolving nature of these tumors for patients’ benefit.

Abstract: The emergence of clinical resistance to currently available systemic therapies forces us
to rethink our approach to clear cell renal cell carcinoma (ccRCC). The ability to influence ccRCC
evolution by inhibiting processes that propel it or manipulating its course may be an adequate
strategy. There are seven deterministic evolutionary trajectories of ccRCC, which correlate with
clinical phenotypes. We suspect that each trajectory has its own unique weaknesses that could be
exploited. In this review, we have summarized recent advances in the treatment of ccRCC and
demonstrated how to improve systemic therapies from the evolutionary perspective. Since there are
only a few evolutionary trajectories in ccRCC, it appears feasible to use them as potential biomarkers
for guiding intervention and surveillance. We believe that the presented patient stratification could
help predict future steps of malignant progression, thereby informing optimal and personalized
clinical decisions.

Keywords: clear cell renal cell carcinoma; ccRCC; RCC; kidney cancer; evolution; evolutionary
trajectory; biomarker

1. Introduction

Renal cell carcinoma (RCC) is the eighth most commonly diagnosed cancer in the United States,
with an estimated incidence of 74,000 new cases in 2020 [1]. The classic triad of flank pain, flank mass,
and hematuria occurs only in 10% of cases [2]. Due to the ability of the kidney for functional
compensation when part of it is destroyed, early detection from loss of function is usually impossible.
As a result, RCC remains clinically occult for most of its course, and around one-third of patients
present with metastatic disease at the time of diagnosis. Those with localized tumors have up to
40% risk of recurrence following complete resection [3,4]. Remarkable advances over the last decade
contributed to the development of targeted therapies and immunotherapies that today represent a
standard for unresectable RCC. Despite relatively high response rates to these agents, the vast majority
of patients eventually experience cancer progression. The emergence of clinical resistance to currently

Cancers 2020, 12, 3300; doi:10.3390/cancers12113300 www.mdpi.com/journal/cancers
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available systemic therapies represents a significant challenge and forces us to rethink our approach
to RCC.

The best-studied histological subtype is clear cell renal cell carcinoma (ccRCC), which is
derived from the proximal convoluted tubule and accounts for approximately 70% of all cases [5].
A series of next-generation sequencing studies led to a better understanding of the genetic
background of ccRCC [6–10]. The results of these studies uncovered a near-universal inactivation of
the von Hippel-Lindau disease (VHL) tumor suppressor gene. Other frequent alterations involve
histone-modifying genes, SWI/SNF complex, and PI3K/AKT/mTOR pathway. Moreover, an integrated,
genome-wide analysis of copy-number changes and gene expression profiles in ccRCC identified
7 chromosomal regions of recurrent arm level or focal amplifications (1q, 2q, 5q, 7q, 8q, 12p, and 20q)
and 7 regions of losses (1p, 3p, 4q, 6q, 8p, 9p, and 14q) [8].

The evolutionary landscape in ccRCC is dominated by intratumor heterogeneity (ITH) at
a genetic, transcriptomic, and functional level [9]. The exome sequencing performed on multiple,
spatially separate ccRCC samples revealed that that two-thirds of the somatic mutations are not shared
between all the primary tumor regions [10]. Hence, single-biopsy analysis is likely to miss the key
genetic events or misclassify them as clonal. Apart from the direct impact on diagnostic procedures
and biomarkers development, ITH has significantly hindered our understanding of ccRCC evolution.

In comparison to other malignancies, ccRCC is characterized by a high prevalence of somatic copy
number alterations (SCNAs) and a low burden of somatic substitutions [6,8,11,12]. The integrative
analysis of the genetic and clinical data led to the identification of certain alterations with
prognostic value, such as mutually exclusive mutations of BAP1 and PBRM1 [13–15]. These studies,
although conducted on large cohorts of patients, did not determine the prognostic values of genetic
alterations according to whether they were clonal or subclonal. Huang et al. were among the first
to demonstrate the possibility of genomic subtyping of ccRCC [13]. Recently, Turajlic and colleagues
provided a comprehensive model of ccRCC evolution [14], which might lay the foundation for the
development of precision clinical management.

Cancer cells continuously undergo adaptive changes, and insensitivity to drugs arises due to
genetic and epigenetic alterations that offer a survival advantage. While there is a number of pathways
and networks a cancer cell has at its disposal, targeting individual components is likely to prove
inadequate [15]. Instead, the ability to influence cancer evolution itself by inhibiting processes that
propel it or manipulating its course might potentially put an end to cancer as a major health concern.

In this review, we will discuss the relevance of estimating the trajectory of ccRCC evolution as a
readout for a response to therapy. Next, we will propose strategies to take advantage of the evolving
nature of these tumors for patients’ benefit.

2. The Origin, Evolution, and Routes to Metastasis of Clear Cell Renal Cell Carcinoma

2.1. The Origin of Clear Cell Renal Cell Carcinoma

Loss of the short arm of chromosome 3 is a nearly universal driver of ccRCC [16]. It occurs in
childhood or adolescence, predominantly through chromothripsis. The deleted region encompasses
at least four tumor suppressor genes, including VHL, PBRM1, BAP1, and SETD2. This earliest event
produces a pool of a few hundred cells, which after decades of modest clonal expansion, acquire the
necessary additional genetic alterations [17]. Chromosomal copies of deleted suppressor genes are
often affected afterward, with inactivation of the second allele of VHL being the most common (65–80%
of patients) [7,8,10]. In some cases, there are different driver mutations on the trunk of the phylogenetic
tree, which, in contrast to 3p loss and VHL inactivation, trigger a substantial expansion [11,18].

2.2. The Evolutionary Trajectories of Clear Cell Renal Cell Carcinoma

On the basis of mutational ordering, timing, and co-occurrence, ccRCCs are classified into seven
distinct evolutionary subtypes, or four groups, which correlate with clinical phenotypes [17,19].
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These groups are distinguished by four features—variations in chromosomal complexity, ITH, model of
tumor evolution, and metastatic potential. The variations in chromosomal complexity are measured as
the fraction of the genome affected by SCNAs and expressed as a weighted genome instability index
(wGII). ITH is measured as the ratio of subclonal drivers to clonal drivers [20].

Group 1 consists of primary tumors with VHL alteration as the sole driver event. They evolve
in a “linear” fashion and are characterized by low both wGII and ITH. This mode of evolution is
associated with indolent growth and low metastatic potential. Group 2 includes tumors in which early
PBRM1 mutation and subsequent SETD2 mutation or PI3K pathway mutation or acquisition of SCNAs
result in a “branched” evolutionary pattern. These are heterogeneous neoplasms with oligometastatic
potential and attenuated progression. Clonal acquisition of multiple driver mutations (VHL plus
≥2 BAP1, PBRM1, SETD2, or PTEN) or the parallel BAP1 mutation results in “punctuated” evolution.
These tumors are characterized by high wGII but low ITH and belong to group 3. Punctuated evolution,
driven mostly by high wGII, leads to rapid dissemination and is also observed among VHL wild-type
tumors, which constitute the fourth group [14].

2.3. The Routes to Metastasis of Clear Cell Renal Cell Carcinoma

Metastasis competence is afforded by chromosome-level alterations that simultaneously affect
the expression of hundreds of genes. These alterations provide a permissive genomic background
for the selection of hallmark drivers of ccRCC metastasis and the loss of 9p and 14q [20]. Linear and
branched evolution modes are analogous to Darwin’s phyletic gradualism. On the other hand,
punctuated evolution, as in punctuated equilibrium, is associated with rapid speciation events and
considerable evolutionary changes. Thus, the acquisition of metastatic competence is far more likely
through punctuated evolution.

3. Current Systemic Therapies for Renal Cell Carcinoma

Immunotherapy and/or tyrosine kinase inhibitors (TKI) constitute the standard of care for relapse
or stage IV RCC. Appropriate clinical management depends on disease activity, according to the
National Comprehensive Cancer Network (NCCN) Guidelines for Kidney Cancer. In favorable-risk
patients, first-line treatments include a combination of axitinib plus pembrolizumab or monotherapy
with pazopanib or sunitinib. For patients with poor- and intermediate-risk disease, the preferred
regimen is ipilimumab with nivolumab or axitinib with pembrolizumab. Moreover, cabozantinib may
be considered in a first-line setting, especially in cases with osseous metastatic RCC. Because of the
significant toxicity of systemic therapies, a subset of asymptomatic patients with metastatic RCC may
benefit from active surveillance.

A major advantage of immunotherapy is its potential to produce complete and durable responses
in a subset of patients with advanced cancer, even after discontinuation of the drug. Indeed, despite the
non-curative nature of systemic therapy in RCC, up to 9% of poor- and intermediate-risk patients may
achieve a complete response, according to the results of subgroup analysis of CheckMate 214 clinical
trial [18]. This rate could be further increased by introducing novel treatment modalities as well as
better patient selection algorithms.

4. Strategies to Overcome the Evolution of Renal Cell Carcinoma

In the face of selective pressures, subpopulations of tumor cells with adaptive phenotypes emerge
at the expense of others. The ability to predict the alterations in ITH along the temporal axis seems
invaluable for the development of personalized therapy. In this section, we will provide a summary of
recent strategies against RCC which, when contextualized within an evolutionary framework, could be
significantly more effective.
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4.1. Cytoreductive Nephrectomy

In select patients with metastatic RCC, primary nephrectomy is performed with cytoreductive
intent. Apart from the alleviation of symptoms associated with larger masses, such intervention
eliminates the reservoir of phenotypic tumor-cell diversity, minimizing the risk of further metastatic
seeding from an evolving primary tumor [19]. While cytoreductive nephrectomy (CN) is associated
with a significant risk of perioperative mortality (0–13%) and major complications (3–36%) [21], there is
a great need to avoid unnecessary surgery in nonresponders.

Heng et al. examined the role of CN in metastatic RCC patients receiving targeted therapies
in a retrospective study of data from the International Metastatic Renal Cell Carcinoma Database
Consortium (IMDC). They found that patients with estimated overall survival (OS) of <12 months
and those exhibiting fewer than 4 IMDC prognostic factors are not likely to benefit from CN [22].
From that time, several other observational studies demonstrated analogous results [23]. This data,
however, must be treated with caution given the significant risk of selection bias inherent to their study
designs, which potentially leads to misclassification of patients [24].

The role of CN continues to change amid a rapidly increasing armamentarium of systemic
therapies. In the modern immuno-oncology era, CN is still a viable option, but careful patient selection
is of paramount importance. The ongoing clinical trials are evaluating the use of deferred CN in patients
receiving nivolumab and ipilimumab alone or alongside radiotherapy (NCT03977571, NCT04090710).
These studies may help determine the most appropriate indications for CN.

4.2. Adaptive Therapy

In the case of disseminated cancer with no significant probability of cure, patient survival can
be maximized if adaptive therapy is introduced. This strategy originates from mathematical models
and aims at maintaining a stable tumor burden [25]. When drugs are administered sparingly and in a
temporally dynamic fashion, a significant population of treatment-sensitive cells survives. These, due to
their competitive advantage, suppress the proliferation of treatment-resistant populations under normal
tumor conditions.

Adaptive therapy may play a role in metastatic RCC. Findings from a prospective phase II
trial demonstrate active surveillance to be a viable initial strategy in patients with few adverse
prognostic features [26]. Results from the SURTIME study, a randomized clinical trial comparing
immediate vs deferred CN, revealed that deferred CN is a valid option for patients with the
intermediate-risk disease and with general clinical conditions at baseline amenable to undergo
surgery [27]. “Treatment-for-stability” may also be represented by an alternative schedule of sunitinib.
The standard dosing schedule of sunitinib is 50 mg daily for 4 weeks, followed by 2 weeks off drug
(schedule 4/2). However, according to a recent meta-analysis, the administration of sunitinib for
2 weeks followed by 1 week off (schedule 2/1) exhibited lower toxicity and lower rates of treatment
discontinuation while maintaining comparable responses [28].

The full potential of adaptive therapy is yet to be witnessed. Frequency-dependent game-theoretic
models of tumor evolution have enabled the introduction of three concepts to consider in the pursuit
of designing a multi-drug adaptive approach [29]. These ideas focus on entrapping tumor evolution in
periodic loops, limiting the evolutionary “absorbing region” reachable by the tumor and determining
the optimal timing of drug administration. Each may contribute to the generation of new treatment
schedules and comparisons to standards.

4.3. Targeting Trunk Mutations

The ability to target alteration present in all tumor cells is expected to diminish the odds of
the escape of clonal branches. As previously described, inactivation of VHL constitutes the trunk
event in ccRCC development while most of the other driver aberrations are subclonal. Apart from
large chromosomal aberrations as in the cytogenetic 3p abnormalities, VHL inactivation may be
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caused by small deletions affecting the locus, or promoter methylation and epigenetic silencing [30].
pVHL, a VHL gene product, is essential in the cell’s normal response to ischemic stress. Decreased
expression of VHL results in the accumulation of hypoxia-inducible factor alpha (HIFα). Among the
three known HIFα subunits, HIF2α is thought to be the core ccRCC driver since it upregulates a series of
hypoxia-responsive genes [31–33]. The net effect is the activation of various kinase-dependent signaling
pathways, such as MAPK/ERK and PI3K/AKT/mTOR [34]. While the most significant targets of VHL
loss are the production of VEGF and PDGF, HIF2α has been regarded as undruggable for years [35,36].
Eventually, a structure-based design approach led to the identification of PT2385, a first-in-class HIF2α
antagonist [37]. In a phase I dose-escalation clinical trial, PT2385 was found to be well-tolerated and
demonstrated clinical activity in extensively pretreated ccRCC patients [38]. Its efficacy and safety are
currently being evaluated in a phase II trial (NCT03108066). The primary objective of this trial is to
assess the overall response rate in patients with VHL disease-associated ccRCC.

According to the mathematical model presented by Bozic et al., in the case of metastatic disease,
monotherapy with a targeted agent offers no hope for recovery. Instead, combinations of two or more
agents given simultaneously offer a small chance of cure, especially in the absence of cross-resistance
mutations [39].

It is worth noting that the aforementioned drugs are directed against downstream effectors of
VHL, hence, from an evolutionary point of view, there is a potential to better define the molecular
target. Nicholson et al. found that inhibiting the cyclin-dependent kinases CDK4 and CDK6 impaired
tumor growth in VHL-deficient ccRCC regardless of HIF2α dependency [40]. Abemaciclib, a CDK4/6
and PIM1 kinase inhibitor is currently being tested in phase I trial in combination with sunitinib in
metastatic RCC (NCT03905889). Another compound that could represent a paradigm shift in targeted
treatment is STF-62247. It has been shown to induce potent cytotoxic effects in VHL-deficient ccRCC
cells, compared to their VHL wild-type counterparts [41]. The STF-62247-stimulated synthetic lethality
occurs in a HIF-independent manner through autophagy; however, the mechanistic links between
VHL and autophagy are incompletely understood [42].

4.4. Targeting Cancer Immune Evasion

Tumor cells interact with the immune system in a process called immunoediting, which consists
of three phases: elimination, equilibrium, and escape [43]. Most of the tumor cells are destroyed
in the first phase. Cells that cannot be eliminated enter the equilibrium in which they are selected
through immune cell exhaustion and resistance to immune detection [44]. It is the longest of the three
phases and, in ccRCC, manifests as a modest clonal expansion right after the 3p loss. The evolutionary
pressure of immune predation may eventually lead to the development of mechanisms to escape
immune responses. From that moment, malignant growth proceeds unrestrained. The ultimate goal of
immunotherapy is to permanently reverse immune evasion strategies.

Recent phase III clinical trials led to the use of three immunotherapy-based combinations,
including pembrolizumab, ipilimumab, and nivolumab, as a front-line for ccRCC [45]. These agents
are highly effective, with a few patients achieving a durable complete response. The ongoing phase
III clinical trials are currently testing different combinations of a checkpoint inhibitor plus a tyrosine
kinase inhibitor (NCT02811861, NCT03937219) or IL-2 derivate (NCT03729245). Earlier phase studies
are evaluating the potential of combining PD-1/PD-L1 inhibitors and antibodies directed against
LAG-3 (NCT02996110, NCT03849469), TIM-3 (NCT02608268), or ICOS (NCT03693612, NCT03829501).
An alternative approach is represented by the use of different cytokines (NCT02799095, NCT03063762)
or personalized cancer vaccines (NCT03633110, NCT02950766).

ITH plays an essential role in shaping antitumor immune responses [43,44]. The highly
heterogeneous tumors presumably escape immune surveillance because the reactive neoantigens
undergo ‘dilution’ within the tumor, thereby leading to weaker antitumor immunity.

How do specific genomic features of ccRCC influence the clinical benefit from immunotherapy is
under investigation. While tumor mutational burden (TMB) potentially increases ITH [46], a small
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study on 25 metastatic ccRCCs failed to confirm the association between TMB and response to
immunotherapeutics [47]. Miao and colleagues found that truncating mutations in PBRM1 were
associated with significantly extended progression-free survival (PFS) and OS of patients with
metastatic ccRCC treated with immune checkpoint inhibitors [48]. The underlying mechanism is
probably related to increased sensitivity to T-cell-mediated cytotoxicity of PBRM1-mutant tumor
cells [49]. This association was confirmed in an independent ccRCC cohort by a post hoc analysis of
the CheckMate 025 randomized phase III study [50]. On the other hand, the exploratory analyses
from JAVELIN Renal 101 and CheckMate 214 do not support this hypothesis [51,52]. The discrepant
results are presumably due to the different populations studied, such as treatment-naïve versus
VEGF-refractory [53].

4.5. Modulating Genomic Instability

Genomic instability of cancer cells drives genetic diversity required for the natural selection of
adaptive traits, but there is a threshold beyond which cells cannot replicate successfully [54]. Hence, it is
tempting to alter (increase or decrease) the frequency of mutations within the cancer genome.

RCC is characterized by a moderate level of genomic instability and the absence of mutations
in canonical DNA damage response (DDR) genes, such as RAD9, BRCA1, or TP53 [6,49]. As a result,
RCC patients are commonly unresponsive to DNA-damaging therapies, such as chemo- or radiotherapy.
For that reason, reducing genetic instability could be a more suitable approach. It can be achieved,
among others, by constitutive activation of the transforming growth factor β (TGF-β) axis. TGF-β has
been shown to inhibit DNA double-strand breaks (DSB) repair mechanisms to heighten the genetic
diversity and adaptability of cancer cells [55]. In ccRCC cell cultures, TGF-β enhances proliferative
capacity and promotes metastatic growth [56]. Early phase Ib clinical trial (NCT00356460) investigated
the use of a monoclonal antibody against TGF-β fresolimumab in RCC patients and showed preliminary
evidence of antitumor activity [57].

On the contrary, particular ccRCC driver genes do influence DDR and there is preclinical
evidence to support the poly(ADP)-ribose polymerase (PARP) inhibition in VHL- or BAP1-mutated
ccRCC [54,58,59]. Moreover, cells harboring SETD2 mutation undergo synthetic lethal interaction with
WEE1 blockade due to the depletion of nucleotide pools [60]. AZD1775, an experimental inhibitor
of WEE1, is currently being evaluated for patients with SETD2-deficient tumors, including RCC
(NCT03284385).

4.6. Evolutionary Herding

The tumor is less likely to be resistant to multiple drugs simultaneously, hence the combination
therapy allows for the extermination of resistant cells before the emergence of further adaptive
mechanisms. However, the use of two or more drugs simultaneously is strictly limited by the toxicity
to normal tissues.

While checkpoint inhibitor and the antiangiogenic combination is a standard of care for metastatic
ccRCC, there is a significant overlap in the toxicity profile of these drugs, with diarrhea, hypertension,
and hepatotoxicity being among the most commonly presented [55,61]. These and other adverse effects
may all contribute to treatment discontinuation or dose reduction. Moreover, there is frequently a
need for additional medications, such as loperamide secondary to axitinib or high-dose corticosteroids
for autoimmune colitis and hepatitis in case of checkpoint inhibitors. Then, drug–drug interactions
become even harder to predict. Despite the toxicity issue, in most cases, cancer cells eventually develop
multidrug resistance.

Any biological adaptation often involves trade-offs. In cancers, the cost of one resistance
mechanism is likely to induce a population to be sensitive to an alternative therapy [62]. Evolutionary
herding exploits this weakness by administering a combination of drugs in a particular order which
enables to control the tumor cell population. When a second drug is administered, the clonal structure
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of the population is different from the start, and this may lead to enhanced sensitivity, or even complete
tumor regression [63].

Since evolutionary herding alters the cellular composition of the tumor microenvironment,
collateral drug sensitivity is likely to be persistent. Furthermore, this strategy is hardly influenced
by stochastic perturbations and cell plasticity [64]. Acar et al. recently designed an experimental
approach, in which evolution can be tightly controlled, monitored, and altered using drugs. It allows
estimating evolutionary trade-offs and evaluating the effectiveness of patient-specific evolutionary
herding strategies [65]. The suitability of evolutionary herding in RCC has not been tested yet.

5. Therapeutic Implications

As previously described, seven evolutionary trajectories can be distributed into four groups
depending on the tumor’s genomic characteristics, evolution mode, and clinical course. We suspect
that each group has its own unique weaknesses that could be exploited. In Figure 1, we demonstrate
the predicted effectiveness of evolution-targeted strategies against particular evolutionary trajectories
of ccRCC.
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Figure 1. Predicted effectiveness of evolution-targeted strategies against particular evolutionary
trajectories of clear cell renal cell carcinoma (ccRCC). Seven deterministic evolutionary trajectories are
classified into four groups in terms of tumor’s genomic characteristics, evolution mode, and clinical
course. Loss of 9p or 14q represents the acquisition of metastatic competence. There are conflicting
results regarding PBRM1 mutation as a predictive biomarker of response to immunotherapy. The figure
is based on assumptions about tumor biology and therapeutic options. ccRCC, clear cell renal cell
carcinoma; wGII, weighted genome integrity index; ITH, intratumor heterogeneity.

While the benefit of upfront CN strictly depends on life expectancy, this procedure should be
considered especially for Group 1 and, to a lesser extent, Group 2. Similarly, adaptive therapy that
aims to enforce a stable tumor burden is expected to be highly effective against indolent cancers.
Tumors from Group 1, in which VHL mutation is the sole driver event, are the best candidates for
targeting trunk mutations. In Group 2, there is a limited number of trunk mutations, and this approach
is still reasonable. As a general rule, ITH diminishes immune responses but tumors harboring PBRM1
mutations (Group 2) could be highly vulnerable to immunotherapeutic agents. The predictive value
of PBRM1 mutation, however, is under debate and requires further investigation. Finally, decreased
wGII is an indicator of a favorable response to immunotherapy, supporting its use in Group 1.
In Figure 2, we illustrate how modulating genomic instability may affect ccRCC fitness. We suggest
decreasing genomic instability before the loss of 9p or 14q, which represents the acquisition of metastatic
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competence. This approach is particularly attractive in Group 1, characterized by low wGII. In contrast,
Groups 3 and 4, due to high wGII and a punctuated evolution pattern, are expected to respond to
increasing genomic instability. Modulating genomic instability in Group 2 could be unsuitable because
of high wGII and branched mode of evolution. Evolutionary herding aims to decrease ITH with each
subsequent therapy. Hence, it should be considered in Groups 1 and 3. This strategy may also be
adequate in Group 2 due to its indolent nature in comparison to Group 4.Cancers 2020, 12, x 8 of 13 
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plotted against genomic instability (horizontal axis). There is an optimum range of genomic instability,
in which ccRCC evolves. 9p or 14q loss represents the acquisition of metastatic competence and is a
point of no return. Before this point is reached, decreasing genomic instability slows down cancer
evolution. Once 9p or 14q is lost, increasing genome instability triggers extensive DNA damage and
cell death.

6. Future Directions

Sequencing data obtained from spatial biopsies enable one to infer the phylogenetic tree structure
and, in ccRCC, estimate the evolution trajectory. As a general rule, trunk alterations are found in
all tumor cells and represent an ancestral event, while other modifications constitute the branches.
The more regions sampled, the more branches will be found. In low-ITH cases, four biopsies would
reflect the subclonal alteration with 75% accuracy. The gain in driver detection per additional
sampling declines after eight, which is usually still not enough in cases with PBRM1 mutation [14].
While molecular profiling of multiple specimens is not practical in the setting of clinical practice,
the analysis of circulating tumor DNA (ctDNA) obtained from liquid biopsy represents a feasible
alternative. Analysis of ctDNA enables identification of both clonal and subclonal tumor-specific
mutations with high sensitivity and specificity, with detection rates comparable with those of traditional
biopsies [61–66]. Furthermore, ctDNA has a relatively short half-life (approximately 2 h), allowing
for the evaluation of tumor changes in real-time [67]. Finally, as minimally invasive, liquid biopsy
eliminates the morbidity associated with the serial sampling of tumors. While qualitative and
quantitative analyses of ctDNA have been extensively performed in RCC patients [68], liquid biopsy
has not yet been used to capture RCC evolutionary trajectories.

The discovery of alternative evolutionary trajectories of RCC will provide a better insight into
the underlying mechanisms of drug resistance. Some of these mechanisms may be closely related
to geographic and environmental factors since patients from different regions have different genetic



Cancers 2020, 12, 3300 9 of 13

backgrounds and are exposed to different carcinogens. Huang et al. identified mutational signatures
and SCNAs specific to Chinese or Japanese ccRCC patients [13]. In the first group, the alterations could
be due to exposure to aristolochic acid, a common ingredient in many Chinese herbs [69]. The cause of
unique genetic alterations in the Japanese cohort remains unexplained.

Novel techniques to perform an in-depth analysis of datasets, as well as larger-scale studies,
will greatly expand our knowledge on the development of RCC. Recently, an original computational
method, CONETT (CONserved Evolutionary Trajectories in Tumors), enabled the detection of three
additional directions of evolution among ccRCCs [70]. Two of them terminate with a sequence alteration
in gene KDM5C and one in TSC1. The clinical significance of these findings is yet to be determined.

Identification of hidden evolutionary patterns is made possible by artificial intelligence (AI).
Caravagna and colleagues devised a machine-learning method called repeated evolution in cancer
(REVOLVER), which allows to overcome the stochastic effects of cancer evolution and information
noise [71]. This technique uses transfer learning (TL) to achieve reproducible disease prognosis based
on next-generation sequencing (NGS) count data [70–73]. As a result, it is possible to classify patients
on the basis of how their tumor evolved, with implications for the anticipation of disease progression.

According to the NCCN Guidelines for Kidney Cancer, molecular profiling does not influence
decision-making. The ongoing phase 2 clinical trials, A-PREDICT (NCT01693822) and ADAPTeR
(NCT02446860), incorporate a multiregional sampling of metastatic RCC prior to and during therapy
to evaluate biomarkers of treatment response. Whether evolutionary trajectories could reflect the
effectiveness of a particular anti-RCC strategy, remains to be elucidated.

7. Conclusions

Many diseases are intimately tied to our evolutionary and genetic heritage. With our better
understanding of these conditions, we gradually acquire the evolutionary perspective, which turns
out necessary for both prevention and treatment [74,75]. In contrast to organismal evolution, human
cancers are subjected to similar initial conditions and follow a limited range of possible evolutionary
trajectories. Therefore, the repetitive nature of cancer evolution may prove to be its greatest weakness.

Genomic characterization is currently paving the way for clinical decision-making in RCC.
The problem of exceptional ITH could be minimized by multiregion biopsy or liquid biopsy. These
tools not only provide insights into cancer genetic architecture but also allow the measurement of
clonal evolution. Recent studies resolved the evolutionary features and subtypes underpinning the
diverse clinical phenotypes of ccRCC. In this review, we have summarized recent advances in the
treatment of ccRCC and demonstrated how each strategy could be improved from the evolutionary
perspective. Since there are only a few deterministic evolutionary trajectories in ccRCC, it appears
feasible to use them as potential biomarkers for guiding intervention and surveillance. We believe
that the presented patient stratification could help predict future steps of malignant progression,
thereby informing optimal and personalized clinical decisions.
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Abstract: What is the leading molecular mechanism that causes broad resistance to systemic therapies remains 
a key question in renal cancer related research. We explored associations of TRIP13 expression with the clinical 
course using the tissue microarray (TMA). The TMA contained specimens from 87 patients diagnosed with clear 
cell renal cell carcinoma (ccRCC). We performed immunohistochemistry to investigate TRIP13 protein expression 
levels. The overall survival (OS) was analyzed using the Kaplan-Meier method and log-rank statistics. Univariate and 
multivariate analyses were conducted using Cox proportional hazard models. Median follow up for the TMA cohort 
was 7.0 years. Tissues from 28.74% of patients demonstrated high TRIP13 expression. Mean TRIP13 expression 
in TRIP13-rich tumors was significantly higher comparing to adjacent normal tissues (P < 0.05). TRIP13 expression 
did not significantly correlate with stage nor tumor grade (P > 0.05). Elevated expression of TRIP13 served as an 
independent unfavorable prognostic indicator of survival in ccRCC (P < 0.05). TRIP13 overexpression predicts poor 
prognosis in ccRCC. Together with the emerging reports, this observation raises a suspicion that TRIP13 is a sub-
stantial driver of resistance to systemic therapies against kidney cancer.

Keywords: TRIP13, ccRCC, kidney cancer, renal carcinoma, expression, prognosis, survival, OS

Introduction

Renal cell carcinoma (RCC) is among the 10 
most common cancers in both men and women, 
and its incidence is on the rise. In 2020, 73,750 
new cases and 14,830 deaths due to RCC will 
occur in the US and over 400,000 new cases 
will occur worldwide [1]. Up to 30-40% of RCC 
cases are present as metastatic disease, either 
initially or after curative treatment [2]. The most 
common subtype, clear cell renal cell carcino-
ma (ccRCC), arises from the proximal convolut-
ed tubule cells and accounts for approximate- 
ly 70% of all cases [3]. Despite significant im- 
provements in the clinical management over 
the last decade, most patients with metastatic 
ccRCC succumb to cancer progression within 
1.5 years [4].  

The exceptional intratumoral heterogeneity of 
RCC represents a considerable challenge limit-
ing the efficacy of established systemic thera-

pies [5]. Such treatment often further exacer-
bates the heterogeneity and leads to outgrowth 
of tumor cell subclones with resistance proper-
ties, including the resistance to apoptosis [6, 
7]. The accumulating alterations found in both 
intrinsic and extrinsic apoptotic pathways aber-
rantly extend cells viability and eventually con-
tribute to cancer progression [8]. Since apopto-
sis causes negligible damage to adjacent tis-
sues [9], the apoptotic pathway-targeted thera-
pies emerge as particularly promising strategy 
for RCC treatment. 

TRIP13 is a protein encoded by TRIP13 gene. 
Recent evidence implicates TRIP13 in various 
cell cycle phases, including meiosis, G2/Pro- 
phase and during the mitotic spindle assembly 
checkpoint (SAC) activation. TRIP13 is required 
for the development of higher-order chromo-
some structures and contributes to synaptone-
mal complex formation. It also promotes early 
steps of the DNA double-strand breaks (DSBs) 
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repair process. The latest reports together with 
in silico analysis, indicate its prominent role in 
driving tumorigenesis. 

The Human Pathology Atlas is based on a sys-
tems-based analysis of the transcriptome of  
17 main cancer types using data from 8,000 
patients [10]. A national supercomputer center 
was used to analyze more than 2.5 petabyt- 
es of underlying publicly available data from  
the Cancer Genome Atlas (TCGA) to generate 
900,000 survival plots describing the conse-
quence of RNA and protein levels on clinical 
survival. All the data in the knowledge resource 
allows exploration of the human proteome. In 
this study, we explore the clinical association  
of TRIP13 with ccRCC histology and oncologic 
outcomes using the tissue microarray (TMA) 
ccRCC cohort, and validate these findings in 
TCGA.

Materials and methods

Tissue microarray

Tissue microarray (TMA) slide was obtained 
from a commercial supplier (US Biomax, Rock- 
ville, MD; TMA catalog number HKid-CRC180- 
Sur-01). The TMA (HKid-CRC180Sur-01) con-
tained specimens from 92 patients, tumor and 
matched normal adjacent tissue (1 core/case), 
followed up for 7 years. Cores derived from 3 
patients were missing, therefore these patients 
were excluded from the analysis. Retrievable 
patient data included age, pathology diagnos- 
is, TNM, grade, stage and overall survival. The 
quality of the TMA was additionally approved by 
our pathologist. The study follows the principles 
of the Declaration of Helsinki. The tissues were 
collected under the highest ethical standards 
and HIPPA approved protocols with the donor 
being informed completely and with their con-
sent. Since the tissues were commercially pur-
chased, the study has been exempted from 
requiring ethical approval.

Immunohistochemistry

The TMA slide was processed at the Depart- 
ment of Clinical Pathology. The primary rabbit 
polyclonal anti-TRIP13 (HPA005727) antibody 
(Sigma-Aldrich, Merck KGaA, Darmstadt, Ger- 
many) was applied to estimate the expression 
of TRIP13 protein. The protocol has been stan-
dardized using a series of positive and negative 

control reactions. The positive control reaction 
was performed on a tissue model selected 
according to reference sources (The Human 
Protein Atlas: http://www.proteinatlas.org) and 
the antibody data-sheet. TRIP13 positive con-
trol reaction was performed on pancreatic can-
cer tissue showing cytoplasmic and nuclear 
expression. All negative control reactions were 
performed on additionally analyzed tissue sec-
tions, by substituting the primary antibody with 
a solution of 1% BSA (bovine serum albumin) 
diluted in PBS (phosphate buffered saline). 
Immunohistochemical staining was performed 
using primary rabbit polyclonal anti-TRIP13 
(1:200) antibody and visualization system En- 
VisionFlex+ Anti-Mouse/Rabbit HRP-Labeled 
Polymer (Dako, Agilent Technologies) on an Au- 
tostainer Link48 platform. Finally, tissue sec-
tions were dehydrated in ethanol of increasing 
concentration (from 80% to 98%), then cleared 
in a series of xylenes (from I to IV) and cover-
slipped in a medium (Dako, Agilent Technologi- 
es, USA).

IHC analysis and scoring

Initially, two experienced pathologists blinded 
to the clinical data evaluated the immunos-
tained slides using the light microscope ELIPSE 
E800 (Nikon Instruments Europe, Amsterdam, 
Netherlands) at 20× and 40× original objective 
magnification. IHC revealed cytoplasmic and 
nuclear TRIP13 expression.

The cytoplasmic staining intensity of cells and 
percentage of cells at each staining intensity 
level were determined for each fixed core in the 
TMA. Staining intensity was graded as 0 (nega-
tive), 1+ (weak), 2+ (modarate), and 3+ (strong). 
The H-score was assigned using the following 
formula: [1 × (% cells 1+) + 2 × (% cells 2+) + 3 
× (% cells 3+)], obtaining a value from 0 to 300. 

The nuclear expression evaluation was scored 
on a two-point scale: 0 (negative IHC reaction 
result) and 1 (positive IHC reaction result). 

Statistical analysis

All the statistical analyses were performed us- 
ing Statistica version 10 (StatSoft) and Mi- 
crosoft Excel 2019. The comparative studies 
were analyzed statistically using the nonpara-
metric chi-square test. The p value < 0.05 was 
considered statistically significant.
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Results

The location and expression of TRIP13 protein 
in ccRCC TMA cohort

IHC was performed on 87 pairs of ccRCC and 
corresponding normal tissues. Five cores of 
corresponding tissues were lost during IHC 
staining procedure. Table 1 summarizes the 
characteristics of the TMA cohort. The mean 
age of patients was 59 years (range: 29-83 
years) and the median follow-up was 7.0 years. 

Cytoplasmic TRIP13 staining was observed in 
77 (88.51%) of 87 ccRCC tissues and the medi-

an expression was 100 (interquartile range 0- 
215). Among adjacent controls, 70 (85.37%)  
of 82 cores were positive and the median ex- 
pression was 115 (interquartile range 70-200). 
Cytoplasmic expressions of TRIP13 in ccRCC 
tissues were lower than those in adjacent con-
trols (P < 0.05, Figure 1A). Next, we dichoto-
mized the cytoplasmic expressions of TRIP13 
to low expression and high expression. Using 
the tool Cutoff Finder, we set the best cutoff at 
105 [11]. Mean TRIP13 expression in TRIP13-
rich tumors was significantly higher comparing 
to adjacent normal tissues (P < 0.05, Figure 
1B). Similarly, adjacent normal tissues were 
characterized by elevated TRIP13 expression 
when compared to TRIP13-depleted tumors (P 
< 0.05) (Figure 1C).

Nuclear TRIP13 staining was observed in 14 
cancer tissues (16.28%) (Figure 2A) and only in 
2 adjacent normal tissues (2.44%) (Figure 2B). 
This difference was statistically significant (P < 
0.05). 

Clinical course and TRIP13 protein expression 
in ccRCC TMA cohort

TRIP13 protein expression did not significantly 
correlate with TNM stage nor tumor grade (bo- 
th P > 0.05). Univariate analysis revealed that 
patients with high cytoplasmic TRIP13 protein 
expression had significantly shorter OS com-
paring to those with low expression (P < 0.05, 
HR = 2.88 [1.35-6.15]) (Figure 3). We found no 
significant association between the presence 
of TRIP13 nuclear expression and OS (Figure 
4). In conclusion, TRIP13 overexpression pre-
dicts poor prognosis in ccRCC. Together with 
the emerging reports, this observation raises a 
suspicion that TRIP13 is a substantial driver of 
resistance to systemic therapies against kidney 
cancer.

Discussion

TCGA ccRCC cohort analysis

We found that cytoplasmic TRIP13 protein ov- 
erexpression significantly correlates with poor 
survival in ccRCC patients. To evaluate whether 
the expression of TRIP13 mRNA was also asso-
ciated with the clinical course of the disease, 
we accessed TCGA database. All transcripto- 
mics information were obtained employing the 
Human Pathology Atlas, the separate part of 
The Human Protein Atlas available from www.

Table 1. Baseline characteristics of TMA (n = 
87) patient cohort
Clinical information n (%)
Age, yr
    Mean 59.0
    Range 29-83
Stage
    I 58 (66.67)
    II 17 (19.54)
    III 3 (3.45)
    IV 2 (2.30)
    Unknown 0 (0.00)
T Stage
    T1 62 (71.26)
    T2 17 (19.54)
    T3 4 (4.60)
    Unknown 4 (4.60)
Lymph nodes
    N1 1 (1.15)
    N0/Nx 84 (96.55)
    Unknown 2 (2.30)
Metastasis
    Yes 2 (2.30)
    No 85 (97.70)
Grade
    G1 32 (36.78)
    G1-G2 14 (16.09)
    G2 27 (31.03)
    G2-G3 4 (4.60)
    G3 9 (10.34)
    G3-G4 1 (1.15)
Median follow up time 7.0
Disease course
    Alive 59 (67.82)
    Dead 28 (32.18)
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Figure 1. A. Cytoplasmic expression of TRIP13 in Clear Cell Renal Cell Carcinoma (CCRCC) and adjacent normal tissue (Control). B. Cytoplasmic TRIP13 expression 
in TRIP13-rich CCRCC and control. C. Cytoplasmic TRIP13 expression in TRIP13-depleted CCRCC and control.
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proteinatlas.org. TCGA cohort consisted of 528 
patients diagnosed with ccRCC [12]. The avail-
able characteristics of study subjects are sum-
marized in Table 2. The mean age of patients 
was 60.5 years (range: 26-90 years) and the 
median follow-up was 3.28 years. The TCGA 
RNA-seq data was mapped using the Ensembl 
gene id available from TCGA, and the FPKMs 
(number Fragments Per Kilobase of exon per 
Million reads) for TRIP13 were subsequently 
used for quantification of expression with a 
detection threshold of 1 FPKM. Based on the 
FPKM value of TRIP13, patients were classified 
into two expression groups. To choose the best 
FPKM cutoff for grouping the patients most  
significantly, all FPKM values from the 20th to 

TRIP13 takes part in a variety of cellular activi-
ties, including cell cycle regulation, DNA repair 
and apoptosis. Study on multiple myeloma cells 
revealed that overexpression of TRIP13 abro-
gates SAC. The underlying mechanism includes 
activation of PI3K-Akt signaling pathway that 
induces proteasome-mediated degradation of 
MAD2, the key component of SAC [13]. Dys- 
functional SAC contributes to chromosomal in- 
stability (CIN), aneuploidy, and eventually fa- 
cilitates cancer progression [14-16]. Moreover, 
one of major downstream effectors of AKT is 
the mammalian target of rapamycin (mTOR), 
which induces cell growth, proliferation, sur- 
vival, and motility, as well as angiogenesis  
[17].

Figure 2. Prevalence of positive TRIP13 nuclear expression among (A) clear 
cell Renal Cell Carcinoma tissues, and (B) adjacent normal tissues (Control).

Figure 3. The survival curve of clear cell Renal Cell Carcinoma patients ac-
cording to TRIP13 cytoplasmic expression.

80th percentiles were used to 
group the patients, significant 
differences in the survival out-
comes of the groups were 
examined and the value yield-
ing the lowest log-rank P value 
(3.4e-11) was selected. 109  
of 528 (20.64%) patients had 
higher expression than the es- 
tablished cutoff. The prognos- 
is of each group of patients 
was examined by Kaplan-Mei- 
er survival estimators and the 
survival outcomes of the two 
groups were compared by log-
rank tests. The five-year sur-
vival was reached by 70% of 
patients with low TRIP13 ex- 
pression and 39% of those wi- 
th high expression. Taken to- 
gether, TRIP13 mRNA expres-
sion is prognostic and its high 
expression is unfavourable in 
RCC (P < 0.05), according to 
TCGA.

The Human Protein Atlas tis-
sue repository could not be 
used to evaluate TRIP13 pro-
tein expression in RCC becau- 
se it showed low or negative 
immunoreactivity to both rec-
ommended antibodies (HPA0- 
53093 and HPA005727). Also 
the group of patients in this 
trial was small (n = 12).

Role of TRIP13 in cancer
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Study of Banerjee et al. demonstrated signifi-
cant impact of TRIP13 in chemoresistance 
development among head and neck cancers. 
Cells with downregulated TRIP13 expression, 
treated with cisplatin were characterized by 
better response rate and slower growth [22]. 
TRIP13 might enhance the resistance to sys-
temic therapy in RCC as well. The systemic ther-
apy (targeted therapy, immunotherapy or che-
motherapy) could constitute a selective pres-
sure acting on TRIP13 expression in RCC cells. 
During the course of the disease, the popula-
tion of cells with higher expression of TRIP13 
would rise because of its protective properti- 
es. Ultimately, the cancer tissue would beco- 
me irreversibly resistant to applied treatment. 
Our results do not support this hypothesis, 
because we did not find significant relation-
ships between protein expression and grade or 
stage of the disease. On the other hand, this 
approach might be worth pursuing, since the 
relatively small cohort of advanced ccRCC wi- 
thin our TMA could not ensure a valid repre- 
sentation.

Although the detrimental effect of TRIP13 has 
been confirmed in biologically diverse neo-
plasms [13-25], the exact mechanisms and 
their relative importance are not yet clear. 
While, as previously described, TRIP13 promot- 
es malignant properties of ovarian cancer ce- 
lls [20], elevated TRIP13 mRNA expression is 
associated with favorable outcomes in ovarian 

Figure 4. The survival curve of clear cell Renal Cell Carcinoma patients ac-
cording to TRIP13 nuclear expression.

Table 2. Baseline characteristics of TCGA (n = 
528) patient cohort
Clinical information n (%)
Age, yr
    Mean 60.5
    Range 26-90
Sex
    Male 344 (65.15)
    Female 184 (34.85)
Race
    White 459 (86.93)
    Black or African American 54 (10.23)
    Asian 8 (1.52)
    Unknown 7 (1.33)
Stage
    I 263 (49.81)
    II 57 (10.80)
    III 123 (23.30)
    IV 82 (15.53)
    Unknown 3 (0.57)
Median follow up time 3.28
Disease course
    Alive 355 (67.23)
    Dead 173 (32.77)

According to study of Yao et al., TRIP13 pro-
motes growth and metastasis of hepatocellu- 
lar carcinoma through inhibition of TGF-β1/
Smad3 signaling [18]. Repressed Smad3 ac- 
tivity has been associated with breast cancer 

bone metastasis by its effects 
on tumor angiogenesis, and 
epithelial-mesenchymal transi-
tion (EMT) [19]. Zhou et al. 
revealed that TRIP13 enhanc-
es the proliferation and in- 
vasion via activation of the 
NOTCH signaling and induction 
of EMT [20]. In damaged cells, 
TRIP13 functions to favor non-
homologous end joining (NHEJ) 
over homologous recombina-
tion (HR). Both are the major 
pathways for DNA DSBs repair. 
While HR results in accurate 
repair, NHEJ is an intrinsically 
error-prone pathway and may 
lead to CIN and eventually car-
cinogenesis [21].
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cancer patients [12]. It demonstrates that the 
actual contribution of TRIP13 to tumorigenesis 
could be far more complex. 

Role of TRIP13 in kidney

It remains unexplored whether TRIP13 plays  
a significant role in renal cell carcinoma. How- 
ever, Pressly et al. recently shed new light on 
the antiapoptotic role of TRIP13 in renal tu- 

bules. As they reported, TRIP13 interacts with 
Tetratricopeptide Repeat Domain 5 (TTC5) and 
inhibits p53. Insufficient TRIP13 consequently 
increases the susceptibility of damaged tubular 
epithelial cells to progress towards apoptotic 
cell death [31]. 

Interestingly, biallelic loss-of-function mutati- 
ons in TRIP13 have been shown to predispose 
to Wilms tumor, a kidney cancer that primarily 

Figure 5. Probable interactions among TRIP13 and other molecules within clear cell Renal Cell Carcinoma. Overex-
pression of TRIP13 activates PI3K/AKT/mTOR pathway. AKT induces proteasome-mediated degradation of MAD2, 
the key component of SAC. Dysfunctional SAC leads to CIN and aneuploidy, which, together with mTOR, mediate 
cancer progression. TRIP13 together with TTC5 as a cofactor, inhibits p53 signaling and, consequently, suppresses 
the apoptosis. In cells with damaged DNA, TRIP13 functions to favor NHEJ over HR. NHEJ as more likely to be inaccu-
rate, may contribute to cancer progression. TRIP13 also induces the expressions of E-cadherin and vimentin directly 
or through activation of the NOTCH signaling. The net effect is the promotion EMT, which is directly associated with 
gain of migratory and invasive capabilities. TRIP13 reduces the expressions of TGF-β1, TβRII and Smad3, the media-
tors of cellular senescence. The inhibition of TGF-β1/Smad3 signaling supports tumor growth. Decreased Smad3 
activity promotes EMT. SAC-spindle assembly checkpoint; CIN-chromosomal instability; NHEJ-non-homologous end 
joining; HR-homologous recombination; EMT-epithelial-mesenchymal transition.
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affects children [32]. The authors of this report 
indicate a substantial impairment of SAC, whi- 
ch eventually leads to a high rate of chromo-
some missegregation in these patients. This 
study supports the existence of a close rela-
tionship between TRIP13 and SAC, which when 
disturbed, increases cancer risk or drives its 
progression.

Potential role of TRIP13 in renal cell carci-
noma

In Figure 5, we summarized probable interac-
tions among TRIP13 and other molecules wi- 
thin kidney cancer cell. This pathway diagram 
illustrates how TRIP13 may affect survival in 
these patients, and therefore may serve as a 
starting point for translational research.

It is tempting to speculate, that the ability of 
TRIP13 to inhibit apoptosis is of paramount 
importance in RCC patients. Firstly, it has been 
confirmed in renal tubular epithelial cells, the 
same that give rise to ccRCC. Secondly, there is 
accumulating evidence of positive responses 
to apoptosis inducers in RCC [33-40].
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Unresectable renal cell carcinoma continues to be a  great challenge due to our 
limited understanding of its underlying pathophysiology. We explored the relation-
ship between KIF11 protein expression and the clinical courses of clear cell renal 
cell carcinoma (ccRCC) using a tissue microarray.
Material and methods: The tissue microarray contained specimens derived from  
90 patients, cancer and matched adjacent non-cancerous tissue (2 cores per case), 
followed up for 7 years. Tumour samples were evaluated for KIF11 expression using 
the H-score, and their correlations with clinicopathological data and survival data 
were analysed. 
72.7% of ccRCC tissues presented KIF11 cytoplasmic expression with a median 
value of 20 (interquartile range 0–200). The nuclear staining was positive in 
36.36% of ccRCC tissues. Among controls, nuclear KIF11 expression was ab-
sent, but cytoplasmic expression was identified in all cases, with a median value  
of 230 (interquartile range 45–290). Cytoplasmic KIF11 expression in ccRCC tis-
sues was lower than in the control tissues and was positively correlated with tu-
mour grade and mortality (p < 0.05). KIF11 nuclear expression did not correlate 
with overall survival. 
Elevated expression of KIF11 predicts poor clinical outcome in ccRCC patients. 
Downregulation of KIF11 may provide a new therapeutic strategy for ccRCC.

Key words: KIF11, ccRCC, kidney cancer, renal carcinoma, expression, prognosis, 
survival, OS.
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Introduction

Renal cell carcinoma (RCC) is in the top 10 most 
common cancers, and its incidence is on the rise. De-
spite significant advances in medical management, the 
American Cancer Society estimates that in 2020 in 

the US, 14,830 people will die from this disease [1]. 
The most common subtype of RCC that accounts for 
65–70% of cases, is the clear cell renal cell carcino-
ma (ccRCC). It originates from the proximal tubular 
epithelial cells of nephrons [1, 2]. The extraordinary 
heterogeneity of this tumour poses a great challenge 
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for its effective treatment [3]. Thus, the establishment 
of novel molecular targets is an attractive approach.

KIF11, as a motor protein encoded by the KIF11 
gene, assists in spindle dynamics. Among its main 
functions are chromosome positioning, centrosome 
separation, and establishing a bipolar spindle during 
mitosis [4]. Its overexpression reflects poor progno-
sis in various carcinomas including gastric, laryn-
geal, breast, prostate, and pancreatic [5–9]. Recent 
reports together with in silico analysis suggest that 
KIF11 may also contribute to ccRCC progression. 
We explored associations of KIF11 expression with 
the clinical course using a  tissue microarray (TMA) 
and validated these findings in The Cancer Genome 
Atlas (TCGA).

Material and methods

Tissue microarray

The tissue microarray was purchased from a com-
mercial supplier (US Biomax, Rockville, MD).  
The tissue microarray (HKid-CRC180Sur-01) con-
tained specimens derived from 90 patients, cancer 
and matched adjacent non-cancerous tissue (2 cores 
per case), followed up for 7 years. Samples were 
consecutively collected from July 2006 to February 
2008, following informed consent and under ap-
proval of the Ethics Committee. All of the specimens 
were obtained prior to any therapeutic manipulation.  
The diagnosis was made by at least 2 different eval-
uators in accordance with up-to-date World Health 
Organization guidelines. Two cores with ccRCC and 
5 cores with normal adjacent tissue were missing and 
therefore were excluded from the analysis. Retriev-
able clinicopathological data included age, pathologi-
cal diagnosis, TNM, stage, grade, and overall survival 
(OS). The quality of each specimen was additionally 
approved by our pathologists. 

Immunohistochemistry

The tissue microarray slides were processed at the 
Department of Clinical Pathology. Primary rabbit 
polyclonal anti-KIF11 (HPA010568; Sigma-Aldrich, 
Merck KGaA, Darmstadt, Germany) antibody was 
used to estimate the expression of KIF11 protein. 
The standardization of the protocol was achieved us-
ing a series of control reactions: positive and negative. 
The positive control reaction was performed in accor-
dance with reference sources (Human Protein Atlas: 
http://www.proteinatlas.org) and the antibody data-
sheet. KIF11-positive control reaction performed on 
pancreatic cancer tissue presented cytoplasmic and 
nuclear expression. Furthermore, all negative control 
reactions were performed on additionally analysed 
tissue sections by substituting the primary antibody 
with a solution of 1% bovine serum albumin diluted 

in phosphate-buffered saline. Immunohistochemical 
(IHC) staining was performed using primary rabbit 
polyclonal anti-KIF11 (1 : 200) antibody and visu-
alization system EnVisionFlex+ Anti-Mouse/Rabbit 
HRP-Labelled Polymer (Dako, Agilent Technologies) 
on an Autostainer Link48 platform. Lastly, dehy-
dration of tissue sections was performed in ethanol  
at increasing concentrations (80–98%), then cleared 
in a  series of xylenes (I–IV) and cover-slipped  
in a medium (Dako, Agilent Technologies, USA).

Immunohistochemical analysis and scoring

All immunostained samples were evaluated by 2 ex- 
perienced pathologists blinded to the patients’ clini-
cal data. The level of KIF11 cytoplasmic and nuclear 
expression were assessed using the light microscope 
at 20× and 40× magnification. The extent of cyto-
plasmic immunoreactivity was assessed by H-Score.  
In this case, we distinguished 3 levels of expression in-
tensity (1+ = ‘low’/2+ = ‘moderate’/3+ = ‘high’). 
The percentage of those cells were applied to the fol-
lowing formula: 

1 × (% cells 1+) + 2 × (% cells 2+) + 3 ×  
(% cells 3+) = H-score 

The final score ranged 0–300. The nuclear expres-
sion of KIF11 was evaluated using a  two-point scale  
(0 = ‘negative IHC result’/1 = ‘positive IHC result’).

Statistical analysis

All the statistical analyses were performed using 
Statistica version 10 (StatSoft) and Microsoft Excel 
2019. We used the log-rank test to compare the sur-
vival distributions of patients with different protein 
expression patterns. The Kaplan-Meier estimator was 
performed to estimate the survival functions from 
lifetime data. We used the Mann-Whitney U  test  
to compare the protein expressions between cancer-
ous and adjacent normal cells. Cox Proportional Haz-
ards for analysing ccRCC survival data were consid-
ered. The data were divided into 4 groups according 
to patients’ ages (age ≤ 65 and age > 65 years), grade 
(G1 and G2, G3), stage (T1 and T2, T3) and KIF11 
expression level (KIF11 ≤ 42.5 – low and KIF11  
> 42.5 – high). The p-value < 0.05 was considered 
statistically significant.

Ethical review and approval were waived for this 
study due to the lack of access to identifiable private 
information. Informed consent was obtained from all 
subjects involved in the study

Results

The study included 88 pairs of ccRCC and cor-
responding non-cancerous tissue. During the IHC 
staining procedure, 5 cores of corresponding tissue 
and 2 cores of ccRCC were lost. Summarized charac-
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teristics of the TMA cohort are presented in Table I. 
The median follow-up was 7.0 years. 

64 of 88 ccRCC tissues (72.7%) presented KIF11 
cytoplasmic expression with the median value of  
20 (interquartile range 0–200). The nuclear staining was 
positive in 32 of 88 ccRCC tissues (36.36%). Among 
controls, nuclear KIF11 expression was absent, but cy-
toplasmic expression was identified in all cases, with 
a median value of 230 (interquartile range 45–290). 
Cytoplasmic KIF11 expression in ccRCC tissues was 
lower compared to control tissues (p < 0.05) (Fig. 1A). 

Cytoplasmic KIF11 expression positively correlated 
with tumour grade (p = 0.0013) and mortality  
(HR 2.17; 95% Cl: 0.99–4.73; p = 0.047) (Figs. 1B, 
2A). Cox Proportional Hazard was statistically sig-
nificant only for T1 tumours. HR estimates of 0.19  
(95% Cl: 0.04–0.96; p = 0.045) for low KIF cyto-
plasmic expression and 0.42 (95% Cl: 0.15–1.16;  
p = 0.049) for high KIF cytoplasmic expression were 
calculated. KIF11 nuclear expression did not correlate 
with OS (p = 0.72) (Fig. 2B). KIF11 cytoplasmic or 
nuclear expression did not correlate with tumour stage.

Discussion
Surgical resection is the best therapeutic strat-

egy for localized RCC [10]. However, around 30% 
of patients experience tumour recurrence following 
complete resection [11, 12]. Immunotherapy and/or 
targeted therapy represent a  standard of care for 
stage IV and recurrent RCC. Despite relatively high 
response rates to these agents, most patients eventu-
ally succumb to cancer progression. Versus KIF11 has 
been shown to promote the epithelial-mesenchymal 
transition and activate many molecular mechanisms 
involved in cancer progression, including Wnt/β-
catenin, PI3K/AKT/mTOR, and MAPK/ERK path-
way [9, 13, 14]. Targeting KIF11 inhibits invasion, 
proliferation, and self-renewal in glioblastoma cell lines 
[15]. A similar effect was observed in breast cancer and 
prostate cancer cells [9, 16–20]. Filanesib, a  potent 
KIF11 inhibitor, has recently demonstrated clinical  
efficacy in patients with multiple myeloma [21]. 

The metastatic competence of ccRCC is afforded 
by chromosome complexity, in particular 9p and 14q 
loss [22]. We found that high KIF11 cytoplasmic (but 
not nuclear) expression correlates with poor survival 
in patients with ccRCC. KIF11 within the cytoplasm 
contributes to centrosome separation and bipolar 
spindle formation and can provoke vital chromo-
some-level alterations. Hence, it could play a signif-
icant role in driving ccRCC evolution and metastatic 
spread. Then, targeting KIF11 would be an attrac-
tive complement to evolution-targeted therapy. Evo-
lution-targeted therapy in ccRCC is a novel concept 
that relies on patient stratification according to the 
deterministic evolutionary trajectory of the tumour 
[23]. Currently there are 7 well described evolution-
ary trajectories in ccRCC according to the tumour’s 
genomic characteristics, evolution mode, and clinical 
course [24]. While the evolutionary trajectory could 
be used as a biomarker for guiding the intervention, 
inhibition of KIF11 could further curb cancer evolu-
tion, making this approach more effective.

According to the cBioportal for Cancer Genomics, 
a  database with genome sequencing and compara-
tive genome hybridization, KIF11 overexpression is 
driven by epigenetic alterations in 99.61% of cases. 
The remaining causes include genetic amplifications 

Table I. Baseline characteristics of the tissue microarray  
(n = 88) patient cohort

Clinical information n (%)

Age [years] 

Mean 59.09

Range 29–83

Stage 

I 60 (68.20)

II 17 (19.30)

III 3 (3.40)

IV 2 (2.30)

Unknown 6 (6.81)

T stage 

T1 63 (71.59)

T2 17 (19.32)

T3 4 (4.55)

Unknown 4 (4.55)

Lymph nodes 

N1 1 (1.11)

N0/Nx 85 (96.59)

Unknown 2 (2.30)

Metastasis 

Yes 2 (2.28)

No 86 (97.72)

WHO/ISUP grade 

G1 33 (37.5)

G2 41 (46.59)

G3 13 (14.77)

G4 1 (1.14)

Median follow-up time [years] 7.0

Disease course 

Alive 60 (68.18)

Dead 28 (31.82)
ISUP – International Society of Urological Pathology, WHO – World Health 
Organization
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Fig. 1. A) Cytoplasmic KIF11 expression in clear cell renal cell carcinoma (ccRCC) and adjacent normal tissue (control). 
B) KIF11 expression according to ccRCC grade
ccRCC – clear cell renal cell carcinoma

Fig. 2. A) The survival curve of clear cell renal cell carcinoma (ccRCC) patients according to cytoplasmic KIF11 expres-
sion. B) The survival curve of ccRCC patients according to nuclear KIF11 expression
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and missense mutations. The epigenetic alterations 
are reversible and play a central role in renal carcino-
genesis [25]. Hence, specifically targeting these al-
terations could restore a  normal epigenetic pattern 
and potentially cure the disease. Currently, targeted 
epigenetic therapies are under investigation. Their 
combination with antiangiogenic or immune check-
point treatments represents a particularly promising 
paradigm that could overcome frequent monother-
apy resistance [26–29]. Epigenetic therapeutics are 
classified into agents that have a  targeted effect, 
such as anti-miRNA oligonucleotides, and agents 
that have a more broad effect and lead to large-scale 
changes in gene expression, such as HDAC inhibitors 
(HDACi) [25]. The principal problem with the first 
group of agents is their difficult delivery to cancer 
cells [30]. The second group of agents, on the other 
hand, activate genes that are normally repressed, 
leading to adverse off-target effects that influence 

numerous processes in the body [31]. As a result, no 
epigenetic alteration can be both safely and precisely 
targeted, and therefore successful clinical translation 
of epigenetics in RCC remains to be seen.

To evaluate the association between KIF11 mRNA 
expression and the clinical course of ccRCC we ac-
cessed the TCGA database [32, 33]. In TCGA, pa-
tients were classified into 2 expression groups based 
on the KIF11 FPKM (number fragments per kilobase 
of exon per million reads) value. To choose the best 
FPKM cut-off for grouping the patients, significant 
differences in the OS of the groups were analysed, 
and the value yielding the lowest log-rank p-val-
ue (1.5e–8) was selected. KIF11 expression among  
119 of 528 (22.54%) patients was higher than the 
established cut-off. The Kaplan-Meier survival es-
timators evaluated the prognosis of each group.  
The survival outcomes of the 2 groups were compared 
by log-rank tests. The five-year survival was reached 
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by 69% of patients with low KIF11 expression and 
44% of patients with high KIF11 expression. Accord-
ing to data from the TCGA database, elevated KIF11 
mRNA expression is associated with poor prognosis 
in ccRCC (p < 0.05). These results are in accordance 
with our findings. 

Our study cohort comprised mainly low-grade 
and low-stage cases. Therefore, further research in-
corporating advanced, unresectable tumours is need-
ed to translate our results toward a future potential 
clinical intervention.

Conclusions

Elevated expression of KIF11 predicts poor clinical 
outcome in ccRCC patients. Downregulation of KIF11 
may provide a new therapeutic strategy for ccRCC.

Acknowledgement

This research was funded by the National Cen-
tre for Research and Development, grant number 
POWR.03.02.00-00-I019/16.

The authors declare no conflict of interest.

References

1.	Key Statistics About Kidney Cancer. Available from: https://
www.cancer.org/content/dam/CRC/PDF/Public/8659.00.pdf.

2.	Protzel C, Maruschke M, Hakenberg OW. Epidemiology,  
aetiology, and pathogenesis of renal cell carcinoma. Eur Urol 
2012; 11: 52-59.

3.	Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor het-
erogeneity and branched evolution revealed by multiregion 
sequencing. N Engl J Med 2012; 366: 883-892. 

4.	Wojcik EJ, Buckley RS, Richard J, et al. Kinesin-5: cross- 
bridging mechanism to targeted clinical therapy. Gene 2013; 
531: 133-149.

5.	Imai T, Oue N, Nishioka M, et al. Overexpression of KIF11 in 
gastric cancer with intestinal mucin phenotype. Pathobiology 
2016; 84: 16-24. 

6.	Lu M, Zhu H, Wang X, et al. The prognostic role of Eg5 
expression in laryngeal squamous cell carcinoma. Pathology 
2016; 48: 214-218. 

7.	Sun XD, Shi XJ, Sun XO, et al. Dimethylenastron suppresses 
human pancreatic cancer cell migration and invasion in vitro 
via allosteric inhibition of mitotic kinesin Eg5. Acta Pharmacol 
Sin 2011; 32: 1543-1548. 

8.	Piao XM, Byun YJ, Jeong P, et al. Kinesin FAMILY MEMBER 
11 mRNA expression predicts prostate cancer aggressiveness. 
Clin Genitourin Cancer 2017; 15: 450-454. 

9.	Pei YY, Wang L, Li GC, et al. Kinesin family member 11 en-
hances the self-renewal ability of breast cancer cells by partic-
ipating in the Wnt/β-catenin pathway. J Breast Cancer 2019; 
22: 522-532. 

10.	Kidney Cancer Surgery | American Cancer Society.

11.	Jin Q, Dai Y, Wang Y, et al. High kinesin family member 11 
expression predicts poor prognosis in patients with clear cell 
renal cell carcinoma. J Clin Pathol 2019; 72. 

12.	Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med 
2005; 353: 2477-2490.

13.	Pohl SG, Brook N, Agostino M, et al. Wnt signaling in triple- 
negative breast cancer. Oncogenesis 2017; 6: e310.

14.	Shi B, Bao J, Liu Y, Shi J. Death receptor 6 promotes ovarian 
cancer cell migration through KIF11. FEBS Open Bio 2018; 
8: 1497-1507. 

15.	Venere M, Horbinski C, Crish JF, et al. The mitotic kinesin 
KIF11 is a  driver of invasion, proliferation, and self-renewal  
in glioblastoma. Sci Transl Med 2015; 7: 304ra143. 

16.	Ye XS, Fan L, Van Horn RD, et al. A  novel Eg5 inhibitor 
(LY2523355) causes mitotic arrest and apoptosis in cancer cells 
and shows potent antitumor activity in xenograft tumor models. 
Mol Cancer Ther 2015; 14: 2463-2472. 

17.	Zhou J, Chen WR, Yang LC, et al. KIF11 functions as an onco-
gene and is associated with poor outcomes from breast cancer. 
Cancer Res Treat 2019; 51: 1207-1221. 

18.	Taglieri L, Rubinacci G, Giuffrida A, et al. The kinesin Eg5 
inhibitor K858 induces apoptosis and reverses the malignant 
invasive phenotype in human glioblastoma cells. Invest New 
Drugs 2018; 36: 28-35. 

19.	Truebenbach I, Zhang W, Wang Y, et al. Co-delivery of pre-
tubulysin and siEG5 to EGFR overexpressing carcinoma cells. 
Int J Pharm 2019; 569: 118570. 

20.	Davis DA, Sarkar SH, Hussain M, et al. Increased therapeutic 
potential of an experimental anti-mitotic inhibitor SB715992 
by genistein in PC-3 human prostate cancer cell line. BMC 
Cancer 2006; 6. 

21.	Algarín EM, Hernández-García S, Garayoa M, Ocio EM. Fila-
nesib for the treatment of multiple myeloma. Expert Opin In-
vestig Drugs 2020; 29: 5-14. 

22.	Turajlic S, Xu H, Litchfield K, et al. Tracking cancer evolution 
reveals constrained routes to metastases: TRACERx renal. Cell 
2018; 73: 581-594.e12. 

23.	Kowalewski A, Zdrenka M, Grzanka D, Szylberg Ł. Targeting 
the deterministic evolutionary trajectories of clear cell renal cell 
carcinoma. Cancers (Basel) 2020; 12: 3300. 

24.	Turajlic S, Xu H, Litchfield K, et al. Deterministic evolution-
ary trajectories influence primary tumor growth: TRACERx 
renal. Cell 2018; 173: 595-610.e11. 

25.	Joosten SC, Smits KM, Aarts MJ, et al. Epigenetics in renal cell 
cancer: mechanisms and clinical applications. Nat Rev Urol 
2018; 15: 430-451.

26.	Pili R, Liu G, Chintala S, et al. Combination of the histone 
deacetylase inhibitor vorinostat with bevacizumab in patients 
with clear-cell renal cell carcinoma: a multicentre, single-arm 
phase I/II clinical trial. Br J Cancer 2017; 116: 874-883. 

27.	Zibelman M, Wong YN, Devarajan K, et al. Phase I study of 
the mTOR inhibitor ridaforolimus and the HDAC inhibitor 
vorinostat in advanced renal cell carcinoma and other solid tu-
mors. Invest New Drugs 2015; 33: 1040. 

28.	Dasari A, Gore L, Messersmith WA, et al. A phase I study of 
sorafenib and vorinostat in patients with advanced solid tu-
mors with expanded cohorts in renal cell carcinoma and non-
small cell lung cancer. Invest New Drugs 2013; 31:115-125. 

29.	Reu FJ, Soo IB, Cherkassky L, et al. Overcoming resistance 
to interferon-induced apoptosis of renal carcinoma and mela
noma cells by DNA demethylation. J Clin Oncol 2006; 24:  
3771-3779. 



87

Overexpression of kif11 is a poor prognostic factor in clear cell renal cell carcinoma 

30.	Garzon R, Marcucci G, Croce CM . Targeting microRNAs in 
cancer: rationale, strategies and challenges. Nat Rev Drug  
Discov 2010; 9: 775. 

31.	Jones PA, Issa JPJ, Baylin S. Targeting the cancer epigenome 
for therapy. Nat Rev Genet 2016; 17: 630-641. 

32. Expression of KIF11 in renal cancer – The Human Protein 
Atlas. Available from: https://www.proteinatlas.org/ENSG 
00000129250-KIF1C/pathology/renal+cancer.

33.	Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the hu-
man cancer transcriptome. Science 2017; 357: eaan2507. 

Address for correspondence

Adam Michał Kowalewski
Chair and Department of Clinical Pathomorphology
Collegium Medicum in Bydgoszcz
Nicolaus Copernicus University in Torun
Curie Skłodowskiej 9 St.
85-094 Bydgoszcz, Poland
Phone: 503 134 123
e-mail: kowalewskiresearch@gmail.com



15 
 

6. Overview of the publications included in the dissertation. 

 

6.1. Origination of the concept of targeted, anti-evolutionary cancer therapy. 

 

Cancer treatments that target specific cells or pathways often stop working because 

cancerous cells adapt and change. A new approach to treating cancer may involve 

disrupting the evolution of cancer cells, rather than just targeting individual cells or 

pathways. This could potentially put an end to cancer as a major health concern. 

Scientists have recently discovered different types of clear cell renal cell carcinoma 

(ccRCC) based on the way the cancer cells change and evolve. These types can be 

grouped into seven distinct evolutionary subtypes or four groups, and they are related 

to how the cancer behaves and responds to treatment [9, 10]. These groups are 

distinguished by four features - variations in chromosomal complexity, intratumor 

heterogeneity (ITH), model of tumor evolution, and metastatic potential. 

Group 1 consists of primary tumors with VHL alteration as the sole driver event. They 

evolve in a “linear” fashion and are characterized by low both weighted genome 

instability index (wGII) and ITH. This mode of evolution is associated with indolent 

growth and low metastatic potential. Group 2 includes tumors in which early PBRM1 

mutation and subsequent SETD2 mutation or PI3K pathway mutation or acquisition of 

SCNAs result in a “branched'' evolutionary pattern. These are heterogeneous 

neoplasms with oligometastatic potential and attenuated progression. Clonal 

acquisition of multiple driver mutations (VHL plus ≥2 BAP1, PBRM1, SETD2, or PTEN) 

or the parallel BAP1 mutation results in “punctuated” evolution. These tumors are 

characterized by high wGII but low ITH and belong to group 3. Punctuated evolution, 

driven mostly by high wGII, leads to rapid dissemination and is also observed among 

VHL wild-type tumors, which constitute the fourth group [10].  

I described a concept of exploiting the aforementioned trajectories for guiding 

intervention and surveillance. In our article "Targeting the Deterministic Evolutionary 

Trajectories of Clear Cell Renal Cell Carcinoma" published in the Cancers magazine [11], 
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I proposed seven anti-evolution strategies, and estimated their effectiveness against 

each evolutionary trajectory. The presented patient stratification is to help predict 

future steps of malignant progression, thereby informing optimal and personalized 

clinical decisions. This article sets a new direction for research into targeted anti-

evolutionary therapy. In this case, the targeted therapy is for a specific histological type 

of tumor evolving in a certain direction. 

 

6.2. Identification of potential molecular targets for targeted, anti-evolutionary 

cancer therapy against clear cell renal cell carcinoma. 

 

6.2.1 Introduction. 

As previously described, targeting individual components of pathways that drive 

cancer progression is unlikely to be effective. From the evolutionary perspective, 

however, it is a reasonable option once these components directly affect the genomic 

instability. Genomic instability of cancer cells drives genetic diversity required for the 

natural selection of adaptive traits, but there is a threshold beyond which cells cannot 

replicate successfully [12]. Hence, it is tempting to alter (increase or decrease) the 

frequency of mutations within the cancer genome.  

 

Modulation of genomic instability is one of the vital options to overcome the ccRCC’s 

evolution [11]. In particular, I recommended decreasing genomic instability before the 

loss of 9p or 14q, which represents the acquisition of metastatic competence. This 

approach is exceptionally attractive in Group 1, characterized by low wGII. In contrast, 

Groups 3 and 4, due to high wGII and a punctuated evolution pattern, are expected to 

respond to increasing genomic instability. Modulating genomic instability in Group 2 

could be unsuitable because of high wGII and branched mode of evolution. 
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Kidney cancer is characterized by a moderate level of genomic instability and the 

absence of mutations in canonical DNA damage response (DDR) genes, such as RAD9, 

BRCA1, or TP53 [13, 14]. As a result, kidney cancer patients are commonly 

unresponsive to DNA-damaging therapies, such as chemo- or radiotherapy. For that 

reason, reducing genetic instability could be a more suitable approach. It can be 

achieved, among others, by the regulation of the transforming growth factor β (TGF-

β) axis. TGF-β has been shown to inhibit DNA double-strand breaks (DSB) repair 

mechanisms to heighten the genetic diversity and adaptability of cancer cells [15]. In 

ccRCC cell cultures, TGF-β enhances proliferative capacity and promotes metastatic 

growth [16]. Early phase Ib clinical trial (NCT00356460) investigated the use of a 

monoclonal antibody against TGF-β fresolimumab in RCC patients and showed 

preliminary evidence of antitumor activity [17].  

 

On the contrary, particular ccRCC driver genes do influence DNA damage response 

(DDR) and there is preclinical evidence to support the poly(ADP)-ribose polymerase 

(PARP) inhibition in VHL- or BAP1-mutated ccRCC [12, 18, 19]. Moreover, cells 

harboring SETD2 mutation undergo synthetic lethal interaction with WEE1 blockade 

due to the depletion of nucleotide pools [20]. AZD1775, an experimental inhibitor of 

WEE1, is currently being evaluated for patients with SETD2-deficient tumors, including 

RCC (NCT03284385). 

Based on the available data and in silico analysis, I selected two proteins, TRIP13 and 

KIF11, which could become targets for this strategy in ccRCC.  

TRIP13 is a protein encoded by the TRIP13 gene. TRIP13 plays a significant role in 

various cell cycle phases, including meiosis, G2/Prophase, and during the mitotic 

spindle assembly checkpoint (SAC) activation. TRIP13 is required for the development 

of higher-order chromosome structures and contributes to synaptonemal complex 

formation. It also promotes early steps of the DNA double-strand breaks (DSBs) repair 

process [21].  
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Study on multiple myeloma cells revealed that overexpression of TRIP13 abrogates 

SAC. The underlying mechanism includes activation of the PI3K-Akt signaling pathway 

that induces proteasome-mediated degradation of MAD2, the key component of SAC 

[22]. Dysfunctional SAC contributes to chromosomal instability (CIN), aneuploidy, and 

eventually facilitates cancer progression [23-25]. Biallelic loss-of-function mutations in 

TRIP13 have been shown to predispose to Wilms tumor, a kidney cancer that primarily 

affects children [26]. The authors of this report indicate a substantial impairment of 

SAC, which eventually leads to a high rate of chromosome missegregation in these 

patients. This study supports the existence of a close relationship between TRIP13 and 

SAC, which when disturbed, increases cancer risk or drives its progression.  

In damaged cells, TRIP13 functions to favor non-homologous end joining (NHEJ) over 

homologous recombination (HR). Both are the major pathways for DNA DSBs repair. 

While HR results in accurate repair, NHEJ is an intrinsically error-prone pathway and 

may lead to CIN and eventually carcinogenesis [27].  

KIF11, as a motor protein encoded by the KIF11 gene, assists in spindle dynamics. 

Among its main  functions are chromosome positioning, centrosome separation, and 

establishing a bipolar spindle during mitosis [28, 29]. KIF11 has been shown to promote 

CIN and activate many molecular mechanisms involved in cancer progression, 

including Wnt/β-catenin, PI3K/AKT/mTOR, and MAPK/ERK pathways [30-33].  

Targeting KIF11 inhibits invasion, proliferation, and self-renewal in glioblastoma cell 

lines [34]. A similar effect was observed in breast cancer and prostate cancer cells [30, 

35-38]. Filanesib, a potent KIF11 inhibitor, has recently demonstrated clinical efficacy 

in patients with multiple myeloma [39].  

 

I explored the clinical association of TRIP13 and KIF11 with ccRCC histology and 

oncologic outcomes using the tissue microarray (TMA) ccRCC cohorts. 
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6.2.2. Materials and methods  

 

Tissue microarray 

Tissue microarray (TMA) slides were obtained from a commercial supplier (US Biomax, 

Rockville, MD; TMA catalog number HKid-CRC180Sur-01).  

The first TMA contained specimens from 92 and the second from 90 patients followed 

up for 7 years. Each slide contained samples from the tumor and matched normal 

adjacent tissue (1 core/case).  

Retrievable patient data included age, pathology diagnosis, TNM, grade, stage and 

overall survival. The quality of TMAs was additionally approved by our pathologist. The 

study followed the principles of the Declaration of Helsinki. The tissues were collected 

under the highest ethical standards and HIPPA approved protocols with the donor 

being informed completely and with their consent. Since the tissues were 

commercially purchased, the study has been exempted from requiring ethical 

approval. 

 

Immunohistochemistry 

The TMA slides were processed at the Department of Clinical Pathology. The primary 

rabbit polyclonal anti-TRIP13 (HPA005727; Sigma-Aldrich, Merck KGaA, Darmstadt, 

Germany) and anti-KIF11 (HPA010568; Sigma-Aldrich, Merck KGaA, Darmstadt, 

Germany) were applied to estimate the expression of TRIP13 and KIF11 proteins, 

respectively.  

The protocol has been standardized using a series of positive and negative control 

reactions. The positive control reaction was performed on a tissue model selected 

according to reference sources (The Human Protein Atlas: 

http://www.proteinatlas.org) and the antibody data-sheet. TRIP13- and KIF11-positive 

control reactions performed on pancreatic cancer tissue presented cytoplasmic and 

nuclear expression.  
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All negative control reactions were performed on additionally analyzed tissue sections 

by substituting the primary antibody with a solution of 1% BSA (bovine serum albumin) 

diluted in PBS (phosphate buffered saline). Immunohistochemical staining was 

performed using primary rabbit polyclonal antibodies (1:200) and visualization system 

EnVisionFlex+ Anti-Mouse/Rabbit HRP-Labeled Polymer (Dako, Agilent Technologies) 

on an Autostainer Link48 platform. Finally, tissue sections were dehydrated in ethanol 

of increasing concentration (from 80% to 98%), then cleared in a series of xylenes (from 

I to IV) and cover-slipped in a medium (Dako, Agilent Technologies, USA). 

 

IHC analysis and scoring 

Initially, two experienced pathologists blinded to the clinical data evaluated the 

immunostained slides using the light microscope ELIPSE E800 (Nikon Instruments 

Europe, Amsterdam, Netherlands) at 20× and 40× original objective magnification. IHC 

revealed cytoplasmic and nuclear proteins expression. 

The cytoplasmic staining intensity of cells and percentage of cells at each staining 

intensity level were determined for each fixed core in the TMA. Staining intensity was 

graded as 0 (negative), 1+ (weak), 2+ (moderate), and 3+ (strong). The H-score was 

assigned using the following formula: [1 × (% cells 1+) + 2 × (% cells 2+) + 3 × (% cells 

3+)], obtaining a value from 0 to 300. 

 

Statistical analysis 

All the statistical analyses were performed using Statistica version 10 (StatSoft) and 

Microsoft Excel 2019. The comparative studies were analyzed statistically using the 

nonparametric chi-square test. The p value < 0.05 was considered statistically 

significant. 
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6.2.3. Results 

TRIP13 expression 

IHC was performed on 87 pairs of ccRCC and corresponding normal tissues. Five cores 

of corresponding tissues were lost during the IHC staining procedure.  

Cytoplasmic TRIP13 staining was observed in 77 (88.51%) of 87 ccRCC tissues and the 

median expression was 100 (interquartile range 0-215). Among adjacent controls, 70 

(85.37%) of 82 cores were positive and the median expression was 115 (interquartile 

range 70-200). Cytoplasmic expressions of TRIP13 in ccRCC tissues were lower than 

those in adjacent controls (P < 0.05). I dichotomized the cytoplasmic expressions of 

TRIP13 to low expression and high expression using the tool Cutoff Finder. The cutoff 

has been set at 105 [40]. Mean TRIP13 expression in TRIP13-rich tumors was 

significantly higher comparing to adjacent normal tissues (P < 0.05). Similarly, adjacent 

normal tissues were characterized by elevated TRIP13 expression when compared to 

TRIP13-depleted tumors (P < 0.05). 

Univariate analysis revealed that patients with high cytoplasmic TRIP13 protein 

expression had significantly shorter overall survival (OS) comparing to those with low 

expression (P < 0.05, HR = 2.88 [1.35-6.15]). TRIP13 expression did not significantly 

correlate with stage nor tumor grade (P > 0.05). 

 

KIF11 expression 

The study included 88 pairs of ccRCC and corresponding non-cancerous tissue. During 

the IHC staining procedure, 5 cores of corresponding tissue and 2 cores of ccRCC were 

lost.  

64 of 88 ccRCC tissues (72.7%) presented KIF11 cytoplasmic expression with the 

median value of 20 (interquartile range 0–200). Among controls, cytoplasmic 

expression was identified in all cases, with a median value of 230 (interquartile range 

45–290). Cytoplasmic KIF11 expression in ccRCC tissues was lower compared to control 

tissues (p < 0.05). Cytoplasmic KIF11 expression positively correlated with tumor grade 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539765/table/tbl01/


22 
 

(p = 0.0013) and mortality (HR 2.17; 95% Cl: 0.99–4.73; p = 0.047). Cox Proportional 

Hazard was statistically significant only for T1 tumors. HR estimates of 0.19 (95% Cl: 

0.04–0.96; p = 0.045) for low KIF cytoplasmic expression and 0.42 (95% Cl: 0.15–1.16; 

p = 0.049) for high KIF cytoplasmic expression were calculated. KIF11 cytoplasmic 

expression did not correlate with tumor stage. 

 

6.2.4. Discussion 

High levels of two proteins, TRIP13 and KIF11, in the cells of patients with ccRCC are 

linked to worse survival outcomes. These proteins have the ability to cause serious 

changes to chromosomes, which suggests they may play a big role in the progression 

and spread of ccRCC. Therefore, targeting these proteins in addition to other 

treatments that aim to disrupt cancer evolution may be a promising approach for 

treating ccRCC.  

Evolution-targeted therapy in ccRCC is a novel concept that relies on patient 

stratification according to the deterministic evolutionary trajectory of the tumor [11].  

Currently there are 7 well described evolutionary trajectories in ccRCC according to the 

tumor’s genomic characteristics, evolution mode, and clinical course [10]. While the 

evolutionary trajectory could be used as a biomarker for guiding the intervention, 

modulation of TRIP13 or KIF11 expression could further curb ccRCC’s evolution.  

 

The cBioportal for Cancer Genomics, a database of genomic data, shows that TRIP13 

and KIF11 overexpression in ccRCC is mostly caused by changes to the epigenome, 

which can be reversed. These changes play a major role in the development of renal 

cancer. The remaining causes of overexpression include genetic amplifications and 

mutations [41]. Therefore, if we are able to target these epigenetic changes, it could 

lead to the reversal of the cancer. Researchers are currently looking into therapies that 

specifically target these changes. One promising approach is to use these therapies in 

combination with other treatments such as antiangiogenic or immune checkpoint 
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inhibitors, as this can help overcome resistance to using a single therapy alone [42, 43-

45].  

Epigenetic therapeutics are classified into agents that have a targeted effect, such as 

anti-miRNA oligonucleotides, and agents that have a more broad effect and lead to 

large-scale changes in gene expression, such as histone deacetylase inhibitors (HDACi) 

[41]. The principal problem with the first group of agents is their difficult delivery to 

cancer cells [46]. The second group of agents, however, can cause negative side effects 

because they turn on genes that are typically turned off. This can affect many 

processes in the body and may cause unintended consequences [47]. Therefore, it is 

currently difficult to target epigenetic changes in RCC in a safe and precise manner. As 

a result, it is yet to be determined if the use of epigenetics in RCC will be successful in 

a clinical setting. 

 

I analyzed data from the TCGA database to see if the levels of TRIP13 and KIF11 mRNA 

were related to the progression of ccRCC in patients. The data consisted of information 

from 528 patients diagnosed with ccRCC, with a median follow-up of 3.28 years [48]. 

Using the FPKM values for TRIP13 and KIF11, patients were divided into two groups 

based on the expression levels. The group with higher expression levels had worse 

survival outcomes, with 5-year survival rates of 39% and 44% for patients with high 

TRIP13 and KIF11 expression respectively, compared to 70% and 69% for those with 

low expression. These results support our findings that high expression of TRIP13 and 

KIF11 mRNA is linked to worse outcomes in ccRCC patients. Our study cohort 

comprised mainly low-grade and low-stage cases. Therefore, further research 

incorporating advanced, unresectable tumors is needed to translate our results toward 

a future potential clinical intervention.  
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6.2.5. Conclusions.  

I developed a concept of exploiting cancers’ evolutionary trajectories for guiding 

intervention and surveillance. This means that by understanding the way cancer cells 

evolve, we can better predict how the disease will progress and make more informed 

treatment decisions. 

I proposed seven anti-evolution strategies to disrupt the way in which ccRCC cells 

evolve in order to slow or stop the progression of the disease. Moreover, I estimated 

the effectiveness of these strategies against each evolutionary trajectory. 

Thus, I set a new direction for research into targeted anti-evolutionary therapy. By 

focusing on specific histological type of cancer and the direction in which they evolve, 

we can develop more personalized and effective treatments. This approach has the 

potential to improve outcomes for all cancer patients. 

I found out that individuals with high amounts of TRIP13 protein in their ccRCC cells 

tend to have worse prognosis in comparison to those with lower levels. 

Similarly, high levels of KIF11 in ccRCC cells have been correlated with poor clinical 

outcomes.  

Given that TRIP13 and KIF11 have been established as factors that contribute to CIN, 

the results of my research prompt a hypothesis that this mechanism may also play a 

role in the development of ccRCC. 

Our studies focused on patients with early-stage and less aggressive forms of ccRCC. 

More research is needed to confirm these findings in patients with more advanced, 

inoperable tumors in order to see if these results can be applied in a clinical setting. 

The presented results could potentially serve as a starting point for translational 

research, where the modulation of TRIP13 and KIF11 expressions would provide new 

therapeutic strategies for ccRCC. 
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