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Abbreviations:

DCP: di-calcium phosphate

G: Germany

HighP or HP: High phosphorus

K: potassium

L: Loden — Salix cultivar (SW 890129, S. dasyclados)
LowP or LP: Low phosphorus

Mg: magnesium

NoP or NP: No phosphorus

P: phosphorus

PCR: polymerase chain reaction

PSB: phosphorus solubilizing bacteria

PSF: phosphorus solubilizing fungi

PSM: phosphorus solubilizing microorganism
S: Sweden

SRC: Short rotation coppice

T: Tora— Salix cultivar (Svalof-Weibull (SW) cultivar no. 910007, S. schwerinii x S.

viminalis)

TCP: tri-calcium phosphate
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2. Abstract in Polish

Fosfor jest jednym z kluczowych pierwiastkow potrzebnych roslinie do prawidlowego
wzrostu i rozwoju. Zrédta P dostepne w przyrodzie sa wyczerpywalne. W warunkach
naturalnych P wymywany jest ze skat macierzystych i szybko tworzy trudno rozpuszczalne i
niedostepne dla roslin kompleksy. Nowoczesna gospodarka rolna oparta na nawozach
sztucznych nie jest wystarczajaco wydajna. Sytuacja ta wymusza opracowanie alternatywnych

technologii pozyskiwania fosforu, np. wspomagania mikrobiologicznego.

Mikroorganizmy ryzosferowe i endofityczne posiadaja zdolnosci promujace ro$lin. Jedng z
nich jest zdolno$¢ do mikrobiologicznej solubilizacji fosforu obecnego w glebie.
Mikroorganizmy solubilizujace fosfor posiadaja zdolno$¢ do uwalniania fosforu bedacego
czescig kompleksow z Al, Fe czy Ca, przeksztatcajac go w forme, ktora jest dostgpna dla roslin.
Selekcja mikroorganizméw posiadajacych zdolnos¢ do zwigkszania dostepnosci P w
srodowisku glebowym, zwlaszcza w polaczeniu z innymi wilasciwosciami stymulujagcymi
wzrost roslin, np. synteza IAA, sideroforow, jest niezwykle waznym kryterium doboru
mikroorganizmow, ktore mogg znalez¢ zastosowanie w uprawach roslin. Jest to szczeg6lnie
wazne zagadnienie w odniesieniu do popularnych w ostatnim czasie uprawach wieloletnich,
np. wierzb uprawianych w systemie zagajnikow szybkiej rotacji (SRC), w ktorych stosowanie

nawozow jest ograniczone.

Dlatego tez, celem pracy byla ocena zrdéznicowania oraz liczebnosci mikroorganizmow
ryzosferowych i endofitycznych solubilizujacych fosfor na dwoch stanowiskach SRC
(prowadzonych w monokulturach i uprawach mieszanych) i zbadanie ich wptywu na wzrost i

ekspresje genow dwoch gatunkow wierzby.

Badania zaprezentowane w pracy doktorskiej prowadzono w SRC na stanowisku w Uppsali
(Szwecja) i Rostoku (Niemcy), na ktorych uprawiano dwie odmiany wierzby - Loden i Tora.
Podczas realizacji doswiadczen wykorzystano klasyczne metody mikrobiologiczne
umozliwiajace izolacje 1 selekcje mikroorganizméw solubilizujacych fosfor (PSM) oraz
metody molekularne umozliwiajace identyfikacj¢ otrzymanych izolatow PSM (i) 1 oceng
zroznicowania mikrobiomu (ii). W pracy wykorzystano rowniez analize transkryptomu wierzb

poddanych inokulacji wyselekcjonowanymi PSM w warunkach niedoboru P w podtozu.

W efekcie przeprowadzonych badan wyselekcjonowano najbardziej efektywne bakterie

solubilizujace fosfor: Pantoea agglomerans (B1) oraz Paenibacillus sp. (B2) i zastosowano je
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w do$wiadczeniu donicowym w roznych warunkach dostgpnosci fosforu (NP, LP, HP). Analiza
mikrobiomu gleby ryzosferowej i endofitow korzeniowych wykazala, ze uprawy mieszane
wierzb promuja wzrost roznorodnosci bakterii 1 grzybow, w tym tych solubilizujacych fosfor,
a wyzsze zroznicowanie mikroorganizmow jest obserwowane w ryzosferze. Wykazano, ze
aktywno$¢ kwasnej fosfatazy na badanych stanowiskach SRC byla trzykrotnie wyzsza od
fosfatazy zasadowej, co korelowato z wptywem pH stanowisk. Wérdd najczesciej izolowanych
grzybow solubilizujgcych fosfor dominowaly szczepy Penicillium sp., a wérdod bakterii
Pseudomonas sp., Bacillus sp. i Erwinia sp. Badania mikrobiomu wykazaty silny wptyw
poziomu asocjacji z rosling (mikroorganizmy ryzosferowe vs. endofity) na zrdznicowanie
mikrobiomu wierzby. Na zroznicowanie grzybow istotnie wptywaly takie czynniki glebowe
jak: catkowity wegiel organiczny oraz pH, za§ w przypadku bakterii: dostepny fosfor oraz
catkowity azot. Inokulacja wierzb wyselekcjonowanymi bakteriami PSM przeprowadzona w
doswiadczeniu donicowym wykazata istotny wzrost parametréw wzrostu roslin w warunkach
HP, jednak zalezata od gatunku badanej wierzby (pedy gatunku Loden wykazatly istotny
przyrost biomasy, za§ Tora na dlugos$¢). Analiza transkryptomu lisci wierzb wykazata dla
gatunku Tora wzrost, a dla Loden obnizenie ekspresji genow. Inokulacja wierzb bakteriami
PSM znaczaco wplyneta na ekspresje genéw zwigzanych z fotosynteza oraz synteza skrobi
(szczegolnie dla gatunku Tora), w ktorych to procesach fosfor pelni bardzo istotng rolg. W
przypadku gatunku Loden obserwowano wzrost ekspresji genéw zwigzanych gtownie z

transportem jonow, regulacja transkrypcji oraz genami chromosomowymi.

Praca doktorska stanowi nowatorskie i kompleksowe podejscie do badan nad analizg i
selekcja mikroorganizmoéw PSM, stanowigc punkt wyjscia dla potencjalnego wykorzystania

mikroorganizmow PSM w celach komercyjnych.
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3. Abstract in English

Phosphorus (P) is one of the key elements needed by plants for proper growth and
development. The plant availability of P in soils can be growth limiting, partly even with high
total contents caused by rapid P fixation. Therefore, the P use efficiency should be promoted in
arable soils rather than the P supply. Microbial P mobilization can substantially contribute to

increasing the P use efficiency in soils.

Rhizosphere and endophytic microorganisms can have plant-promoting abilities. One of
these is P mobilization, which is an important criterion for the selection of microorganisms for
biofertilizers. This is a particularly important issue for perennial crops, such as willows (Salix

spp.) grown in short rotation coppice (SRC) for biomass production.

Therefore, the aim of this study was to assess the diversity and abundance of P-solubilizing
microorganisms in the rhizosphere and roots of Salix spp. in two SRC sites (grown in
monoculture and mixed cropping) and to test if growth design, Salix spp. and the P solubilizing

microbial strain inoculation can promote biomass production and P use efficiency.

The test sites of the present study are two SRCs in Uppsala (Sweden) and Rostock
(Germany). The Salix genotypes tested were the cultivars 'Loden’ (SW 890129, S. dasyclados)
and 'Tora' (Svalof-Weibull (SW) cultivar no. 910007, S. schwerinii x S. viminalis). Cultivation-
dependent microbiological methods were used to isolate and select P solubilizing
microorganisms (PSMs), and molecular methods were used to identify the PSM isolates
obtained (i) and assess the diversity of the microbiome (ii). This study also utilized
transcriptome analysis of willows inoculated with selected PSMs under P-deficient conditions

in the substrate to control the plant physiological response to microbial inoculation.

The present study resulted in the selection of the two most effective P solubilizing
bacterial strains (Pantoea agglomerans and Paenibacillus sp.). These strains were used for
inoculation of Salix spp. at three levels of P availability in a pot experiment. Furthermore, it
was revealed that mixed cropping of Salix spp. can increase bacterial and fungal diversity in
general, as well as the diversity of P-solubilizing microorganisms. Among the most frequently
isolated P solubilizing fungi, Penicillium spp. dominated, and among the P solubilizing
bacteria, Pseudomonas sp., Bacillus sp. and Erwinia sp. dominated. The microbial diversity
decreased significantly from the bulk soil to the rhizosphere and from the rhizosphere to root

endophytes. Fungal diversity was significantly controlled by the chemical soil properties total
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organic carbon content and pH, while bacterial diversity was significantly controlled by
bioavailable P concentration and total nitrogen content in the soil. Inoculation of willows with
PSM significantly increased plant growth under high P availability in the soil. However, this
effect differed and was Salix genotype specific. The cv. Loden significantly increased biomass
production, whereas cv. Tora significantly increased only the shoot lengths. Transcriptomics
revealed an overall upregulation of photosynthesis and starch formation genes in the Tora
species and a downregulation of ion transport, transcriptional regulation and chromosomal

genes in the Loden species after inoculation with PSM.

This dissertation represents a novel and comprehensive approach to research on the
selection and use of PSMs and on the promotion of PSMs by planting design, providing a
starting point for the potential commercial use of PSMs and their promotion from the soil pool

by site management.
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4. Introduction
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Figure 1 Diagram showing the most important findings and summary of the results from

4 publications that are a part of this dissertation.

Short-rotation coppices (SRCs) with fast-growing tree species are very popular in
Europe because of the range of economic and ecological benefits that are derived from their
cultivation. Trees grown in these coppices are primarily a source of biomass for energy
production, which contributes to reducing fossil fuel consumption and deforestation
(Berhongaray et al., 2017). SRCs have a positive impact on water management, protecting
groundwater resources, increasing water retention and improving water quality at the same time
(Dimitriou et al., 2021). Another important aspect of this type of SRC is its positive impact on
the biodiversity of the soil environment compared to current agricultural practices, which focus
on planting monocultures to obtain the highest possible biomass yield (Kahle et al. 2005). The
most commonly selected tree species for this type of crop are those with fast growth rates, low
nutrient requirements, tolerance to a wide range of pH values and adaptability to climatic
conditions (Caslin and Teagasc, 2010; Langeveld et al., 2012; Amichev et al. 2014). In Europe,
various willow (Salix) and poplar (Populus) species are most commonly used, as these are
naturally occurring species that are part of floodplain forests composed of softwoods (Tullus et

al., 2013; Pleguezuelo et al., 2015). Poplar is typical of western and central European
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floodplains, whereas willow is more tolerant of low temperatures and can grow further north

and in continental climates in eastern Europe (Hughes, 2003).

Willows are trees or shrubs comprising almost 350-500 species worldwide, meeting all
the previously mentioned criteria for selecting species for cultivation in SRCs (Dickmann and
Kuzovkina, 2014). They are additionally characterized by their ability to survive in conditions
of extreme pollution and are often used for phytoremediation of such sites (Ruttens et al., 2011;
Padoan et al., 2019). The productivity of willow coppice crops can be increased by establishing
them on fertile land or by applying organic fertilizers such as manure and digested sewage
sludge (Dimitriou et al., 2011). However, this involves the risk of leaching nitrates and
phosphates. Willows are able to reduce these risks by a high uptake of nutrients (Mirc et al.,
2005). The effective use of P is mainly based on its association with microorganisms in the

roots and rhizosphere (Richardson and Simpson, 2011).

To date, SRCs have mainly been planted in monocultures; however, mixed cropping
has become more common over the past 20 years because of ecological advantages revealed by
ongoing research activities (Hoeber et al., 2018; Rodl, 2019). The increased diversity of trees
in SRCs and their effects on growth and P mobilization in the soil and roots of willows in mixed
cropping systems have been studied in detail in this work. According to my research, mixed
cropping increases the diversity not only of P-solubilizing fungi and bacteria but also of the
total microbiome of the rhizosphere and roots of willows (Koczorski et al., 2021; Koczorski et
al., 2022). A reason for higher biodiversity in general and microbial diversity in mixed cropping

may be the increased competition between both plants and microorganisms (Weih et al., 2019).

P sources, unlike nitrogen, are nonrenewable and intensive agriculture is based largely
on mineral P fertilizers. For these reasons, global phosphate deposits decrease, and P recycling
and more effective P use in agriculture are urgently needed (Gilbert, 2009). The low use
efficiency of this type of fertilizer is a serious problem, as only a small portion of P will be
assimilated by the plant, and the remainder will often be fixed in the soil (Filippelli, 2008; Singh
and Satyanarayana, 2011). In addition to P fixation, P loss by leaching is problematic since it
can lead to eutrophication and eventually complete its cycle on the seabed where there is no

easy way to recover it (Khan et al., 2018).

Soils, especially if affected by roots, such as in the rhizosphere, host a large pool of
microorganisms capable of promoting plant growth and development. Some of them can also

penetrate plant roots and, as endophytes, provide the plant with essential metabolites (Hardoim
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et al., 2008). Thus, the contribution of P solubilizing microorganisms (PSMs) in facilitating
plant access to P supply is very important (Billah et al., 2019). There is a growing pool of
literature describing plant growth promotion by PSMs (Kalayu, 2019; Prabhu et al., 2019;
Divjot et al., 2021; Rawat et al., 2021). PSMs can be used as biofertilizers, which can help to
reduce the need for fertilizer application and the accumulation of toxic elements in arable soil
caused by geogenic cadmium and uranium contamination in mineral phosphates (Khan et al.,
2009; Alori et al., 2017). Among fungi, the most commonly described species capable of P
solubilization are Aspergillus spp., Penicillium spp., Trichoderma viride, Arthrobotrys
oligospora, Cephalosporium sp., and Cladosporium sp. (Khan et al., 2010; Patil et al., 2012;
Sharma et al., 2012; Ram et al., 2015; Li et al., 2016; Alori et al., 2017). The most commonly
described and used P solubilizing bacteria (PSB) are Pseudomonas sp., Bacillus sp. and
Streptomyces sp. (Wani et al., 2005; Chen et al., 2006; Ahemad and Khan, 2011; Kaur et al.,
2011, Grafe et al., 2018; Rathinasabapathi et al., 2018; Ahmad et al., 2019; Wang et al., 2020).
It is worth mentioning that new PSMs are still being identified and characterized, and the
publications that are part of this work have contributed to this expanding effort (Koczorski et
al., 2021; Koczorski et al., 2022). These publications describe lesser-known and sometimes
undescribed PSMs such as Talaromyces sp., Alternaria sp., and Juxiphoma sp. among the fungi
as well as Mitsuaria sp. Ralstonia sp. and Lelliottia sp. in the case of bacteria. Notably, the role
of the abovementioned microorganisms is not limited to phosphorus solubilization. Fungi of
the genera Asperigllus and Penicillium and bacteria of the genera Pseudomonas and Bacillus
possess a number of additional plant growth-promoting properties, such as the ability to
stimulate the synthesis of plant hormones, e.g., gibberellins (Khan et al., 2011; Preston et al.,
2004; Abdel-Motaal et al., 2020), which stimulates the plant defence system by changing
secondary metabolism (Hossain et al., 2007), etc.

In light of this research, it is important to gain a deeper understanding of the interaction
of bacteria and fungi with plants to develop effective biofertilizers containing P-solubilizing
microorganisms. To date, researchers have focused on studying the impact of P deficiency on
plants directly and to a much smaller extent on the interactive effects of plants and
microorganisms (Ren et al., 2018; Mo et al., 2019; Wang et al. 2019, Zhang et al. 2019; Sun et
al. 2016). As established, the typical response of a plant to P deficiency is to trigger the
transcription of genes involved in the synthesis of auxins, abscisic acid, jasmonic acid, salicylic
acid or ethylene (Sun et al. 2016). The plant inoculation process itself, in the case of fungi, can

affect the activity of genes related to auxin synthesis and responses to N or P deficiency
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(Ludwig-Miiller et al., 2015). Fungi can also stimulate the transcription of genes involved in
phosphatase synthesis or genes related to P transport in plant tissues (Ray et al., 2021). In
contrast, little is known about bacteria and their effects on the plant transcriptome regarding P
cycling, and the only studies on this topic that | was able to find were those by Soni et al. (2021).
By examining the transcriptome of a tobacco plant inoculated with the bacterium Paenibacillus
polymyxa, the authors found that, in addition to its plant growth-promoting properties, it also
activated a number of genes responsible for P transport (pstA, pstB, pstC, pstS, phnD or phnE).
The above information indicates that there is a gap in our current knowledge of plant-microbe
interactions under P deficiency stress. In my PhD thesis, | have investigated the effect of plant
inoculation with P-solubilizing bacteria under varying conditions of phosphorus availability by
combining two hitherto separately studied topics. This thesis therefore presents detailed and
novel results on the topic of PSMs, which are available as a described collection for subsequent

production of commercial bioinoculants.
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5. Aims of the study

The main aim of this study was to reveal site effects and management options for the

improved use of microbial P mobilization in biomass production with fast-growing tree species.
Obijectives:

1. Determine the influence of factors such as environmental conditions, planting design
(mono- vs. mixed cultures), and plant species on microbial diversity and activity in soils.
(Publication 1)

2. Assessment of the impact of soil properties, planting design and the level of plant
association effect on P solubilizing microorganisms to determine their role and contribution to

the background of the entire Salix microbiome. (P2, P3)

3. Examine the effect of microbial inoculation on the expression of genes involved in P

cycling in Salix under P deficiency. (P4)
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6. Research hypotheses

1. Planting design with mixed Salix species may increase soil nutrient availability (P, K,
Mg) and soil enzymatic P mobilization by phosphatases, thus preventing nutrient loss
in the initial cutting cycle by increasing plant diversity. (P1)

2. The level of plant association (direct: endophytes vs. indirect: rhizosphere contact with
plant tissue) may be the main factor determining the diversity of the P solubilizing
microbiome, with little or no effect of factors such as the planting design, site and
seasonal changes. (P2 and P3)

3. Microbial inoculation of Salix grown at different levels of P availability improves plant

growth by plant physiological changes in gene expression. (P4)
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7. Research methodology

Table 1. Summary of techniques us

ed during the research work

Technique Scope of research

Selection of P o
solubilizing soil

microorganisms

Performed on three selective media:
two containing tri-calcium phosphate
(NBRIP, PVK) and one with di-
phosphate (modified Pikovskaya).
Composition of all media used is
described in P 2.

Identification of o
microorganism
involved

in the soil P cycling

DNA isolation from bacteria was
performed using Bacterial & Yeast
Genomic DNA Purification Kit
(EurX, Poland)

DNA isolation from fungi was
performed using Plant & Fungi DNA
Purification Kit (EurX, Poland)
Isolated bacterial DNA was
amplified by PCR method using 27F
and 1492R primers (described in P-
3) while isolated fungal DNA was
amplified using ITS1 and ITS4
primers (described in P 2)

Gel electrophoresis was performed
on 2% agarose gel containing X and
SimplySafe stain (EurX, Poland) to
confirm presence of both DNA and
RNA in samples (described in P 2)

Biochemical and °

chemical soil analyses

Acid and alkaline phosphatase
activity (p-nitrophenyl colorimetric
method) was performed to assess

biocatalysis of P mobilization (P 1).
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Total organic carbon (TOC), total
nitrogen (TN), carbon to nitrogen
ration (C:N), bioavailable
phosphorus in soil and P uptake

Into the plant (Molybdenium blue for
soil samples and inductively coupled
plasma (ICP) for plant samples) and
soil pH was measured in P-2 to
provide more details on soil
properties present on both test sites.
P content in leaves and rhizosphere
soil was assessed using ICP method
combine with soil fractionation
method (P 4)

Total DNA isolation
and libraries
purification for

microbiome analysis

Samples were taken from
rhizosphere soil and roots of willows
from two test sites and two seasons.
Fungal ITS amplicon libraries (P 2)
were generated in two-step PCR, as
described by Thiem et al. (2018)
using fungal primers (ulTS1 and
ulTS2) then with M13 and M13R
primers with P5/P7 adapters and
barcodes (different MID sequences
for each sample). For bacteria (P 3)
different primers were used during
first stem of PCR, namely: u357f and
u786.

Libraries were purified twice with
Agencourt AMPure XP (Beckman
Coulter, USA) according to the
manufacturer’s protocol. The quality

of the pooled libraries was assessed
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on a Bioanalyzer chip (Agilent,
USA) and they were quantified with
KAPA Library Quantification Kit for
the lllumina Platform using
LightCycler 480 (Roche,
Switzerland) according to the

manufacturers’ protocols.

Total RNA isolation

and sequencing

RNA isolation using Chomczynski
method described in details in P 4
Sequencing of total RNA was done
using the Illumina platform (SBS)

Spectrophotometric

analyses

Performed to assess the quantity and
quality of isolated DNA or RNA
using a Nanodrop 2000 (Thermo
Fisher, USA)

Software used

Scope of research

P1

P2

P3 | P4

Statisctica 13.3.721
(Statsoft)

Used to perform all comparison
between variants. ANOVA and Two-
way ANOVA was used in
combination with Tukey’s or
Kruskal-Wallice post hoc test
depending on data normality (tested
with Shaphiro Wilk test). Equality of
variance was tested using Levene's

test.

Sequencher 5.4.6

Used to prepare contigs and correct
errors from forward and reverse

reads acquired from sequencing.

RStudio

Used to prepare figures with ggplot2,
tidyverse, forcats and plotly

packages.
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Additionally, a list of R packages
used in microbiome analysis is
presented in P 2.

Heatmap in P 4 was generated using

ggplot2 package

Inkscape 1.0 Software was used to refine and v |V
group figures prepared in R.
Transcriptome Mapping was done using hisat2 v

analysis performed by
Novogene company

software

Assembly was performed using
Stringtie software

Quantification was conducted using
featureCounts software

Differential analysis was performed
using DESeq2 and edgeR software
with following parameters:
[log2(FoldChange)| >= 1 & padj <=
0.05

Enrichment analysis was performed

using clusterProfiler software
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Abstract: Fast-growing willows (Salix spp.) provide alternative sources of renewable energy genera-
tion, but need an adequate nutrient availability in the soil for high biomass production. In general,
species mixtures can be more nutrient-efficient than pure cultures, but this is scarcely known for
Salix spp. Therefore, this study evaluates the nutrient availability and P mobilization under two
willow species, Salix dasyclados var. “‘Loden’ and S. schwerinii x viminalis var. “Tora’, grown as pure
and mixed cultures at non-fertilized former arable sites in Germany (Stagnic Cambisol) and Sweden
(Vertic Cambisol). The plant availability of potassium (K), magnesium (Mg) and phosphorus (P) and
soil phosphatase activities in the topsoil were measured in spring of the year of planting (initial) and
under 4 years-old stocks (one year after the first 3-year cutting cycle). The initial plant availability of
the nutrients significantly differed between the sites and the two sampling dates at both sites. The
plant availability of K and Mg was optimal to high at both sites and sampling dates, but rather low
for P (after 4 years <5mg P 100 g~! soil). The plant-available P and K content in soil significantly
decreased within the 4 years of willow growth at both sites. The acid and alkaline phosphatase
activity in the soil of the German site (Rostock) was significantly lower after 4 years of willow growth,
but differed not significantly between the two sampling dates at the Swedish site (Uppsala). Higher
activity of acid phosphatase compared to alkaline phosphatase was recorded in the soils at both test
sites based on the site-specific soil pH (<7). The slight decrease of plant availability of P after 4 years
of Salix growth in pure culture differed not significantly between the different species. Mixed growth
did not decrease the plant availability of P within this period, although no significant difference in
the biomass production of pure and mixed growth was observed. This was valid at both sites, and
therefore, seems independent of the site-specific differences in soil and climate conditions. The gen-
eral validity of the assumptions should be tested also for other species mixtures and soil conditions in
the future before site-adapted growth designs can be recommended in biomass production of Salix.

Keywords: short rotation coppice; phosphatase activity; nutrient content; growth stages; biomass;
willow; Salix

1. Introduction

Short rotation coppices (SRCs) with poplar (Populus) and willows (Salix) species can
be established on many types of land, including marginal lands that are unsuitable for
agriculture [1,2]. SRCs offer a promising contribution to fuel wood supply, providing
an alternative to fossil fuels and other nonrenewable resources [3]. The harvest from
SRCs are usually used as feedstock in combined heat and power plants for energy genera-
tion [4,5]. Moreover, SRC plantations have ecological benefits compared to annual crops.
They improve the soil water retention, enhance biodiversity in comparison to agricultural
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monocultures, improve water quality, protect ground water, prevent soil erosion and it is a
low-input agricultural practice, thus implying low greenhouse gas emissions due to limited
applications of chemicals [6-10] SRCs have been investigated intensively for the last 20
years (reviewed by Rodl [11]). SRC are managed using agricultural techniques, including
high-density plantings and a regular cutting every 2 to 6 years without replanting [12]. The
choice of tree species for SRC is generally confined to fast-growing tree species, such as
those from the genera Populus and Salix [13]. In Europe, poplar and willow (Populus and
Salix) belong to the natural vegetation of the softwood floodplain forest [14,15]. Poplar is
typical for Western and Central European floodplains, where willow is more tolerant to
low temperatures and can grow further north and in continental climates in the east of
Europe [16].

Willows are deciduous trees or shrubs and comprise 330-500 species around the
world [17]. They adapt in cool climates and high altitudes or on wet soils [18]. Willows
require sufficient moisture supply during site establishment, while in later plantation
stages, they can adapt to dry environments with heat and drought stress [17]. Studies
have proven that willows have high tolerance to marginal or contaminated soils [6,8,19].
Willow SRCs are gaining increasing interest, because of their efficient and sustainable land
use in combination with a growing demand for biofuel resources [20]. In Sweden, willow
coppices are often used for phytoremediation where wastewaters or sewage sludge is
applied to plantations in order to reduce pollutants or excess nutrients in the water [21].

Previous studies have reported that the productivity in SRCs is determined mainly
by the soil fertility [22], soil pH (usually 5-7.5, but willow and poplar are tolerant to pH
outside this range) [23], climatic conditions, nutrient and water availability [24], plant
species and plantation density [25]. The need for fertilizers in SRCs is small compared to
conventional agricultural crops [26]. SRC yields can be maximized by establishing them
at fertile soils or by applying organic fertilizers, such as slurry, digested sewage sludge,
manure from biogas plants [27]. However, most of these products contain high levels of
nitrogen and phosphorus (P), which is risky for the leaching of nitrate and phosphate.
Many studies have shown that willows and poplars have high evapotranspiration rates and
are able to uptake large amounts of nutrients present in waste, thus allowing significant
wastewater disposal over the growing season [28]. Furthermore, some microorganisms,
mainly bacteria, are capable of converting phosphates (through solubilization and min-
eralization processes), and in turn supplying P to plants [29]. Soil enzymes such as acid
phosphatases and alkaline phosphatases aid in enzymatically mineralizing P hydrolyt-
ically [29]. These enzymes improve the P supply to plants and strengthen the activity
of many beneficial microorganisms in the adjacent soil [29]. Additionally, studies have
shown that phosphatases are involved in plant growth promotion, activity against plant
pathogens, waste remediation and metal recovery [30-33].

The cultivation area of SRCs is expected to increase in many European countries,
such as Sweden [27], Germany [34], Ireland [35] and England [25]. As the land under
SRC cultivation increases, information on the potential impact of SRC on soil quality and
nutrient use efficiency is needed. Early decreases in the nutrient availability under Salix
purpurea (cv. Hotel) within the first cutting cycle were described from a Canadian site by
Ens et al. [36].

Thus far, pure cultures of one Salix species are the common praxis, but mixed growth
was tested during the last years [37]. Species mixtures can be more efficient in the nutrient
mobilization [38], since they combine e.g., different microbial communities in the rhizo-
sphere [39]. However, the impact of mixed growth on the nutrient availability was scarcely
tested for Salix spp. thus far. We hypothesize that species mixtures of Salix can have a
higher nutrient mobilization and soil nutrient availability than pure stands by their higher
microbial diversity, and thereby, activity in the rhizosphere.

Therefore, the main aims of this study were: (i) to evaluate the impact of growth of
Salix species/varieties in pure and mixed cultures on the nutrient availability in the soil at
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two test sites with different soil and climate conditions; and (ii) to analyze the effects of
mixed vs. pure growth on soil enzymatic P mobilization by phosphatases.

2. Material and Methods
2.1. Study Sites and Soil Sampling

The SRCs selected for this study are among two of the three experimental field sites
of the ECOLINK-Salix project. The goal of this project is to investigate the relationship
between genotype diversity, genotype identity, productivity and ecosystem function [37].
The two SRC sites are located in Uppsala in Central Sweden (59°49’ N 17°39" E) and Rostock
in Northern Germany (54°02' N 12°05’ E). These two field sites with different climatic
and soil conditions were selected to test whether the effects of Salix species and mixture
are common or limited to defined conditions only. The dominating soil type at the site in
Uppsala is a Vertic Cambisol and was previously arable farmland. The area of 4147 m? is
divided into 45 plots (92.16 m? in size). In 2014, 6480 trees of four different species/varieties
were planted on this site. The species/variety pool of the trial in Uppsala includes four
different Salix varieties partly belonging to different species [37], of which the pure and
mixed culture for two of them was selected for the present study: Salix dasyclados var.
‘Loden’ (acronym L) and S. schwerinii x viminalis var. “Tora’ (T), based on their significant
physiological differences [37]. The mean annual precipitation sum between March and
October of 2014 to 2016 was 374 mm and the mean annual temperature between March and
October of 2014 to 2016 was 11.0 °C in Uppsala. Samples from the trial in Uppsala were
collected in an early stage (initial plantation year, 2014) and late plantation stage (after the
first cutting cycle, 2018) of the plantation.

The site in Northern Germany near Rostock was previously used as arable farmland
and is established on a Stagnic Cambisol. The area of 829 m? is smaller than in Uppsala, due
to space and funding restrictions, which strongly compromised the trial size [37]. However,
the plot size remained the same as in Uppsala, resulting in nine plots in Rostock. As a
consequence of the smaller size of the trial area, the number of trees planted in 2014 was
reduced to 1296, comprising only two species/varieties of Salix [Tora (T) and Loden (L)]
instead of four [39,40]. The mean annual precipitation sum between March and October of
2014 to 2016 was lower in Rostock than Uppsala, with 281 mm, whereas the mean annual
temperature between March and October of 2014 to 2016 was higher at 13.3 °C. Samples
from the trial in Rostock were collected in an early stage (initial plantation year, 2014) and
late plantation stage (after the first cutting cycle, 2018) of the plantation.

2.2. Planting Design and Sample Collection

In preparation for the experiment, both sites were treated with Roundup (glyphosate,
4L ha™") in order to kill any existing weeds in the trial areas, which were subsequently
cultivated with a rotavator prior to planting [37]. The planting of the 18 cm long stem
cuttings was carried out manually [37]. All the cuttings were obtained from the same stock
and were soaked in water for two days before being planted in such a way that the tips of
the cuttings were flush with the surface [37]. In the beginning, the trial sites were weeded
by hand; later, the weeds were controlled by mowing between the rows of plants when
necessary [37]. No additional nutrient fertilizers were applied [37].

The planting set up on both the sites was a randomized block design with three
replicates (blocks). The blocks in Uppsala have 15 plots each (i.e., four species/varieties
and three replicates), whereas the blocks in Rostock consist of three plots [40]. The four
(Uppsala) or two (Rostock) species/varieties of Salix were planted in every possible combi-
nation. Thus, some plots were planted with only one variety (e.g., L or T) pure cultures,
some with mixtures of two varieties (e.g., LT) and, in Uppsala, even plots with three or
four varieties were planted [37].

The patterns in which the cuttings were planted differed according to the number of
species/varieties in the plots: if there were two species/varieties, they were planted in a
checker board pattern; if there were three or four species/varieties, their planting positions
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were randomized, although with the single restriction that no two individuals of the same
species /variety should be planted directly next to each other in one row [37]. Twelve rows
of twelve plants were fit into the 9.6 m x 9.6 m plots with every other row being set off [37].
This led to a hexagonal planting pattern with 0.8 m between every plant.

The selected two Salix species/varieties display contrasting characteristics (Weih and
Nordh, 2002). For example, S. schwerinii x viminalis var. ‘Tora’ (T) is generally high-
performing but less stress resistant, while S. dasyclados var. ‘Loden’ (L) is sturdier and more
stress-tolerant.

Soil samples were taken with a soil corer (3 cm diameter) down to 10 cm soil depth
with five replicates per plot in spring 2014 and 2018. The early plantation stage was defined
as the year of establishment of the short rotation coppice (initial, 2014). The late plantation
stage was defined as the year after the first cutting cycle (after four years of growth, 2018).

This soil depth was selected, since the highest fine root density of Salix spp. was
revealed in this range [41], and therefore, the highest soil ecological impacts were assumed
at this depth. For the soil chemical analyses, soil was sieved <2 mm. Soil phosphatases
were measured in fresh wet soil. All other soil chemical properties were measured in
air-dried soil.

2.3. Biochemical Analyses of Soil

The activity of acid and alkaline phosphatases in the soil were determined colorimetri-
cally according to [42]. The enzyme activities were expressed as g p nitrophenol (pNP) g~!
soil h™! released from the pre-given substrate solution (p-nitrophenyl-phosphate) within
one hour of incubation in modified universal buffer with pH 6.5 (for acid phosphatases)
and pH 11 (for alkaline phosphatases) in April 2014 and April 2018.

2.4. Chemical Analyses of Soil

The total carbon (TC) and total nitrogen (TN) concentrations of soil samples were
determined by dry combustion using a VARIO EL analyzer (Vario EL Fa. Foss Heraeus,
Hanau, Germany). The concentration of SOC was valued by deducting the separately
determined inorganic C (dissolution with HCI and volumetric CO;-determination) from
the concentration of TC.

The soil pH was measured in a 0.01 M CaCl, solution using a soil:solution ratio of w/v
1/2.5. Double lactate-extractable P (Pg;), Mg (Mgq) and K (Kg;) were considered to be the
plant-available P fractions (e.g., [43]) and were determined by extracting P, Mg and K from
12 g soil with 150 mL lactate solution (C¢H19CaOg * HyO + 10 N HCI) according to [44].
Concentrations of P, Mg and K were determined with inductively coupled plasma-optical
emission spectroscopy (ICP-OES, Optima 8300, Perkin Elmer, Waltham, MA, USA) at
wavelengths of 214.914 nm, 285.213 nm and 766.490 nm, respectively.

2.5. Biomass Measurements

During the late winter of 2016/2017, i.e., three growing seasons after planting, here
representing the “late plantation stage”, all individual shoots within a central measurement
area of 8.0 m x 3.2 m of each plot were cut at 0.1 m above ground and weighed in fresh
condition (fresh weight). A stratified sample of 30 shoots per species/variety was done
among the plants situated outside the central measurement area of all pure culture plots
to determine the relationships between fresh and dry weights of shoots separately for
all species/varieties. The dry weights (biomasses) of the stratified sample shoots were
determined after oven-drying at 70 °C for 96 h, and the species/variety specific regressions
between the fresh and dry weights of the stratified samples were used to estimate the
biomasses of all individual shoots sampled within the central measurement area of all
plots [37].
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2.6. Statistical Analyses

The effect of the site, the growth design and their interactions on the soil properties
were analyzed by two-way ANOVA using the software PAST [45]. Statistical analysis was
performed using the Statistica software package (version 13.0, StatSoft, Tulsa). Principal
Component Analysis (PCA) was performed using R package. The samples used in the
PCA were attributes (mean values) measured in two test sites (Rostock and Uppsala), two
plantation stages (early and late) and three species identity and culture conditions (‘Loden’
pure culture, “Tora” pure culture and a mixture of ‘Loden’ and ‘Tora’). The attributes
analyzed in the present study were: alkaline phosphatase activity, acidic phosphatase
activity, willow biomass and plant-available K, Mg and P content in the soil.

3. Results
3.1. Plant-Available Nutrient Contents (K, Mg and P) in the Soil

The initial plant-available concentrations of K and Mg in the soil differed significantly
between the two test sites and between the early and late plantation stage per test site
(Table 1). The plant-available concentration of P was low and at the same level at both test
sites (Figure 1). The plant-available concentrations of P and K in soil significantly decreased
with the progressing willow growth (initial vs. 4 years of growth) at the test site Rostock
(Figure 1 and Table 1).

Table 1. Nutrient contents (K, Mg and P) in mg/100 g soil in in sampling sites (a) Rostock and (b) Uppsala initally and
after 4 years for each species identity and cultivation condition (Loden, Tora and their mixture). The biomass of the willow
species was measured after harvest (kg dry matter per plot).

(a) Rostock
Species Initial After 4 Years Blomass {First
Harvest)
kg dr
K(mg/100g) Mg (mg/100g) P (mg/100 g) K(mg/100g) Mg (mg/100g) P (mg/100g) ma(ttgr/p}Iot)
Loden [L] 134+6.1 252495 68+164 10+£22 204 +38 44+0018 16.14 + 4.94
Tora [T] 32941074 275+59 58+094 107 =38 220+£03 4+01B 30.71 £ 11.94
Loden, Tora [LT] 235+ 143 214+94 52419 102 £36 211443 44411 19.57 £5.21
(b) Uppsala
" son Biomass (First
Species Initial After 4 Years Harvest)
kg d
K(mg/100g) Mg (mg/100g) P (mg/100 g) K(mg/100g) Mg (mg/100g) P (mg/100g) ma(tt;oyr/;}](ot)
Loden [L] 176 +33 259 +1.68 51+034 22+2* 321+ 1.84A% 43+028 1119 + 5.14
Tora [T] 16.6 +£2 277 £33 45+ 0.6 199 4+3.6* 288 +33* 3.6+04 13.67 + 2.89
Loden, Tora [LT] 17.8 + 4.1 30.8+12.3 6.0+24 23.6 +4.6* 279+69 50+18 13.76 + 4.74

Soil properties were compared by site, growth stages (early and late plantation stage) and species (plots: L—Loden, T—Tora and LT—
mixture). Values are means = SDs (n = 3). The significant differences with p < 0.05 are marked by the following symbols: *—differences
between sites, small letters—differences between species within one site, capital letters—differences between growth stages within one site.

Conversely, the amount of plant-available Mg in Uppsala soils increased from early to
late plantation stages mainly under Loden (Figure 1). The plant-available concentration
of K at the test site Uppsala was significantly higher than at the test site Rostock (see
Tables 1 and 2). Likewise, the plant-available concentration of Mg in soil was higher in
pure culture (Loden and Tora) in Uppsala in comparison to Rostock after 4 years of growth.
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Figure 1. Nutrient levels increase/decrease between the years 2014 and 2018 in the soil at the two
sites (Rostock and Uppsala). Small letters represent significant differences between the Salix species
or the growth design on the same sampling site and capital letters represent the significant difference
between sampling sites.

Table 2. Results of the two-way analysis of variance (ANOVA) on the effect of site, the growth design
(with different host plant diversity; pure vs. mixture) and their interactions (site x growth design)
on soil properties under Salix in spring 2014 (initial) and spring 2018 (after 4 years of growth).

Piiahretar Site Initial 4 Years Growth Design Initial Site x Growth Design

4 Years Initial 4 Years

Plant-available P p 0.304 0.950 0.603 0.249 0.335 0.590
content F 115 0.004 0.53 1.56 1.20 0.335
Plant-available Mg~ p 0.092 <0.001 0.612 0.747 0.101 0.495
content B 3.36 20.48 051 0.29 279 0.74
Plant-available K p 0.020 <0.001 0.053 0.702 0.039 0.536
content F 7.15 606.01 3.79 3.94 428 7.13
Alkaline P 0.378 <0.001 0.928 0.065 0.344 0.184
phosphatase activity ~ F 0.84 95.30 0.07 345 117 1.95
Acid phosphatase ~ p 0.200 <0.001 0.016 0.513 0.147 0.297
activity F 1.84 198.20 592 0.71 226 1.34

3.2. Acid and Alkaline Phosphatase Activity in the Soil

The site and the growth design affected the activities of acid and alkaline phosphatases
significantly (Table 2). The alkaline phosphatase activity in the soil Rostock was signifi-
cantly higher at the early plantation stages, and a significance between species (mainly in
Loden) was observed (Figure 2). In the late plantation stage, the soils showed very low
activity, specifically in the soil under Loden and under the mixture. Initially, under Loden,
significantly higher alkaline phosphatase activity in the soil was revealed at the test site
Rostock (Figure 2), while after 4 years under Tora and Loden, significantly higher activities
were measured than under the mixture at the test site Uppsala.
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The activity of acid phosphatases significantly increased in the early plantation stages
of willow species than in the late plantation stages in Rostock (Figure 2). The highest
activity in soil was observed in plots with the mixed culture plots (LT) in comparison to the
plots with monocultures Tora and Loden. No significant differences were observed among
the monocultures and mixed culture plots in the early nor in the late plantation stages
in Uppsala. Only plots with Loden displayed a statistical significance, with the highest
activity in the late plantation stage. Overall, the acid phosphatase activity was the lowest
at the late plantation stages of species in Rostock. On average, the activity in the early
plantation stage was approximately 320 pg p-nitrophenol g’l DM h 1, whereas in the late
plantation stage, it lowered to an average of approximately 130 pg p-nitrophenol g~! DM
h~L. A significantly high phosphatase activity was seen in the late plantation stages of
willow species in Uppsala. Similarly, this activity was the lowest in Rostock.

Overall, a significantly higher acid phosphatase production was recorded at both the
investigated sites compared to alkaline phosphatase production (Figure 2).

B Acid and alkaline phosphatase activity "
= c b
S 500 - B
Z ab 8
Y =5 ab
TS 400 ab
§ bc 1 '}
& b
£ 300 a
<
o
A
2 ” A 8 B
z b a a a .
X a a
b | |o L , ’
z ) ] : : j j j @l
% a e a
E-
3 0 A - . - 8. = - = - I A
o
= L T LT 3 T LT L T LT (4 T LT
|
Initial Afterd years Initial Afterd years
Rostock Uppsala

D - acid phosphatase activity in Rostock D - alkaline phosphatase activity in Rostock
D - acid phosphatase activity in Uppsala D - alkaline phosphatase activity in Uppsala

Figure 2. The alkaline phosphatase and acid phosphatase activity [pg p-nitrophenol g~! DM h~!] in soils obtained from
Rostock and Uppsala. The data present comparisons between two sites, Rostock (on the left site) and Uppsala (on the right),
between growth stages (initial and after 4 years) and species (plots: L—Loden, T—Tora and LT—mixture). Values are means
+ SDs (n = 3). The significant differences with p < 0.05 are marked by the following symbols: small letters—differences
between species within one site, capital letters—differences between initial and after four years. DM—dry matter.

Regardless of the tested parameters, approximately 55% of the total variance was
explained by the first two components in the PCA analysis (Figure 3). The PCA analysis
revealed that the samples were differentiated mainly based on the test sites, i.e., Rostock
and Uppsala. A positive tendency towards the increase in willow biomass production was
observed for Rostock samples with higher acid and alkaline phosphatase activity.
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Figure 3. Grouping of samples and corresponding variable component loadings according to the Principal Component
Analysis (PCA). Samples are attributes (mean values of the attributes indicated by arrows) measured in two test sites
(Rostock—R and Uppsala—U), two plantation stages (initial (early) and after 4 years (late)) and three species identity and
culture conditions (L—Loden pure culture, T—Tora pure culture and LT—mixture of Loden and Tora). Attributes were
soil phosphatase activity (Alkaline and Acid), willow biomass and soil nutrient content (K, Mg and P in early and late
plantation stages). PC1 explained 37.6% of total variance; PC2 explained 18.8% of total variance.

4. Discussion

Short rotation coppices (SRCs) generate crops used in renewable energy generation in
Europe. The success of SRC establishment can be assessed by studying the adaptability
of crops by monitoring their growth, climate and site conditions. Factors such as climate,
soil nutrient availability, plant species and growth design may significantly influence plant
nutrient cycling and overall biomass production. This study investigated the Ecolink
SALIX SRC plantations located in Germany (Rostock) and Sweden (Uppsala). Both test
sites were maintained in a similar way and planted with same two Salix species and
their mixture. We analyzed the effect of the growth design on the plant availability and
hydrolytic mobilization of P at the year of planting and after 4 years of growth, including
the first harvest. The test cultivars Loden and Tora were selected for our experiment
because they are both phenotypically and genotypically very distinct Salix species. Loden
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is rather slow-growing but more stress-tolerant, while Tora is generally high-performing
and less stress-tolerant [37].

The initial concentrations of plant-available nutrients (Mg, K and P) at both test sites
in the present study were high compared to the recommended level for arable crops [44]
for Mg and K, but below the recommended level (10-18 mg P/100 g soil) for an optimal P
supply. The plant-available concentration of Mg in the soils of Rostock and Uppsala was
even higher than the recommended value of >19, i.e., to 32 mg/100 g soil for an optimal
plant supply [44]. Moreover, the soil of the test site Rostock displayed high initial levels of
plant-available K concentrations (see Table 1).

Overall, the biomass production at the test site Rostock was higher than at the test
site Uppsala; however, no significant differences were observed between species and pure
vs. mixed culture plots [37]. The biomass production was not correlated with the plant-
availability of one of the tested nutrients (Mg, K, P); however, a correlation between the
phosphatase activities and the biomass production was indicated (see Figure 3).

In agreement with Ens et al. [36], we measured significantly decreased plant-available
P concentrations in the soil under the pure stands after the first cutting period, and a
significant site effect on the P cycling (phosphatase activities, see Table 2) was observed.
However, significant differences were observed for soil nutrient concentrations (mainly P
and K) between the initial stage early and after four years of growth at both test sites (see
Table 1). The acid and alkaline phosphatase activities decreased strongly from the initial
level to the 4-year growth stage, which might be caused by the former grassland vegetation
with a higher fine root density [46].

A general effect of the species and the growth design on the phosphatase activity
under Salix is in agreement with the results of the mycorrhizosphere observation by Baum
etal. [47]. However, only two Salix species were investigated in the present study due to the
limitation of available plant variants at the test site Rostock in Germany (only Loden and
Tora were present). Increased number of plant species and a higher amount of diversity
in the mixtures (three or more species) might have increased the validity of the present
information. Furthermore, a joint impact of the P and N supply might be assumed [36] and
was not investigated in the present study.

The initial nutrient surplus at the arable test sites in Sweden and Germany agrees
with results of former investigations of SRC [48] and underlines no need for fertilization
in the first cutting period at such sites. This is because formerly arable farmland was
usually regularly fertilized, which often results in high nutrient contents [49]. The nutrient
concentrations in the soil changed significantly within the first four years (see Table 1).
The cultivar Loden, which was included in the present study, is frequently reported with
great potential in nutrient acquisition from soil, especially nitrogen and increased biomass
production when paired with other Salix species [40]. The analysis of the P content in
soil of both the sampling sites showed a significant decrease from early plantation to
late plantation stage, which might suggest that Loden is efficient in P uptake. Since both
experimental sites were not fertilized after willows were planted, most of the P present is in
organic or low soluble form, which is not easily accessible to plants. P depletion in Uppsala
and Rostock was also paired with a significant increase and decrease of acid phosphatase
activity, respectively (see Figures 1 and 2). This inconsistency might suggest that acid
phosphatase activity is not strongly connected with P supply in soil, but may be connected
with other factors. Study performed by Criquet et al. [50] revealed that increased leaf litter
moisture is positively correlated with acid phosphatase activity. Additionally, experiments
performed in three forest ecosystems in China showed that increased precipitation during
the dry season had a positive effect on enzyme activity [51]. The cultivar Tora showed
slightly fewer prominent differences from the initial nutrient availability to the level after
the first cutting cycle; only in Rostock site it differed in both P and Mg between these two
sampling dates. Although P depletion was not as severe as for Loden, the plant-available
Mg content decreased by almost two-fold compared to the initial content.
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Of note, differences were observed in willow biomass production at the two test
sites, which may be due to the varying nutrient concentrations in soils. Most of the plant-
available nutrient concentrations (Mg and P) were decreased in the soil within the first
cutting period, although the level of K varied at both the test site and growth stages. The
PCA analysis revealed that biomass was positively correlated with P and K during the
early plantation stage and negatively with late plantation stage concentration of P and
K (Figure 3). The correlation was prominent, although we observed K depletion in one
experimental site and an increase in the other site. Willows are known to efficiently uptake
organic P when paired with ectomycorrhizal fungi [52]. This suggests that the presence
of these two compounds during early plantation stages is key to reaching higher biomass
production efficiency in later plantation stages. Additionally, the K content was in direct
correlation with alkaline and acid phosphatase activity in the early and late plantation
stages, respectively, thus indicating that changes in phosphatase activity are not bound
to soil P concentration but to other, more complex sets of factors. High correlation of
plant-available K with phosphatase activity is probably connected with its important
role as a co-factor of many enzymes. Tabaldi et al. [53] investigated the effect of various
metals on Cucumis sativus L., e.g., Zn, K and Na. As a result, they observed increased acid
phosphatase activity in higher presence of K ions.

Acid phosphatase activity was about three-fold higher than alkaline phosphatase.
According to measurements performed in our previous study, pH on both sampling site
is around 6 (measurements done at 2018 and 2019) [39], which promotes the activity of
acid phosphatases. pH in which acid phosphatase is active is between 4.5-6, whereas for
alkaline, this is 8-11 [54]. Additionally, the pH value in SRCs is known to drop slowly
with time, which further promotes the activity of acid over alkaline phosphatase [55].
Another very important factor in acid phosphatase activity is the presence of arbuscular
and ectomycorrhizal fungi. Baum et al. [47] pointed out the impact of both mycorrhiza
types on various factors, including acid phosphatase activity. Loden was mostly colonized
by ectomycorrhizal fungi and showed higher acid phosphatase activity in pure cultures,
while Tora was colonized by arbuscular mycorrhizal fungi with slightly lower activity.
Additionally, they reported that mixed growth of Salix possessed higher phosphatase
activity than monocultures [47]. The abovementioned factors contribute to increased P
mobilization and were in agreement with the insignificant decrease of the plant-available P
concentrations in the soil under mixed growth of Salix species within the first cutting cycle
in the present study.

5. Conclusions

The site impacts are the main controls of the changes in the concentrations of plant-
available nutrients under Salix. The changes of the plant availability of P within one
cutting cycle are generally low, independently of the site and growth design. Mixed
growth of Salix species promotes the activity of alkaline phosphatases in P-deficient soil
conditions. The impact of the growth design on the nutrient cycling differs significantly
and site-specifically in the direction and amplitude. The future challenge will be to select a
site-specific optimized growth design.
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Phosphorus (P) is an essential plant nutrient. Low availability of P in soil is mainly caused
by high content of FeoO3 in the clay fraction that binds to P making it unavailable.
Beneficial microbes, such as P solubilizing microorganisms can increase the available P
in soil and improve plant growth and productivity. In this study, we evaluated the effects
of environmental conditions (climate, soil parameters), plant genotype, and level of plant
association (rhizosphere or endophytic root organism) on the abundance and diversity of
phosphorus solubilizing microorganisms in a Salix production system. We hypothesized
that a lower number of endophytic fungi may possess the ability to solubilize P compared
to the number of rhizosphere fungi with the same ability. We also expect that the plant
genotype and the experimental site with its environmental conditions will influence fungal
diversity. Two Salix genotypes grown in pure and mixed cultures were investigated for
their fungal microbiome community and diversity in the rhizosphere and endosphere
during two growing seasons. We found that the rhizosphere fungal community was more
diverse. A general dominance of Ascomycota (Dothideomycetes) and Basidiomycota
(Tremellomycetes) was observed. The classes Agaricomycetes and Pezizomycetes
were more frequent in the endosphere, while Tremellomycetes and Mortierellomycetes
were more abundant in the rhizosphere. Plot-specific soil properties (pH, total organic
carbon, and nitrogen) significantly influenced the fungal community structure. Among the
culturable fungal diversities, 10 strains of phosphate solubilizing fungi (PSFs) from roots
and 12 strains from rhizosphere soil were identified using selective media supplemented
with di-calcium and tri-calcium phosphates. The fungal density and the number of
PSF were much higher in the rhizosphere than in the endosphere. Penicillium was the
dominant genus of PSF isolated from both sites; other less frequent genera of PSFs
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were Alternaria, Cladosporium, and Clonostachys. Overall the main factors controlling
the fungal communities (endophytic vs. rhizosphere fungi) were the soil properties and
level of plant association, while no significant influence of growing season was observed.
Differences between Salix genotypes were observed for culturable fungal diversity, while
in metagenomic data analysis, only the class Dothideomycetes showed a significant
effect from the plant genotype.

Keywords: diversity, fungal endophytes, phosphate solubilization, rhizosphere fungi, short rotation cropping,

willow

INTRODUCTION

Phosphorus (P) is an essential plant nutrient provided by a
non-renewable resource (Filippelli, 2008; Shen et al, 2011).
Fluoroapatite is the main and non-renevable resource from
which fertilizers are produced (Filippelli, 2008). Moreover, P
compounds released during weathering are usually complex and
are not immediately bio-available (Filippelli, 2008; Singh
and Satyanarayana, 2011). Plants and microorganisms
release extracellular phosphatases from roots and recover
orthophosphate ions from mineralizing phosphor-organic
compounds (Richardson and Simpson, 2011). Furthermore,
P solubilization is a microbial-driven process of hydrolysis of
organic and inorganic P compounds to simpler compounds that
can be utilized by plants (Richardson and Simpson, 2011).

Phosphorus solubilizing microorganisms can increase the
availability of P for plants from the soil P pool, reducing the
need for P fertilization. More P solubilizing bacteria have been
reported than P solubilizing fungi (PSFs), but the latter are
more effective, as PSFs do not lose the ability to solubilize
P after subculture (Zhang et al., 2011). There are reports of
various PSF species, such as Aspergillus spp., Penicillium spp.,
Trichoderma viride, Arthrobotrys oligospora, Cephalosporium sp.,
or Cladosporium sp. (Khan et al., 2010; Patil et al., 2012; Sharma
et al.,, 2012; Ram et al.,, 2015; Li et al., 2016; Alori et al.,, 2017).
In certain cases, these fungi may form symbioses with plants,
develop mycelial networks, produce plant growth-promoting
metabolites, and increase plant P and nitrogen uptake from
the soil, e.g., by increasing root surface area (Baum et al,
2009). Chatli et al. (2008) isolated PSFs belonging to the genera
Aspergillus and Penicillium from the rhizosphere of willow (Salix
alba L.) growing in the trans-Himalayan region. Few experiments
have demonstrated that PSFs isolated from other host plants
could be used to increase yields of tomato, maize, and wheat
(Khan and Khan, 2002; Reyes et al., 2002; Sharma et al.,, 2012;
Ram et al., 2015).

The European Union directive (April 2009) on the promotion
of the use of energy from renewable sources (Directive
2009/28/EC) states that 20% of the total energy in Europe
should be generated from renewable sources'. Generally modern
agriculture is focused mostly on reaching high yields by the use of
best-performing plant species grown in pure culture. Such pure
cultures are often easier in maintenance than mixed cultures,
but pure cultures have been shown to be more vulnerable

! https://ec.europa.eu/eurostat/web/energy/data/shares

to pests and diseases in many cases. Thus, the introduction
of mixed genotypes plantations could limit the losses due to
pests and diseases while significantly enhancing biodiversity
(Hoeber et al., 2018; Schweier et al., 2019). This may improve
the sustainability of biomass production on SRCs but our
knowledge in this area is still limited. Additionally selection
of tree species for SRC is critical and depends on the local
climate and soil conditions. SRCs are generally confined to
fast growing tree species, mainly from the genera Populus,
Salix, Eucalyptus, and Robinia (Navarro et al., 2016). Salix
species are fast growing trees that possess high economic value
because of their high potential to contribute to renewable
energy generation in Europe (Sevel et al., 2012; Weih et al,,
2021). This woody crop can be planted on soils that are
less suitable for farming of food crops and can be fertilized
with sewage sludge, wastewater, or ashes which contain high
amounts of nitrogen and phosphorus (Dimitriou and Aronsson,
2011). Many species of Salix can control P uptake and
metabolism, although the corresponding mechanisms are still
largely unknown (Rennenberg and Herschbach, 2013).
Rhizosphere and endophytic fungi play important roles in
plant growth and development. Their ecology and function is
different and depends on various parameters (Hrynkiewicz and
Baum, 2012). The level of plant association may be affected
by soil properties, climate, weather conditions, and host plant
genotype. Likewise, understanding how the willow plantations
in the form of monoculture and mixed genotypes could affect
the overall microbial diversity is key information. This study
bridges the gap by providing knowledge on the rhizosphere
and endophytic fungal diversity in willow SRCs. Hence, the
main aim of this research was to investigate the diversity of
rhizosphere and endophytic fungi from two willow species,
S. dasyclados (cultivar “Loden”) and S. schwerinii x S. viminalis
(“Tora”), as well as their mixture at two sites located in
Germany and Sweden. The two species selected for the study
are phenotypically different, and “Tora” is known for its high
productivity compared to “Loden” (Hoeber et al., 2017). The
mixture of two host species may result in increased diversity of
fungi compared to growing the same species in pure culture.
The two investigated experimental sites represent ECOLINK-
Salix within a global tree diversity network (Verheyen et al,
2016). The two selected sites are similar in terms of planting
time, design, and management (e.g., fertilization, timing of
shoot harvests) but vary by local climate and soil conditions.
This might provide more information about importance of
climate and soil nutrient content on willow microbiome. We
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evaluated the effect of climate, soil conditions, level of plant
association, and planting design on the abundance and diversity
of PSFs by applying culture-dependent and culture-independent
(metagenomic) methods. Using culture-dependent techniques is
critical as it allows application of this study for future research
in using these strains as inoculants in plants. Moreover, culture-
independent methods give more insight into the culturable and
unculturable fungal diversity present in the two experimental
sites. In addition, to assess the potential impact of PSFs on the
P supply of Salix in fall, we tested the P solubilization efficiency
of fungal isolates. We hypothesized that a lower number of
endophytic fungi may possess the ability to solubilize P compared
to the number of rhizosphere fungi with the same ability.
Second, the site-specific climate and soil conditions and the Salix
species genotypes may determine the abundance and diversity of
total fungi and PSFs.

MATERIALS AND METHODS

Site Description and Sampling
The two experimental sites have been well-established SRCs since
spring 2014 (Hoeber et al., 2018). The first experimental site is
located in Uppsala, Sweden (59°49'13.4"N, 17°38'25.2"E), and
the second is located in Rostock, Germany (54°03'41.0"N,
12°04'54.7"E). Both sites are former arable fields. The
experimental site in Uppsala is located on fine-textured
mineral soils, mainly Vertic Cambisols (according to IUSS
Working Group WRB, 2015). The experimental site Rostock is
dominated by Stagnic Cambisols developed from loamy sands.

The study sites vary by local climate and soil conditions.
According to the Koppen-Geiger classification, the climate in
Uppsala is boreal (Dfb: snow, fully humid with warm summers;
Kottek et al., 2006). The average annual rainfall is 551 mm, and
the average annual air temperature is 5.8°C (1970-2000; http:
/Iwww.worldclim.org/current). Winters are usually not as cold
as in other cities at similar latitudes due to the influence of the
Gulf Stream. Rostock is situated on the Baltic coast in a warm
temperate climate (Cfb: fully humid with warm summers). The
average air temperature of Rostock is higher than that of Uppsala
(8.4°C), but the rainfall sum is similar (600 mm).

The meteorological data obtained from https://www.
worldweatheronline.com/showed similar trends in the 2018-
2019 period for both studied localities. In general, these years
were warmer than average (2009-2019). However, lower than
average monthly temperatures were recorded in February
(Rostock and Uppsala) and March (Rostock) 2018. The
interannual variability in the monthly distribution of rainfall was
high. The 2018 year was significantly drier and the 2019 year was
much wetter than average (2009-2019; Supplementary Table 1
and Supplementary Figure 1). Two Salix genotypes, “Loden”
(S. dasyclados) [L] and “Tora” (S. schwerinii x S. viminalis) [T],
were cultivated as pure cultures and mixtures [LT] at the two
sites. The L genotype is characterized by shorter shoots and a
larger leaf area than the T genotype (Hoeber et al., 2018).

Willow roots and soils were sampled from
two experimental sites during two seasons: Fall

the
2018

Fungal Microbiome of Willow Genotypes

(Sweden — October 23rd, Germany - October 27th) and
spring 2019 (Sweden — May 15th, Germany — May 18th). Both
experimental sites were organized into three blocks, and the
density of plants was 15,600 ha™!. Blocks were divided into plots
randomly planted with different Salix genotypes (Figure 1) and
their mixtures in all possible combinations. Treatments L, T, and
LT were selected for investigation since they were present at both
experimental sites (Figure 1). There were three replicates per
treatment (nine plots per experimental site, in total), and each
plot was 9.6 m x 9.6 m.

Three samples per plot (81 from Sweden and 81 from
Germany per season, 324 in total) were taken by digging root
samples with adhering soil (15 cm x 15 cm x 15 c¢m) at a
distance of 6 m from each other for microbiological analysis. The
organic litter layer (up to 5 cm thick) was removed and topsoil
(0-25 cm) was sampled. Samples were carefully transferred to
collection bags and covered with a thin layer of soil to prevent
drying. Collected samples were immediately transported to the
laboratory and used for analyses.

Soil Physicochemical Analysis

Air-dried soil samples were passed through a 2 mm sieve. The
total organic carbon (TOC) and total nitrogen (TN) contents
were measured after dry combustion using a CHNS Vario
Macro Cube elemental analyzer. Available phosphorus (P.y)
in 1% citric acid (van Reeuwijk, 2002) was determined by a
spectrophotometric method using spectrophotometer UV-Vis
Rayleigh UV-1601 (van Reeuwijk, 2002), and the pH (in H,O
and 1M KClI) at 1:2.5 soil to solution ratio was determined by
the potentiometric method using an Elmetron CP-105 pH-meter.
Table 1 shows differences in soil parameters on both sampling
sites and two growing seasons.

Total Cultivable Fungal Density
Samples from fall 2018 were processed for cultivable fungal
density and phosphate solubilizationability. The willow roots
were carefully separated from the adhering rhizosphere soil. One
and a half grams of roots were surface sterilized with 60% alcohol
(3 min) by vigorous shaking and then washed three times in
sterile 2% NaCl solution. The roots were washed in sterile 5%
H,0, solution (10 min) and rinsed three times in sterile 2%
NaCl solution. The last wash of 2% NaCl was plated on R2A
medium (BD Difco, United States; sterilization control). The
surface sterilized roots (1 g) were homogenized using a sterile
mortar and pestle under sterile conditions and then transferred
to Falcon tubes containing 9 ml of sterile 0.5% NaCl solution. For
the rhizosphere soil samples (from uppermost mineral part of soil
affected by the plant roots), 1 g was transferred to Falcon tubes
with 9 ml of sterile distilled water, and dilutions were performed.
For the total fungal density, potato dextrose agar (PDA)
medium (BD Difco, United States) supplemented with
tetracycline at 100 mg/l was used. Serial dilutions of 1072
and 1073 of the root samples and 1072 and 10~* of the
rhizosphere soil were selected for spread plating. Plates were
kept at 24°C, and the total number of fungal colonies on PDA
medium was counted after day 7 and presented as colony
forming units (c.f.u).
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9.6 m x 9.6 m) in three blocks with genotype monocultures and mixtures.

B
Blockl 9.6 m 34 39 40 45
ET
Block 2 32 | 35 | 38 | 4l Block 1
44
Block 3 31 36 | 39 | 42
1551
18 (19 25 | 30
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3 15
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FIGURE 1 | (A) The randomized block design of the ECOLINK-Salix field trial in Germany (Rostock) consisting of 9 plots (each 9.6 m x 9.6 m} in three blocks with
genotype monocultures and mixtures. (B) The randomized block design of the ECOLINK-Salix field trial in Sweden (Uppsala) consisting of 45 plots (each

Screening PSFs From Roots and
Rhizosphere Soil

The isolation and selection of PSFs were performed on three
selective media (NBRIP, PVK; Nautiyal, 1999, and DCP; modified
Pikovskaya, 1948; Supplementary Table 2) containing either tri-
(NVRIP, PVK) or diphosphates (DCP). In total, 108 plates per
medium were used to evaluate P solubilizing and non-PSF.

The serial dilutions from the roots and the rhizosphere soil
(100 pl each) were spread plated on the three selective media.
For NBRIP and PVK media, 107°-10~° dilutions were used for
both types of samples. For DCP medium, 10~3-10~* dilutions
were used for the roots, and 10~4-10° dilutions were used
for the rhizosphere soil samples. Three technical replicates were
prepared for each sample. Plates were kept at 24°C for 7 days and
observed for fungal halos indicated phosphorous solubilization.
Calculations were performed to determine the number of PSF
and the total number of fungi growing on each of the three media.

All PSF isolates unique to each plot were subjected to molecular
identification. The fungal density was determined by the logjo
[c.fu. (g f.w. soil) ™! or (g f.w. roots) ~!] values for both the total
fungal count and those screened with selective media.

Molecular Identification of Fungal Strains

Twenty-two selected fungal isolates (12 from Germany and
10 from Sweden) were cultivated on fresh PDA medium (BD
Difco, United States). Fungal DNA was isolated from fresh
mycelium using the Plant and Fungi DNA Purification Kit
(Eurx, Poland). The concentration of DNA was measured
using a UV-Vis spectrophotometer (Thermo Scientific
NanoDrop2000, United States). The ITS region was amplified
using ITS1 (5-CTTGGTCATTTAGAGGAAGTAA-3) and ITS4
(5-TCCTCCGCTTATTGATATGC-3) primers (Martin and
Rygiewicz, 2005; Manter and Vivanco, 2007). PCR clean-up
was carried out using a PCR/DNA Clean-Up Purification Kit
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TABLE 1 | Characteristics of rhizosphere soils.

Site Season Genotype TOC (%) TN (%) C:N Pav (mg-kg™") pH(H20) pH(KCI)
Sweden Fall (i} 1.69 + 0.24* 0.16 +0.02* 10.3 + 0.5b 101 £ 12.2b 57 +£0.2b 53+0.1
T 1.69 £ 0.21* 0.16 £ 0.01* 102 +0.7 94.2 + 13.6* 5.7+ 0.1b 52+02

LT 1.65+0.2" 0.16 +0.02" 10.4 +£ 0.6 105 + 28.1b" 67+01 51+04

Spring L 1.89 + 0.29" 0.17 +£0.02" 11.1 £ 0.5Aa 75.7 + 20.1Ba" 6.0 + 0.2Ba 52+0.2

B 1.72 £ 0.22% 0.17 +£0.02" 10.2 + 0.6B 93.6 + 14.7A° 6.2 + 0.2Ba 52+0.1

LT 1.63 +£0.18 0.16 £ 0.02* 10.3 £ 0.5B 63.1 + 19.8Ba 5.7+ 0.2A 52+0.1

Germany Fall L 1.21 £0.17 0.11 £0.02 11.3+£0.7* 101 £ 22.0Aa 6.0+ 04" 5.8+ 04"
ik 1.13+0.13b 0.1 £0.01b 11.3+0.7" 57.0+7.3B 6.1 +03" 6.0+ 0.3"

LT 1.22 £ 0.21b 0.1 £0.01b 11.7+£1.0* 55.0 + 12.3B 6.0 + 0.3b" 5.7+ 04"

Spring L 1.24+02 0.11 £ 0.01 11.3+ 0.9 50.5 + 9.5b 6.2 +0.3" 6.1 +0.3*

T 1.4+ 0.24a 0.11 £0.01a 125+1.3" 548+ 11.3 6.3+0.2" 6.2+ 0.2*

LT 149+ 0.19a 0.12 £ 0.01a 12.4 £ 0.8* 573+ 11.2 6.2 + 0.2a" 6.1 + 0.3*

At each sampling site (Sweden and Germany), three plots per three blocks for each variant of the experiment (Loden, Tora, and mixture of both genotypes) were sampled.
In total, 108 root and soil samples from both samplings were collected. Soil properties were compared by site, season, and genotype (plots: L-Loden, T-Tora, and
LT-mixture). Values are means + SDs (n = 9). The significant differences with p < 0.05 are marked by the following symbols: * - differences between sites in the same

season, small letters — differences between seasons within one site, and capital letters

(EurX, Poland). The presence of ITS sequences was confirmed
on a 1% agarose gel (1X TBE buffer) with the addition of Simply
Safe dye (EurX, Poland). Samples were sent for sequencing
to the Institute of Biochemistry and Biophysics PAS®. Contigs
were assembled using Sequencher 5.4.6 software and compared
with the NCBI database using BLASTn’ to find sequences
that showed the highest similarity to the assembled contigs.
The DNA sequence generated for this study were deposited in
the NCBI GenBank under the following accession numbers:
MW342736-MW342757 (as shown in Supplementary Table 3).
The phylogenetic tree was constructed using the NJ method
in MEGA 7, and 1,000 bootstrap replicates were used to assess
branching support (Tamura et al., 2013; Kumar et al., 2016). The
p-distance method was calculated (Saitou and Nei, 1987). The
phylogenetic tree was visualized using Interactive Tree of Life
(iTOL) v3 (Letunic and Bork, 2016).

Metagenomic Analysis

Total DNA was extracted from 50 mg of lyophilized willow
roots and rhizosphere soil samples using Plant and Fungi
DNA Purification Kit (EURx, Poland) according to the
manufacturer’s protocol. Three biological replicates were
prepared for each plot. The amount of isolated DNA was
quantified fluorometrically (InvitrogeneQubit 2.0, United States)
and the quality was assessed spectrophotometrically (Thermo
Scientific NanoDrop 2000, United States) and the preparations
were diluted to 1 ng/pl.

Fungal ITS amplicon libraries were generated in two-step
PCR, as described by Thiem et al. (2018) using fungal primers
(uITS1 and ulTS2) then with M13 and M13R primers with
P5/P7 adapters and barcodes (different MID sequences for each
sample). Libraries were purified twice with Agencourt AMPure
XP (Beckman Coulter) according to the manufacturer’s protocol.
The quality of the pooled libraries was assessed on a Bioanalyzer

Zhttp://oligo.ibb.waw.pl/
3www.nebinlm.nih.gov/BLAST

— differences between genotypes on the same site and season.

chip (Agilent) and they were quantified with KAPA Library
Quantification Kit for Illumina Platform using LightCycler 480
(Roche) according to the manufacturers’ protocols. The final pool
was diluted to 4 nM, denaturated, mixed with 5% of PhiX control
library and sequenced with the use of 2 x 300 cycles kit v.3 on a
MiSeq machine (Illumina).

The resulting read pairs were denoised with dada2 (Callahan
et al., 2016) and the fungal sequences were processed with ITSx
(Bengtsson-Palme et al., 2013), and all fungal ITS1 sequences
were used in the downstream analyzes. The reads were de-
replicated and OTUs were constructed using vsearch (Rognes
et al, 2016) at 0.03 dissimilarity level, then singletons as well
as doubletons (OTUs consisting of one or two sequences only)
were removed. The sequences were classified with naive Bayesian
classifier (minimum 80% bootstrap support was required; Wang
et al,, 2003) using ITS1 extracted from UNITE v.7 (fungi), and
the non-fungal sequences were removed. The final data were sub-
sampled to 300 (fungi) sequences per sample 20 times, sequences
names were mangled to reflect the iteration, the sets were pooled,
de-replicated, and OTUs were constructed as described earlier.
OTU tables were then averaged over the 20 subsamples and the
entries were rounded to the nearest integer with a Perl script to
yield the final tables.

Data Analysis

Statistical analysis for screening of PSFs was performed using the
Statistica software package (version 13.0, StatSoft) based on three
replicates for each sample variant. For total density of culturable
strains (Figure 2) and PSF screening (Figure 3) nine replicates
(three samples from each of three plots) for each genotype present
on site were used. Normality was tested using Shapiro-Wilk
test and homogeneity of variance using Levene’s test. Samples
that were outside of two standard deviations range from mean
were removed. The one-way analysis of variance (ANOVA) was
used to determine whether there are any statistically significant
differences between the means of total fungi count for each
genotype on PDA and selective media and PSF count for
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FIGURE 2 | Total fungal count (endophytes and rhizosphere) from two experimental sites (Sweden and Germany) in fall 2018. The upper panels (blue bars) indicate
the total fungal counts for Swedish samples; the lower panels (red bars) indicate the total fungal counts for Germany samples.
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genotypes for each experimental site. Upper case letters represent
significant differences for PSF count for genotypes for each
experimental site (Figures 2, 3).

For metagenomic data analysis, Bray-Curtis distance matrices
based on Wisconsin double-standardized OTU tables were
calculated with vegdist in R. Non-metric multidimensional
scaling (NMDS) and canonical correspondence analysis (CCA)
analyzes were performed within R with vegan’s metaMDS and
cca functions. In case of CCA, forward selection procedure
implemented in ordistep was used for stepwise model building.
Significance of differences between sample clusters was assessed
with ANOSIM and PERMANOVA in vegan’s anosim and
adonis functions, respectively. P-values < 0.05 was considered
significant. Variance partitioning was performed with the varpart
function. Significance of differences in means (number of
observed OTUs, Shannon’s H', Shannon’s E, taxa, and functional
groups distribution) was assessed with ANOVA with post hoc
Tukey’s HSD analysis, unless assumptions of normality of data
and/or homogeneity of variance were violated, in which case
robust ANOVA implemented in raov of the Rfit package was
used to check for general p-value. All figures were plotted with
standard R graphic functions.

RESULTS

Soil Properties and Climatic Conditions

at the Two Experimental Sites

As shown in Table 1, in Uppsala the rhizosphere soil parameters
TOC, TN, C:N was higher while Py, pH(H,0), pH(KCI) was
lower. ANOVA analysis revealed that the soil properties differed
significantly between the experimental sites (Table 1). Soil
samples from Sweden had higher contents of TOC, TN, and P,
while soil samples from Germany were characterized by higher
C:N ratios and pH values. Soil parameters at both experimental
sites differed slightly in spring. Significant differences between
genotypes were observed for the TOC (T and LT in Germany),
pH (all plots in Sweden) and P,y content, which were higher in
fall (L and LT plots in Sweden and L plots in Germany; Table 1).

Identification of Dominant PSFs and
Total Fungal Density in Willow Genotypes
and Mixtures

The overall density of cultivable fungi ranged from 3.38 to 4.94
log10 [measured as colony-forming units: c.f.u. (g d.w. roots)™!]
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FIGURE 3 | Total non-P solubilizing and P solubilizing fungi count (endophytes and rhizosphere) from two experimental sites (Sweden and Germany) in fall 2018. The
upper panels (blue bars) indicate the total fungal counts from selective media for Swedish samples; the lower panels (red bars) indicate the total fungal counts from
selective media for Germany samples. The yellow bars indicate the number of phosphate solubilizing fungi found among the non-P solubilizing fungi.

P solubilizing rhizosphere fungi (DCP)

10

e
s 8
E
£ b b a
o 6
=
s A A
o0
= 4
2 B
O
s 2 I I
E I

0

Loden Tora T+L

P solubilizing rhizosphere fungi (DCP)

10

a a a
4
2 A A A
I I
é I

Tora T+L

logyy [CFU (1g of fresh wight)?]

Loden

for endophytes from both experimental sites. In the rhizosphere
soil, the total fungal count ranged from 4.71 to 7.72 logl0
[efu. (g dw. soil)™']. Significant differences among the
analyzed willow genotypes were observed for endophytic fungal
density (Figure 2), but this was not observed for rhizosphere
fungi. The endophytic fungal density was lower than that of
rhizosphere fungi. The difference in fungal density between
the endophytes and rhizosphere soil was significantly greater
in Swedish samples than German ones. Generally, the highest
fungal density was recorded in LT samples from Sweden and T
samples from Germany.

The medium supplemented with triphosphate (PVK) showed
nofungal growth, and therefore, it was excluded from the analysis.
The total number of culturable endophytic fungi ranged from
0.80 to 4.57 log10 c.fu g~ ', among which PSF ranged from 0.12
to 1.86 logl0 c.fu. g~! but showed no significant differences
with the exception of Loden (only in Sweden). The endophytic
fungal density was lower than that of rhizosphere fungi, ranging
from 3.38 to 4.94 logl0 c.fu. g~!, whereas rhizosphere fungi
ranged from 4.75 to 7.72 logl0 c.fu. g=!. The LT genotype
showed the highest non-PSF density at both experimental

sites (Figure 3). The endophytic fungal density was lowest for
the Tora genotype at both experimental sites. The phosphate
solubilizing ability of fungi from the Swedish site (found mostly
in rhizosphere soil) was higher than that in fungi from the
German site.

In total, 22 fungal strains were isolated from roots (10
strains) and rhizosphere soil (12 strains; Figure 4). Clonostachys
and Penicillium were the dominant genera at the German
site (30% for each), while at the Swedish site, Penicillium
alone was the dominant genus (70%; Figure 4). Most of
the strains found at the German site were isolated from the
rhizosphere soil of T, in contrast to the Swedish site, where
the majority was endophytic isolates from the L genotype.
Penicillium was the only fungal genus occurring at both sites.
The German site showed higher diversity in the rhizosphere,
with five different fungal genera (Penicillium, Clonostachys,
Alternaria, Gibellulopsis, and Cladosporium). For the Swedish
site, the highest diversity was obtained for endophytes of the L
genotype with three different species (Penicillium, Talaromyces,
and Juxtiphoma). In total, 54% of the identified strains were
isolated from T, 31% from L, and 13% from LT samples.
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FIGURE 4 | Phylogenetic analysis of culturable fungi isolated from three willow genotypes classified at the genus level. For details of isolates with their GenBank
accession numbers, see Supplementary Table 3. Reference sequences with closest BLAST match were used (strains without symbols) to construct the
phylogenetic tree. The 22 fungal strains with PSF activity are marked with their respective symbols (see legend on the left).

The endophytes comprised 54% of the total number of
identified fungi.

Experimental Site and Level of Plant
Association Shaped the Community
Structure in Willow SRCs
The alpha diversity of the fungal community was not influenced
by genotype but by site or the level of fungi association with
the plant (rhizosphere vs. endosphere; Figure 5). Diversity (H'),
species richness (observed OTU number) and evenness (E) were
higher in the rhizosphere than in the endosphere. Endophytic
communities at the German site were more diverse and even
harbored more OTUs than those at the Swedish site; however,
there were no differences between seasons. At the Swedish site,
alpha diversity was higher in spring than in fall. There were no
differences between variants in rhizospheric communities.

The alpha diversity analysis did not show significant
differences between genotypes. Overall, Shannon’s diversity (H'),
Shannon’s evenness, and observed OTUs revealed significant

Frontiers in Plant Science | www.frontiersin.org

differences between the endophytes and rhizosphere fungal
diversity regardless of the experimental site and seasons. The
endophytic diversity at the two experimental sites in Germany
and Sweden was significantly different from that of the
rhizosphere fungi. A significant effect of seasonality was observed
only for endophytes from Sweden (Figure 5). The number
of observed OTUs for rhizosphere fungal diversity showed a
greater tendency than that of the endophytes, and this difference
was prominent between the experimental sites in Germany and
Sweden during the fall.

The NMDS analysis revealed that the fungal communities
clustered according to the experimental sites, but this was not
observed for seasons and genotypes (Figure 6). The grouping
was significant for roots (PERMANOVA, F = 0.5050, df = 1,
and P = 0.0001) and for soil (PERMANOVA, F = 0.1830,
df = 1, and P = 0.0001). The differences in variance were not
significant for roots (PERMDISP, P = 0.579) or soil (PERMDISP,
P =0.2911). The distance between the fungal communities in the
two experimental sites was significantly larger for the rhizosphere
soil than for roots.
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FIGURE 5 | Fungal species richness, diversity, and evenness across two experimental sites, rhizosphere soil and roots. OTUs constructed at 0.03 dissimilarity for
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Rhizosphere

The CCA showed that the fungal communities were
significantly different between the two experimental sites only
(Figures 6B,D). In the rhizosphere soil, total organic C and
total N were the two environmental variables shaping fungal
diversity at the Swedish experimental site (Figure 6). TN
explained 7.5% of variance whereas TOC explained 2.4%. In
contrast, the fungal communities in the roots of the German
experimental site were mostly influenced by pH(H,O), whereas
at the Swedish experimental site, the most influential factor
was TN (Figure 6). TN explained 2.5% of the variance, while
pH(H,0) explained 1.5%.

In conjunction with the culturable fungal diversity, the
fungal libraries from the rhizosphere soil and endophytic
community showed significant dominance of the phylum
Ascomycota, followed by Basidiomycota and Mortierellomycota
(Supplementary Figure 2).

At the class level, the fungal community was dominated by
Dothideomycetes and Leotiomycetes, with significant differences
seen for both endophytes and rhizosphere soil fungi. The
above two classes were significantly different based on both the
experimental sites and seasons as well (Figure 7). Agaricomycetes
and Pezizomycetes showed high abundance and were exclusive
to endophytes only. All classes except Agaricomycetes displayed
significant differences between the two seasons. The rhizosphere
soil fungal community was dominated by Tremellomycetes and
Mortierellomycetes; the former showed significance among the
two sites and seasons, while the latter showed only seasonal

effects. Dothideomycetes was the only class exhibiting differences
among genotypes.

At the family level, Piskurozymaceae showed greater fungal
diversity among the rhizospheric fungi than the endophytes
(Figure 7). Helotiaceae and Phaeosphaeriaceae were dominant
and significantly represented in the Swedish site. Tuberaceae and
Herpotrichiellaceae reads were found mostly in German samples,
but the former did not show seasonal changes. Among the fungal
endophytic communities, the effect of season was not observed
for Tuberaceae and Thelephoraceae. In the rhizosphere fungal
community, both sites were dominated by Piskurozymaceae and
Mortierellaceae, mainly at the Swedish site. At the German
site, the family Plectosphaerellaceae displayed a significant
seasonal effect.

The endophytes Paraphoma and Exophiala were the most
frequently occurring genera in both the experimental sites and
seasons. The genus Exophiala was present in greater numbers
at the German site than at the Swedish site; in contrast, the
Tetracladium genus was present mostly at the Swedish site. On
the other hand, the rhizosphere fungal libraries were dominated
by reads of the genera Solicoccozyma and Mortierella mainly
at the Swedish site. The rhizospheric fungi were significantly
different in the two seasons and were more prominent at the
Swedish site than at the German site.

At the species level, the endophytic fungal community
consisted mostly of Tetracladium sp., Paraphoma rhaphiolepidis
and Exophiala salmonis, whereas most of the identified fungi
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from the rhizosphere soil belonged to Salicoccozyma terrea
(with the highest occurrence at the Swedish site). Based on the
experimental sites, the rhizosphere fungi at the German site
showed significantly more fungal reads belonging to E. salmonis.
E. salmonis was the only species to show significant differences
between the endophytic and rhizospheric communities at
the German site.

DISCUSSION

This study is first in describing the PSF in woody SRC
and comparing the fungal diversity and community structure
between sites, seasons, and genotypes. The beta diversity revealed
that experimental site drives the fungal community structure.
Abundance as well as alpha and beta-diversity of fungal
community were mainly driven by TOC, TN, and pH. We found
Penicillium to be the dominant genus of PSF in the group of

isolated fungal strains, while this genus was not detected in the
metagenomic analysis. This may be due to the presence of other
abundant fungal genera that may mask its presence. The level
of plant association (endophytic or rhizosphere fungi) was the
main factor driving fungal diversity and community structure
(number of observed OTUs was greater for rhizosphere fungi
than endophytic fungi). Differences for seasons and genotypes
were present but were not particularly prominent.

Physico-Chemical Soil Properties and
Climate Distinct at the Two Experimental
Sites

To date, only a few studies have characterized the fungi
associated with woody crops from different geographic locations,
e.g., S. alba in India (Chatli et al, 2008), Salix viminalis in
the United Kingdom (Barnes et al., 2018), S. viminalis and
S. X dasyclados in Germany (Baum et al., 2006), and S. viminalis
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and two seasons.

and S. schwerinii in Sweden (Hrynkiewicz and Baum, 2012).
The soils in the investigated sites can be described as fertile and
biologically active, with optimal properties for willow cultivation
(Guidi et al., 2013). Soils at the Swedish site contained a higher
content of TOC, TN, and P,, than soils at the German site,
which likely resulted from primary soil properties related to
their different pedogenesis (Vertic and Stagnic Cambisols) such
as texture and nutrient abundance. However, the studied soils
were moderately to slightly acidic, which undoubtedly favors the
bioavailability of P (Yue et al,, 2000; Richardson et al., 2009;
Yadav et al., 2012). TN is frequently found to be a critical factor
for fungal diversity (Allison et al., 2007; Lauber et al., 2008;
Zhou et al., 2016). The available P in soil may influence fungal
communities in the rhizosphere to some extent (He et al., 2016;
Rosenstock et al., 2016; Williams et al.,, 2017). In our case, the
Swedish site had significantly higher P, but we observed no
significant influence of this variable. This confirms N-limited
rather than P-limited conditions, as is common at most arable
sites (Williams et al., 2017).

A statistically significant short-term seasonal increase in TOC
was recorded at the experimental site in Germany, but a similar
trend was also observed at the experimental site in Sweden. This
can be attributed to the leaf and root litter inputs in combination
with no-till management. However, research by Hoeber et al.
(2020) showed that climatic factors may significantly determine
the rate of decomposition of leaf litter. These authors found that

FIGURE 7 | Fungal community structure at the level of class (A), family (B), genus (C), and species (D) among rhizosphere soil and roots, two experimental sites,

the decomposition rates in Germany were 43% faster than those
in Sweden. The fine roots of willows can also be an important
source of soil organic matter (Kahle etal., 2007). A slight decrease
in P,, concentrations in spring suggested nutrient depletion.
No effects of nutrient depletion on the yields were observed
in Sweden. These results were supported by the findings of
(Kahle et al., 2007).

Dominating PSF Identity and Total
Fungal Density in Willows

Among the culturable diversities, the number of PSF was much
higher in the rhizosphere fungi than in the endophytic fungi.
This supports our hypothesis that lower number of endophytic
fungi may possess ability to solubilize P than rhizosphere fungi.
We found Penicillium to be the dominant genus of PSF isolates
from the SRCs; other, less frequent isolates were of the genera
Alternaria, Cladosporium, and Clonostachys. Similarly, Chatli
et al. (2008) reported members of Penicillium to be among the
dominant strains isolated from woody crop species. These strains
were also abundant in the rhizosphere of Salix spp. in Lithuania
(Repeckiené et al., 2009). The genus Clonostachys (isolated from
the rhizosphere and endosphere) was specific to the German site,
whereas Juxtiphoma, Talaromyces, and Beauveria were specific
to the Swedish site. Apart from PSFs, we isolated non-PSF that
were able to grow on selective media (NBRIP, PVK DCP). These
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fungi probably require low P concentrations to support growth.
At the Swedish site, the fungal density in the three genotypes was
found to range as follows: LT > Loden > Tora, in contrast to the
German site, where it ranged as follows: Loden > LT > Tora. This
effect might be based on the varying site-specific environmental
conditions and their interactions with the genotypes.

Penicillium is commonly found as a PSF taxon (Chatli et al.,
2008; Patil et al., 2012; Sharma et al., 2012). Penicillium bilaiae
is even sold by NovoZymes as a bioinoculant enabling soil
P mobilization. Levels of plant growth-promoting effects by
Penicillium species were associated with increased uptake of
P into shoots (Qiao et al., 2019). Although P solubilization
ability is common in the genus Penicillium, various species
and strains differ in their capacity to mobilize P due to
differences in the secretion of organic acids, phosphatases, and
phytase or in the operation of other P solubilizing mechanisms.
The genus Clonostachys (isolated both from the endosphere
and rhizosphere) was previously reported as an endophyte
in Salix species growing in SRCs (Hosseini-Nasabnia et al.,
2016). Clonostachys rosea is reported to be a mycoparasite in
Theobroma gileri and as a biocontrol agent against Phytophthora
palmivora and Moniliophthora roreri (ten Hoopen et al., 2003).
To date, reports on the P solubilizing abilities of Alternaria
and Cladosporium are scarce. There is not much information
about PSF isolates from other woody plants. Schmidt et al.
(2018) investigated endophytic community of poplar, species
that is also commonly grown as SRCs but did not found
any PSFs. Mishra et al. (2014) reported presence of several
phosphorus solubilizing fungi in banana tree including Fusarium
sp., Trichoderma sp. and present in this study Penicillium sp. In
forest environment Aspergillus sp., Cladosporium sp., Curvularia
sp. and several Penicillium species are frequently reported to
possess high potential in P solubilization (Manoharachary and
Nagaraju, 2017). There is several studies that use Penicillium
species as bioinoculants that improve P availability for various
plants (Omar, 1997; Ram et al, 2015; Yin et al, 2015;
Lietal., 2016).

Multiple Factors Influencing Alpha
Diversity and Fungal Community
Structure in Willow SRCs

The rhizosphere fungal community was more diverse in
culture independent (metabarcoding) analyses, suggesting strong
selective pressure in the interior of willow roots. Similar
observations are common both for bacterial (e.g., Kielak et al.,
2008; Bulgarelli et al., 2012) and fungal (e.g., Hrynkiewicz et al.,
2012; Yergeau et al., 2015; Thiem et al., 2018; Furtado et al., 2019)
communities associated with various plants. The reason for this
phenomenon could be that roots may act as a filter or selection
barrier for fungal species present in the rhizosphere soil, which
can result in a lower number of endophytes (Garbeva et al., 2004;
Lauber et al., 2008). This might be especially valid for woody roots
such as those of Salix spp.

The classes Agaricomycetes and Pezizomycetes were more
frequent in the endosphere, while Tremellomycetes and
Mortierellomycetes were more abundant in the rhizosphere.

Fungal Microbiome of Willow Genotypes

These facts could be explained by the former two classes
comprising mostly ectomycorrhizal fungi (Li et al, 2018),
whereas the latter contains mostly saprophytic organisms
(Francioli et al., 2020). Yergeau et al. (2015) reported the
dominance of the class Dothideomycetes in willows, and the same
was observed in our study. Members of this class are mainly
endophytes and epiphytes and can be lichenized or lichenicolous
fungi (Schoch et al., 2009). Moreover, Dothideomycetes was the
only fungal class whose abundance differed between genotypes.
Agaricomycetes was the only class whose abundance did not
differ between seasons, which was caused by large differences
within variants (i.e., high standard deviation). Similarly, reports
by Shakya et al. (2013) from poplar showed no seasonal effect for
rhizosphere fungi at any of their investigated sites.

At species level fungal community was mostly build from
six species. For endophytes Tetracladium sp., P. rhaphiolepidis
and E. salmonis were the most frequent. All three species are
known grass endophytes while E. salmonis was additionally
reported as an animal pathogen (Macii-Vicente et al, 2016;
Ricks and Koide, 2019; Gomzhina et al., 2020). Besides being
pathogenic in animals it was previously isolated from the roots
of poplar, which is another commonly grown tree species in
SRCs (Macid-Vicente et al.,, 2016). Most of the fungal reads from
the rhizosphere soil belonged to S. terrea, but no information
is available on this fungal species. The other Solicoccozyma
species found in this study, S. terricola is a well known
psychrotolerant yeast used in lipid production (Filippucci et al.,
2016; Stosiek et al., 2019; Tasselli et al., 2019). Lastly, Mortierella
camargensis isolated from grassland soils showed ability to
produce arachidonic acid and lipase activity (Botha et al., 1999;
Miklés et al., 2012).

The absence of the PSFs cultured from our samples
in amplicon libraries is probably due to technical reasons.
First, universal primers used to generate libraries might
be biased against particular sequence variants (SVs), which
together with SV scarcity in samples might result in excluding
them from libraries.

Unconstrained ordination revealed that the level of
community association with plants (rhizosphere vs. endosphere)
and experimental sites were the two most important factors
grouping the samples. This is expected, as (i) the difference
between rhizosphere and endophytic communities is frequently
observed (Thiem et al, 2018) and (ii) the sites differed in
both climatic and soil conditions. Indeed, soil environmental
parameters (TOC, TN, and pH) significantly influenced the
fungal community structure. A significant influence of pH
was unexpected, as it is usually not a limiting factor for fungi.
Out of four factors we hypothesized would influence fungal
communities in willow, level of community association with
the plant, experimental site location and season turned out
to exert a significant impact on fungi, while the effect of tree
genotype was not as prominent. This fact can be explained
by (i) the spatial distribution of fungal mycelium in soil, ie.,
mycelium is able to freely grow out of particular field boundaries,
effectively canceling actual differences, and (ii) genetic differences
between analyzed genotypes may cause little effect on the soil
fungal microbiome.
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CONCLUSION

The level of fungal community association with the plant
(rhizosphere vs. root endophytes) is the most important factor
shaping its diversity. The site, season, and planting design
have a lower impact. The fungal diversity at the same level of
plant association was mainly driven by soil properties such as
TN, TOC, and pH. Among the culturable fungal diversities,
Penicillium was dominant and commonly isolated genus as
a P solubilizing taxon from both SRCs, while others less
frequently isolated were the genera Alternaria, Cladosporium,
and Clonostachys. Apart from PSFs, we isolated non-PSF that may
require less P to support their growth. In general, a lower number
of endophytic fungal strains possessed the ability to solubilize P
compared to the number of rhizosphere fungal strains with this
ability. The rhizosphere fungal community was generally more
diverse than that in the endosphere at both willow SRC sites. This
might suggest selective pressure on willow roots and emphasize
the uniqueness of the fungal community. Fungal libraries of
rhizosphere soil and endophytic communities showed significant
dominance of the phyla Ascomycota followed by Basidiomycota
and Mortierellomycota. The genus Exophiala was present in
greater numbers at the German site, while the genus Tetracladium
was present mostly at the Swedish site.
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Phosphorus (P) is an essential plant nutrient that can limit plant growth due to
low availability in the soil. P-solubilizing bacteria in the roots and rhizosphere
increase the P use efficiency of plants. This study addressed the impact of
plant species, the level of plant association with bacteria (rhizosphere or root
endophyte) and environmental factors (e.g., seasons, soil properties) on the
abundance and diversity of P-solubilizing bacteria in short-rotation coppices
(SRC) of willows (Salix spp.) for biomass production. Two willow species
(S. dasyclados cv. Loden and S. schwerinii X S. viminalis cv. Tora) grown in
mono-and mixed culture plots were examined for the abundance and diversity
of bacteria in the root endosphere and rhizosphere during two seasons (fall
and spring) in central Sweden and northern Germany. Soil properties, such
as pH and available P and N, had a significant effect on the structure of the
bacterial community. Microbiome analysis and culture-based methods
revealed a higher diversity of rhizospheric bacteria than endophytic bacteria.
The P-solubilizing bacterial isolates belonged mainly to Proteobacteria
(85%), Actinobacteria (6%) and Firmicutes (9%). Pseudomonas was the most
frequently isolated cultivable bacterial genus from both the root endosphere
and the rhizosphere. The remaining cultivable bacterial isolates belonged
to the phyla Actinobacteria and Firmicutes. In conclusion, site-specific soil
conditions and the level of plant association with bacteria were the main
factors shaping the bacterial communities in the willow SRCs. In particular, the
concentration of available P along with the total nitrogen in the soil controlled
the total bacterial diversity in willow SRCs. A lower number of endophytic
and rhizospheric bacteria was observed in Loden willow species compared
to that of Tora and the mix of the two, indicating that mixed growth of Salix
species promotes P-solubilizing bacterial diversity and abundance. Therefore,
a mixed plant design was presented as a management option to increase the
P availability for Salix in SRCs. This design should be tested for further species
mixtures.
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Introduction

Most of the research on plant-bacterial interactions,
specifically on woody plant species, focuses either on the general
bacterial community diversity or on the role of bacteria in plant
interactions, i.e., the bacterial properties that directly affect host
plant growth such as plant growth-promoting metabolites,
synthesis of phytohormones, and N, binding (Basu et al, 2021).
Few studies have addressed bacterial diversity based on their level
of association (root endosphere or rhizosphere), and their
properties or specific function in woody plants have been scarcely
investigated (e.g., Thiem et al,, 2018). Meanwhile, in the pool of
endophytic and rhizospheric bacteria, there may be those whose
direct or indirect influence on plant development is
underestimated and not sufficiently investigated to date.

One of the most important contributions of bacteria to plant
host growth is their role in facilitating the plant host’s access to
available forms of phosphorus (P) (Billah et al., 2019). Several
the important
microorganisms in enhancing overall plant (shoot) growth
(Kalayu, 2019; Prabhu et al., 2019; Divjot et al., 2021; Rawat et al.,

reviews describe role of P-solubilizing

2021). It is frequently reported that the use of P-solubilizing
bacteria (PSB) as bioinoculants is cost-effective and a sustainable
alternative to chemical fertilizers, as the excessive use of the latter
contributes to lowering the quality of groundwater and soil, as well
as the accumulation of toxic elements such as selenium (Se) or
arsenic (As) in the soil (Khan et al., 2009; Alori et al., 2017).
Experimental studies on the role of P-solubilizing bacteria in
plants have mostly used well-known strains of bacteria belonging
mainly to Pseudomonas sp., Bacillus sp. or Streptomyces sp. (Wani
etal., 2005; Chen et al., 2006; Ahemad and Khan, 2011; Kaur et al.,
2011; Grafe et al.,, 2018; Rathinasabapathi et al., 2018; Ahmad
2019; Wang et al,, 2020;). Additionally, screening studies
exploring new bacterial strains with P-solubilizing abilities are

et al.

carried out relatively often (e.g., El Habil-Addas et al., 2017;
Rahman et al., 2017; Boubekri et al., 2021; Chen et al., 2021).
However, only in some cases are studies on P-solubilizing bacteria
conducted on larger scales that take into account (i) the selection
and differentiation of strains that are able to degrade easily and
sparingly soluble P compounds (belonging to the groups
(ii) the
compatibility of specific groups of P-solubilizing bacteria with
specific plant species and specific environmental conditions and
cultivation systems (e.g., monoculture or mixed cultivation), and

diphosphates and triphosphates, respectively),

(iii) the application potential of these microorganisms. High-
throughput methods such as metagenomic analysis, which can
provide the background of the entire community of bacteria of a

Frontiers in Microbiology
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given environment, are also rarely targeted by the previously
mentioned research (Sarikhani et al., 2019; Teng et al., 2019;
Chawngthu et al, 2020; Rfaki et al., 2020). Meanwhile, the
of the
microorganisms coexisting with P-solubilizing microbes is

evaluation of the microbiological background

extremely important because the composition of the
microbiological background can be used as a guide for selecting
the right bacteria that will be compatible not only with a specific
plant species but also with its microbiome.

Our work responds to the above deficiencies and presents not
only the screening of cultivable P-solubilizing bacteria (e.g.,
di-and triphosphates) but also a metagenomic analysis of the
rhizosphere and root endosphere, which provides a proper
background of the bacterial community. The research was carried
out in experimental trials including single-species and mixed-
species plots of two willow varieties belonging to different species
(Loden (S. dasyclados) [L] and Tora (S. schwerinii x S. viminalis)
[T]), which were grown in two locations with different soil and
climatic conditions (Germany and Sweden). This study focused
on bacteria and complements our previous results on
P-solubilizing fungi in the same experimental trials (Koczorski
etal,, 2021). The main objective was to assess the influence of soil
properties, seasons, the level of plant association with bacteria
(root endophyte and rhizosphere), and the host plant cultivation
system (single-species vs. mixed-species) on the diversity of
P-solubilizing bacteria and to determine their role and
contribution to the background of the entire willow microbiome.
The application of culturable and nonculturable research
techniques allowed us to evaluate the culturable PSB in the context
of a complete community of bacteria, as well as to determine the
influence of soil properties and seasons on changes in community
structure. We hypothesized that (i) bacteria with the ability to
solubilize P would be more abundant in the rhizosphere than the
root endosphere of the tested plants and (ii) the plant species and
the test site conditions would significantly affect the bacterial
diversity and bacterial community.

Materials and methods
Sample collection and processing

The test sites used in this study are two experimental trials of
willow short-rotation coppices (SRCs) located in Uppsala (Sweden:
59.820375, 17.640334) and Rostock (Germany: 54.061391,
12.081857). Both sites were previously used as arable sites, and they
differ in the soil type. The soil at site S is characterized as a Vertic
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Cambisol type (moderate amount of clay), while at site G, the soil
type is described as a Stagnic Cambisol (sandy loam dominance)
(IUSS Working Group WRB, 2015). The experiment was
established in 2014 as part of the ECOLINK-Salix to investigate the
impact of willow diversity on growth, nutrient use and ecosystem
functioning (Hoeber et al., 2018). A detailed description of the
experimental trials is found elsewhere (Hoeber et al, 2018;
Koczorski et al,, 2021; Figure 1). In our investigation, we only used
the data from two willow genotypes belonging to two different
species, Loden (S. dasyclados) and Tora (S. schwerinii x S. viminalis),
and compared them between the two test sites (German and
Swedish). Tora is characterized by a higher growth rate and smaller
total leaf area than Loden (Hoeber et al., 2018). At each test site,
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FIGURE 1

Total (A,B) and P-solubilizing bacteria (C—H) abundance on different media. Samples were taken in fall 2018 from two test sites (Sweden and
Germany). (A,B) present the total bacterial count on plates with R2A medium for two levels of plant associations (rhizosphere and endophytic
bacteria). Blue bars represent samples from Sweden and red from Germany. (C—H) show the abundance of bacteria present on selective media
plates (blue and red bars) and the abundance of P-solubilizing bacteria (yellow bars). Small and capital letters indicate significant differences
between the two willow species used (Tora=S. schwerinii x viminalis, Loden=S. dasyclados) (small letters for total bacteria count; capital letters for

P-solubilizing bacteria). *Indicates differences between sites.
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three blocks (replicates) were established, each consisting of three
plots with willows planted in single-species or mixed-species
cultures. The size of each plot was 9.6 x 9.6 m, and the tree planting
density was 15,600 plants per ha (Hoeber et al., 2018). Samples for
analysis were collected at both sites in two seasons: fall (October)
2018 and spring (May) 2019. During each season, samples from
each experimental site were collected from three plots in three
replicates: Loden monoculture, Tora monoculture and mixed
cultivation of both (Loden and Tora). In total, 162 samples (81
from Sweden and 81 from Germany) of willow roots and adjacent
soils (15x 15x 15cm) sampled at equal intervals of 6 m from each
other were collected. The collected samples were immediately
transported to the laboratory in Poland (Department of
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Microbiology, Nicolaus Copernicus University) and analyzed as
described below. The samples collected in fall 2018 were used to
determine the total number of bacteria and the total number of
P-solubilizing bacteria (PSB), for which a collection was also
established. The roots were carefully separated from adherent soil
and subjected to a surface sterilization process as described
previously (Koczorski et al., 2021). In the first step of surface
sterilization, 60% alcohol was used (3min), and then the roots were
rinsed 3 times in a sterile 2% NaCl solution. In the second step, 5%
H,0, solution (10 min) was used for sterilization, and roots were
again rinsed 3x in sterile 2% NaCl solution. The solutions from the
last rinse were used to perform sterilization control on R2A
medium (Difco, United States).

Soil analysis

In this study, soil data obtained in previous studies were used
(Koczorski et al., 2021; Supplementary Table S1). Soil samples
were sieved through a 2-mm-mesh screen after air-drying for the
following analyses: total organic carbon (TOC) and total nitrogen
(TN) contents were measured after dry combustion usinga CHNS
Vario Macro Cube elemental analyzer. Available phosphorus (P,,)
in 1% citric acid (Van Reeuwijk, 2002) was determined by a
spectrophotometric method using a UV-Vis Rayleigh UV-1601
spectrophotometer (Van Reeuwijk, 2002), and the pH at a 1:2.5
soil to water ratio was determined by the potentiometric method
using an Elmetron CP-105 pH meter.

Isolation of endophytic and rhizospheric
total culturable bacteria and screening
for P-solubilizing bacteria

Sterile roots (1g) were homogenized in a sterile mortar and
transferred to 9 ml of a sterile 0.5% NaCl solution. The processed
rhizosphere soil samples (1g) were transferred to 9 ml of a sterile
0.5% NaCl solution. Serial dilutions (10~" - 10~7) were prepared
and used for inoculations (spread plating technique) on R2A
media with the addition of 40 mg/pl nystatin (for roots: 10~ and
107, for rhizosphere soil: 10~ and 10~°) in 3 replicates for each
variant and dilution (108 Petri plates, in total). The plates were
incubated for 7 days at 24°C, and then total bacterial counts were
determined and presented as colony-forming units (cfu).

Three selective media were used for the isolation of phosphate
(P)-solubilizing bacteria: NBRIP, PVK containing tri-phosphates
(Nautiyal, 1999) and DCP containing di-phosphates (modified by
Pikovskaya, 1948) (composition of media presented as
Supplementary materials in Koczorski et al,, 2021).! The inoculations
were made from the same serial dilutions (mentioned above) that
were used to determine the total number of bacteria. For NBRIP and
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PVK media, dilutions of 107° and 1077 were used (roots and
rhizosphere soil), and for DCP media, dilutions of 10~*~ 10~° (roots)
and 107 - 107 (rhizosphere soil) were used. All analyses were
performed in three technical replications (324 plates in total, 108
plates for each of the selective media). After 7 days of cultivation at
24°C, colonies with visible halo zones were noted. The presence of
halo zones indicated the P-solubilizing ability of the isolated strains
and allowed for the selection of positive strains for further analysis.
In the experiment, the total number of P-solubilizing bacteria
and the total number of bacteria grown on the tested media were
determined to assess the potential of the investigated sites and
zones (rhizospheric and endophytic) for colonization by potential
P-solubilizing bacteria. The bacterial isolates with the ability to
solubilize P on selective media were selected and transferred to
R2A medium for further identification using molecular methods.

Identification of culturable P-solubilizing
bacterial strains

A Bacterial and Yeast Genomic DNA Purification Kit (EurX,
Poland) was used to isolate bacterial DNA. The isolated DNA was
quantified using a UV-Vis spectrophotometer (NanoDrop 2000,
United States). Bacteria were identified based on the 16S rRNA
region using primers 27f (5-AGAGTTTGATCMTGGCTCAG-3)
and 1492r (5-TACGGYTACCTTGTTACGACT-3’; Frank et al.,
2008). The PCR products were purified using the PCR/DNA
Clean-Up Purification Kit (EurX). A 1% agarose gel (1 x TBE
buffer) with the addition of Simply Safe (EurX) dye was used to
confirm the presence of PCR products after purification. The
length of the PCR products was determined based on the 100bp
ladder (Perfect 100bp DNA Ladder, EurX). The genetic material
was sequenced at the Institute of Biochemistry and Biophysics.?
Sequencher 5.4.6 software was used to prepare contigs, and the
obtained sequences were compared with those in the NCBI
database using BLASTn, which is available on the National Center
for Biotechnology Information (NCBI) servers.* Mega X software
(Kumar et al., 2018) was used for phylogenetic analysis according
to the procedure described by Furtado et al. (2019). Reference
sequences were obtained from NCBI, and phylogenetic analysis
was performed using the neighbour-joining method. Evolutionary
distances were determined with the use of the p-distance method
(Saitou and Nei, 1987). The phylogenetic tree was visualized with
Interactive Tree of Life (iTOL) v3 (Letunic and Bork, 2016).

Statistical analysis

Statistical analyses were performed using Statistica software
(version 13.0, StatSoft). Mean values and standard deviations were
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calculated. The computed data from both the isolation of total
culturable bacteria and screening for culturable P-solubilizing
bacteria are presented as Colony-Forming Unit (CFU)/g
dry weight.

Assessing nonculturable bacterial
diversity

Total DNA (from the roots and rhizosphere) was isolated
according to Koczorski et al. (2021). DNA was isolated from 50 mg
of lyophilized roots (for endophytic diversity) and 50mg of
air-dried rhizosphere soil, and each sample was prepared in 3
replicates. Root samples were homogenized with plastic beads
prior to isolation. The spectrophotometric (NanoDrop 2000,
United States) and fluorometric (Qubit 2.0) methods were used to
determine the concentration of DNA in the samples. DNA
prepared in this way was used to create libraries in a two-step PCR
and purified using Agencourt AMPure XP (Beckman Coulter).
The quality and quantity of libraries were assessed using the
Bioanalyzer chip (Agilent) and the KAPA Library Quantification
Kit for the Illumina Platform — LightCycler 480 (Roche). The
complete process of DNA isolation and library preparation was
described in our previous work (Thiem et al,, 2018), and the
method of statistical analysis was described in the publication by
Koczorski et al. (2021).

Results

Culturable bacteria and their phosphate
solubilization activity at two sites

The number of culturable bacteria ranged between 3.5 and
6.8 cfu/g of dry roots for endophytes and 6.89-7.89 cfu/g of dry
soil for the rhizosphere. In general, the tests showed that there was
a significant difference in endophytic bacterial abundance between
the tested variants of the experiment (mono and mixed cultures).
In the case of the willow species, a lower number of endophytic
and rhizospheric bacteria were observed in Loden than in both
Tora and the mix of both (Loden and Tora; Figure 1). The
difference between P-solubilizing bacterial abundance in the
Loden species and the mixed variant was an almost twofold lower,
indicating the importance of Tora species presence. The NBRIP
and PVK selective media showed very similar trends for Loden,
where the frequency of occurrence of isolates with phosphate
solubilization was lower than in the other tested variants (single-
species Tora and the species mix). At the Swedish site, the mixed
cultures showed the highest number of PSB both in the case of
endophytic and rhizospheric bacteria, while at the German site,
the number of PSB was the highest in Tora for endophytic and the
mixed culture for the rhizospheric bacteria (Figure 1). Loden
showed a lower number of PSBs associated with the plant (both
endophytic and rhizospheric bacteria). Overall, the NBRIP
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medium selected more PSBs from the Swedish site, while in the
PVK medium, the PSB abundance was higher in the German site.
The total abundance of PSB on the DCP medium was lower than
that on the NBRIP and PVK media. The number of PSBs on the
DCP medium was lowest for Loden at both experimental sites and
both levels of association with the plant (endophytes and
rhizosphere). For endophytes in the Swedish site, the mixed
cultures showed the highest number of PSB, while for the German
site, it was Tora. Similarly, for the rhizosphere, the PSB was the
highest for the mixed cultures in the Swedish site, while no
significant differences were observed in the German site.

Identification of culturable
phosphate-solubilizing bacteria

During the experiment, 88 different bacterial strains with the
ability to solubilize P were isolated. Among this bacterial
collection, 61 were isolated from tri-phosphate-containing media
(26 from NBRIP, 35 from PVK) and 27 from di-phosphate (DCP)
media. A total of 41 different endophytic and 47 rhizospheric
strains were isolated. Almost 85% of the isolated bacteria (74
strains) belonged to Proteobacteria, 6 belonged to Actinobacteria
(6%) and 8 belonged to Firmicutes (9%). The dominant taxa
among Proteobacteria included species of Pseudomonas with 12
strains (13%), Erwinia with 17 (19%) and Rahnella with 10 (11%).
Actinobacteria was dominated by the genus Curtobacterium, with
3 identified strains (50%), and Firmicutes was dominated by 6
strains from the Bacillus (67%) genus. A total of 51 strains with the
ability to solubilize P at the German site and 37 at the Swedish site
were obtained. At the German site, more rhizospheric than
endophytic PSBs were isolated, while at the Swedish site,
we observed the reverse trend. The most frequently isolated PSB
at the Swedish site were bacteria belonging to the genera
Pseudomonas and Rahnella, both found in the endosphere and the
rhizosphere. The genus Erwinia was characteristic of the German
site for both levels of association with the plant (endosphere and
rhizosphere). The highest number of strains belonging to
Actinobacteria were isolated from the German site. Almost 50% of
the strains were isolated from the mixed culture (LT; Figure 2).

Microbiome analysis

The bacterial alpha diversity was mainly determined by the
level of association with the plant (endosphere and rhizosphere),
whereas in the case of endophytes, it was additionally determined
by the experimental sites (S, G; Figures 3A-C). A significant
difference between the rhizospheric and endophytic bacterial
diversity was found in the Shannon’s H” and the number of OTUs
observed, wherein the bacterial population in the rhizosphere soil
was more diverse (Figure 3A). In the case of endophytic bacteria
at site G, significant differences were observed between the
cultivable variants and the seasons. This is due to the high values

frontiersin.org

63 |Page



Koczorski et al.

10.3389/fmicb.2022.1006722

[Tree scale: 1

»

>
.

*
&
&g
* 9«
Phyla * «g
- Firmicutes » <n
D Actinobacteria ~ <0
- Proteobacteria .13<4 -D
¥ @B
s 4 ©
B4 ¢
o A
4

FIGURE 2

Phylogenetic analysis of culturable bacteria isolated from two willow species and their mixture classified at the phyla level. For details of isolates
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obtained for the samples from the Tora mono-and mixed cultures,
which differed significantly from those of the other variants
(Figure 3A). The analysis of the Shannon evenness index showed
a significant difference between the endophytic communities from
the German and Swedish sites (Figure 3B). No significant
differences were observed in other variants of the experiment
(Figure 3B). The number of observed OTUs showed a significant
difference between endophytes and the rhizosphere, as well as
between the sites within the endophyte variant (Figure 3C).
Overall, the most prominent difference in the diversity of the
bacterial microbiome was observed for endophytes and is related
to the differences between the studied sites (Swedish and German)
Shannon’s H’, Shannon’s E and the number of observed OTUs.

NMDS and CCA analysis
In this study, soil data obtained in previous studies were used
(Koczorski et al., 2021; Supplementary Table S1). According to the

results of NMDS analysis, the bacterial communities in the
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rhizosphere (Figure 4A) and endosphere (Figure 4C) were
clustered based on sites (S and G). A PERMANOVA test
confirmed that the grouping of rhizosphere and endosphere
variants was statistically significant (rhizosphere soil: F=20.241
r=0.180 p=0.0001 roots: F=44.85 R*=0.099 p=0.0001).
Grouping of bacterial communities by season was not observed.
The samples from the German site were more scattered, especially
from the roots, indicating higher variability at this test site. The
separation between sites was much more prominent in the case of
the rhizosphere, which suggests that these communities show
greater differentiation than the endophytic communities. NMDS
ordination showed clear division of samples from the German site
according to willow species, with Loden grouped with Sweden
samples, while Tora and mixed variants remained grouped
together (Figure 4C). The samples from Tora and the mixed
cultures were separated from the Loden samples that were
grouped with the samples from the Swedish site. The CCA
confirmed the separation of samples from the rhizosphere by site.
In Figure 4B, the total nitrogen (TN) and partially available
phosphorus (P,,) were the key factors responsible for the
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separation of samples with a positive correlation for site S. The
rhizosphere samples were more scattered and formed 3 separate
groups. The first group correlated with P,, and consisted mainly of
samples from the Tora and mixed cultures (TL) from Sweden. The
second group showed a high correlation with pH (pH_water) and
was composed of the samples belonging to Tora and mixed
cultures (TL) from Germany. The remaining samples that formed
the third group showed a negative correlation with all the
previously mentioned factors and with organic carbon (TOC).
CCA analysis revealed that for soil samples, the phylum Firmicutes
showed a positive correlation with P,, while Proteobacteria
correlated with TN. For root samples, there was no clear
correlation with any of the bacterial strains.

Bacterial diversity at different taxonomic
levels

As with the identification of isolated bacteria, most of the
reads obtained in the microbiome analysis belonged to the
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Bacterial species richness, diversity, and evenness across two experimental sites, rhizosphere soil and roots. OTUs were constructed at 0.03
dissimilarity for bacterial sequences. (A) Shannon’s (H), (B) Shannon'’s (E), (C) observed number of OTUs. Robust ANOVA with Tukey's post-hoc
analysis was used to assess the significance of differences between experimental sites, rhizosphere soil, and roots. Colours denote the following:
black - significant difference between endophytes/rhizosphere, blue - significant differences between sites, red-significant difference between
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seasons. ‘Indicates a significant difference between variants indicated by arrows.

Rhizosphere

phyla Actinobacteria and Proteobacteria, especially in the
communities of endophytic bacteria from Sweden (Figure 5A).
At the class level, significant differences were also observed
between the level of bacterial association and the location of the
test site. Additionally, some seasonal differences were observed,
but only for samples from site G. At the class level, no differences
between the two willow species were observed (Figure 5A). At
the order level (Figure 5B), we observed a high number of
different taxa across all samples. Most of the samples showed
significant differences in the level of plant association
(endophyte, rhizosphere) and site (Figure 5B). Bacterial
community analysis showed that similar to the class level
(Figure 5A), a small number of samples showed differences
between seasons. However, in the case of the samples from
Sweden, differences between the willow species were observed.
Figures 5C,D show that this trend is also valid for the remaining
taxonomic levels (family and genus). It was also shown that the
lower we are at the taxonomic level, the higher the number of
reads belonging to the ‘rare’ category (number of reads is less
than a predetermined threshold).
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Analysis of log-transformed and Wisconsin double-standardized Bray—Curtis dissimilarity matrix for rhizosphere soil and root bacterial
communities associated with Salix species L (Loden=S. dasyclados), T (Tora=S. schwerinii x viminalis), and LT (mixture) between two seasons (fall,
spring) and two sampling sites (Germany and Sweden). (A,C) NMDS (nonmetric multidimensional scaling analysis); (B,D) CCA (canonical
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Discussion

The aim of this work was to gain insight into bacterial diversity
and to identify P-solubilizing bacteria in the rhizosphere and
endosphere of single-species and two-species plots of short-
rotation willow coppices. Moreover, this is also an extension of a
previous investigation that aimed at isolating and identifying
P-solubilizing microorganisms  (fungi) the
experimental trials and comparing them with the results of the
microbiome analysis (season comparison included; Koczorski

from same

etal, 2021). In the present work, we expected that the increased
diversity of host plant species grown in the species mixture may
favor a greater diversity of microorganisms, including phosphate-
solubilizing microorganisms. Consequently, biomass production
may be enhanced (Chen et al., 2021). To verify this, we used a
classical microbiological approach combined with NGS analysis.
The results presenting the number of P-solubilizing bacteria
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revealed that there was a significantly higher number of bacteria
in the rhizosphere than in the endosphere. It could be that only
selected bacterial strains can penetrate the root’s intercellular
space and form endophytes. Most plant species are known to
produce substances that either attract or inhibit microbial root
entry (Jacoby et al., 2017). As such, the roots can act as a filter
through which only selected bacteria can penetrate and form a
well-functioning symbiosis with the host plant (Taulé et al,, 2021).
Moreover, bacteria that form endophytes are known to possess
specific properties or functions that help to survive in plant tissues
and establish this symbiosis (Papik et al., 2020). Furthermore, the
results from the culturable diversity showed the lowest number of
P-solubilizing bacteria for Loden species (S. dasyclados) grown in
monoculture and the highest number in the case of the species
mixture (at both sites and levels of association of microorganisms
with the plant: endo-and rhizosphere). Therefore, we can expect
that an increased number of plant species in a cultivation system
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two seasons.

Bacterial community structure at the level of class (A), order (B), family (C), and genus (D), among rhizosphere soil and roots, two test sites and

will promote microbial diversity and function. This suggests that
both species identity and the cultivation of mixed species at the
same site can have positive effects on the number of P-solubilizing
bacteria. The mixing effect may be due to the higher competition
of microorganisms for nutrients in mixed cultures, which
promotes the diversity of rhizospheric and endophytic
microorganisms (Weih et al., 2019). A similar conclusion was
made by Schweier et al. (2019), where mixed cultures of willow
species and genotypes produced higher biomass and positively
influenced the diversity of microorganisms at the site.

The soil analysis presented in our earlier publication showed
a much higher level of P at the Swedish site than at the German
site (Koczorski et al., 2021). This may suggest that the increased P
availability in the soil has a positive effect on the abundance of
PSBs (rhizosphere and endophytes). Our experiment showed the
presence of bacteria that were able to grow on media without
available P but at the same time did not show any visible signs of
P solubilization (halo zones). Since the bacteria were grown on the
media for 7 days, it is possible that their cells had some reservoir
of P that allowed them to grow. Liu et al. (2015) made similar
observations using media supplemented with the same P source
as we did, and they stated that lack of clear signs of P solubilization
might also be a result of their very low activity. The most
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frequently isolated PSB in our experiment were Pseudomonas,
Erwinia and Bacillus. These genera are well known and frequently
isolated as PSBs, especially Pseudomonas (Yu et al., 2011; Sarker
etal., 2014) and Bacillus (Liu et al., 2015; Chawngthu et al., 2020).
These strains have found applications as biofertilizers for the
cultivation of wheat (Liu et al., 2019), maize (Viruel et al., 2014),
rice (Gomez-Ramirez and Uribe-Velez, 2021) and fruit trees, e.g.,
apple trees (Kurek et al, 2013). Erwinia sp. is often mentioned in
the literature as a plant pathogen; however, the Salix trees grown
at the two test sites did not show any symptoms of infection
during sampling. Few researchers have shown the potential of
Erwinia sp. as a plant growth-promoting bacterium and confirmed
its presence in underground and aboveground parts of plants, e.g.,
almond trees (Guzman et al, 2021), apple trees, pear trees
(Rezzonico et al., 2016) and barley (Li et al., 2021). This suggests
that willow trees are a potential source of both well-known and
completely new P-solubilizing microorganisms. Our work also
provides insight into P-solubilizing bacteria that can potentially
be used as a part of specific willow SRC biofertilizers.

The Shannon diversity index (H") and the number of observed
OTUs confirmed that the bacterial diversity of the rhizosphere
was higher than that of the endosphere. The same trend was
observed by Tardif et al. (2016), where alpha diversity was also
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higher in the rhizospheric than endophytic bacteria. Additionally,
we observed a very large difference between the root endophytes
derived from site G of the single-species Tora plots and the mixed-
species plots, which showed much higher diversity than the
rhizosphere samples. This is in agreement with the results
obtained from the culturable bacterial abundance assessment on
R2A medium, where Loden showed significantly lower numbers
of bacterial isolates than Tora and the mixed plots. This result
suggests that there is a strong connection between host plant
species and microbial community composition in the rhizosphere
and the endosphere.

In our previous publication that describes the abundance and
diversity of fungi, we observed differences in alpha diversity for
sites and levels of association with the plant, while no differences
between host plant species were seen (Koczorski et al., 2021). In
comparison to the fungal diversity, the bacterial diversity analysed
using Shannon’s index (H’) was higher than that of fungi with 4.5
(bacteria) and 3 (fungi) for rhizosphere soil and 3 (bacteria) and
2.5 (fungi) for endophytes. The NMDS analysis showed a clear
division of samples according to the test sites, except for
endophytic bacteria at site G, where a statistically significant
separation between genotypes was observed. The separation of
samples by the two sites in the NMDS analysis for fungi was more
distinct, and the samples showed a greater concentration
(Koczorski et al,, 2021). This suggests that fungal communities are
more dependent on soil and weather conditions or nutrient
content, while bacteria are mostly dependent on pH and soil
structure (Lauber et al., 2008; Furtado et al., 2019).

The results of the CCA analysis showed that among the
assessed variables, total nitrogen and available P were the main
factors driving bacterial community diversity, while for fungi,
total nitrogen and organic carbon were the main factors driving
community diversity (Koczorski et al,, 2021). The high similarity
of samples from the Tora monoculture and the mixed cultures at
site G with soil pH suggests that the increase in bacterial diversity
could be caused by the higher pH of the soil at this site. The
significant effect of pH on bacterial diversity was analyzed by
Tripathi et al. (2018), and their results indicate that any deviation
from neutral pH significantly affects the structure of soil
microorganisms. Furthermore, the research conducted by
Kuzovkina et al. (2018) showed a significant positive effect of
higher soil pH on the growth of willow, which may also increase
the diversity of microorganisms by promoting P-solubilizing
microorganism abundance. Although acidification is a strong
indicator of P solubilization, we did not observe a positive
correlation between those two factors in our analyses. The optimal
pH for P solubilization appears to range from 5.5 to 7.5 (Alori
etal, 2017), and at both of our sites, the pH was in the reported
range. This indicates that there are other factors that can influence
P solubilization efficiency.

For the bacterial community, the dominance of Actinobacteria
and Alphaproteobacteria in the soil environment and willow roots
was also reported by Tardif et al. (2016) and Yergeau et al. (2015).
However, it should be mentioned that these studies were conducted
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in contaminated areas that are usually dominated by Proteobacteria.
In the abovementioned studies, as in our work, there was a difference
in the bacterial community between the endo-and rhizosphere,
which was evident in the significant differences in the abundances of
Actinobacteria, Alphaproteobacteria and Firmicutes. Bacteria
belonging to 10 different genera were observed. Among them,
we found possible P solubilizers. Bacillus is a genus reportedly
comprising many P-solubilizing organisms. They are also known for
their antifungal properties and JAA and ACC deaminase synthesis
(Cherif-Silini et al., 2016). Another efficient P-solubilizing genus of
bacteria found in willows is Streptomyces. They are also known for
their antifungal properties (Cao et al., 2004; Khamna etal., 2009; Jog
etal,, 2014). Other, not as explored, genera of P solubilizers found in
our experiment are Gaiella and Nocardioides (Albuquerque et al,
2011). Nocardioides was also reported to possess the ability to
degrade casein and Tweens 20, 40 and 80 (Roh et al, 2020).
Additionally, in Figure 5D, it can be observed that bacteria from the
genus Bradyrhizobium do not differ significantly between the
variants, which suggests that they belong to the group of
microorganisms characteristic of willow regardless of the tested
variants of the experiment. Other genera found in our study were
also reported and are briefly described in Supplementary Table STA
in the supplementary materials. The collection of isolated and
characterized P-solubilizing bacteria will be used in our future
experiments to select the most efficient P-solubilizing bacteria in
short-rotation coppices of willow.

Conclusion

The level of plant association (direct: endophytes vs. indirect:
rhizosphere contact with plant tissue) is the most important factor
shaping the bacterial community in willow short-rotation
coppices, with dominance of Actinobacteria in the endosphere
and Gammaproteobacteria and Bacilli in the rhizosphere.
Cultivation of a mixed willow species system increases the
abundance of P-solubilizing bacteria, which can ultimately
minimize the problem of low P availability in agricultural soils and
lower the need for fertilizer application.
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Abstract

Phosphorus (P) is one of the most important nutrients required for plant growth and
development. However, owing to its low availability in the soil, phosphorus is also one of the
most difficult elements for plants to acquire. Phosphorus released into the soil from bedrock
quickly becomes unavailable to plants, forming poorly soluble complexes. Phosphorus-
solubilizing bacteria (PSB) can solubilize unavailable phosphorus-containing compounds into
forms in which phosphorus is readily available, thus promoting plant growth. In this study,
two willow species, Salix dasyclados cv. Loden and Salix schwerinii x Salix viminalis cv.
Tora, were inoculated with two selected bacterial strains, Pantoea agglomerans and
Paenibacillus spp., to evaluate the plant growth parameters and changes in gene expression in
the presence of different concentrations of tricalcium phosphate: 0 mM (NP), 1 mM (LP), and
2 mM (HP). Inoculation with PSB increased root, shoot and leaf biomass, and for the HP
treatment, significant changes in growth patterns were observed. However, the growth
responses to plant treatments tested depended on the willow species. Analysis of the leaf
transcriptomes of the phosphate-solubilizing bacterium-inoculated plants showed a large
variation in gene expression between the two willow species. For the Tora willow species,
upregulation of genes was observed, particularly for those involved in pathways related to
photosynthesis, and this effect was strongly influenced by bacterial phosphorus solubilization.
The Loden willow species was characterized by a general downregulation of genes involved
in pathway activity that included ion transport, transcription regulation and chromosomes.
The results obtained in this study provide an improved understanding of the dynamics of Salix
growth and gene expression under the influence of PSB, contributing to an increase in yield

and phosphorus-use efficiency.
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Introduction

Phosphorus is a key element required for proper plant development, and its deficiency
can lead to disrupted shoot growth, delayed plant maturation, reduced plant resistance to
pathogens or reduced leaf area and number (Prabhu et al., 2019). Furthermore, phosphorus in
the soil is nonrenewable, and research in recent years confirms that the demand for this element
is continually increasing (Bindraban et al., 2020). Modern artificial fertilizers contain
phosphorus most often in the form of rock phosphate or superphosphate, the sources of which
are limited worldwide, and their increasing price is becoming a serious problem for farmers
wishing to use this type of fertilizer. In the soil, phosphorus compounds unavailable to plants
can exist in two forms, namely, inorganic form and organic form, and only mineralization and
solubilization processes can result in these phosphorus forms becoming available to plants
(Richardson and Simpson, 2011). Soil phosphorus availability is impacted by pH (Penn and
Camberato, 2019). In general, two phosphorus solubility maxima are observed at approximately
pH levels of 4.5 and 6.5, which are associated with the lowest degree of P fixation by Ca, Al,
and Fe minerals (Barrow, 2017; Penn and Camberato, 2019). In acidic soils, the dominant forms
of inorganic phosphorus are aluminium (AIPO4-2H20) or iron (FePO4-2H20) compounds
(Kalayu, 2019; Zhang et al., 2019). In alkaline soils, low-soluble and indirectly plant-available
calcium compounds (dicalcium phosphate (DCP), tricalcium phosphate (TCP), etc.) are most
often found (Bashan et al., 2021). In these form, phosphorus can be leached from soils and ends
up in groundwater and lakes until it reaches the bottom of the oceans where it is unrecoverable
(Bashan et al., 2021).

Phosphorus-solubilizing microorganisms (PSMs) can play a key role in the conversion
of phosphorus compounds into bioavailable forms for plant uptake. Interest in this particular
group of microorganisms and in the possibilities for their practical use in agriculture and
forestry has been particularly important in recent years due to climate change, soil
contamination by excessive use of fertilizers, drought and overexploitation of agricultural land
(Tian et al. 2021). Knowledge of PSMs is progressively advancing by scientists from all over
the world. A key action that would allow full use of PSMs in practice is the selection of strains
with the highest efficiency, i.e., the ability to solubilize phosphorus compounds. PSMs can
enhance phosphorus solubilization directly, e.g., through proton efflux, synthesis of acid and
alkaline phosphatases or chelation of iron ions (via siderophores) (Tian et al. 2021). PSMs can

also indirectly improve the ability of plants to take up nutrients (including phosphorus) through
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phytostimulation (synthesis of indole-acetic acid (IAA) or ACC deaminase) or the production
of hydrolytic enzymes (Richardson and Simpson 2021). Microorganisms in this group can
promote the development of the plant root system and increased uptake efficiency of other key
nutrients needed by plants (Bargaz et al. 2021). For this reason, PSMs are used as key
components of engineered biofertilizers in modern agriculture, for example, in wheat, maize,
rice or fruit trees such as apple trees (Kurek et al., 2013; Viruel et al., 2014; Liu et al. 2019;
Kour et al., 2020).

We chose two Salix species that are commonly grown as short-rotation coppices in
Europe as a renewable energy source as model plant species. The two Salix species, Loden and
Tora, are characterized by substantial morphological differences. Most of the biomass of Loden
willow species is allocated to the leaves, while that of Tora is mainly allocated to the shoots
(Hoeber et al., 2018). In general, Salix species are also considered P efficient, suggesting that
microorganisms associated with these plant species help promote their ability to solubilize and
maintain stable P levels in the soil, making them the perfect model plant species for both

investigation of microbial diversity and phosphorus-focused research.

Currently, in terms of phosphorus, most attention is given to understanding plant
responses to phosphorus deficiency alone, without no consideration of the influence of
microorganisms on this process (Ren et al., 2018; Mo et al., 2019; Wang et al. 2019, Zhang et
al. 2019; Sun et al. 2021). Analysing the transcriptome of a plant inoculated with PSMs can
help provide answers on the extent to which PSMs affect or influence their plant host. Under
phosphorus-deficiency stress, plants activate gene expression cascades responsible for the
synthesis of auxins, abscisic acid, jasmonic acid, salicylic acid and ethylene (Sun et al. 2016).
Researchers have investigated the interactions of plants with arbuscular fungi and the effects of
these interactions on the plant transcriptome (Liu et al. 2020; Ray et al. 2021). Fungi are
responsible for activating genes responsible for auxin synthesis and responses to nitrogen or
phosphorus deficiency (Ludwig-Miiller et al., 2015). In terms of phosphorus metabolism, fungi
are capable of activating genes responsible for the synthesis of phosphatases or genes related
to the transport of phosphorus in plant tissues (Ray et al. 2021). However, there is a large gap
in knowledge, as little attention has been given to the effect of bacteria on plants under
phosphorus-deficient conditions. Soni (2021) and his team examined the effect of the bacterium
Paenibacillus polymyxa on the tobacco transcriptome. The researchers observed that in addition
to activating genes responsible for promoting plant growth, bacteria can influence the
transcription of many genes responsible for phosphorus transport (pstA, pstB, pstC, pstS, phnD
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or phnE) within the plant. However, this was the only publication we could find on the subject.
A more in-depth understanding of the effects of bacteria on the plant transcriptome will allow
a more accurate determination of their positive effects on plants, resulting in more effective

bioinoculants in the future.

This study aimed to assess the effect of inoculation with phosphorus-solubilizing
bacterial strains on the growth and gene expression dynamics in the leaves of two Salix species
grown under three different phosphate concentrations. Therefore, our research involved
screening from a pool of 64 phosphorus-solubilizing bacterial strains obtained in our previous
study (Koczorski et al. (2022)) and selecting strains with the highest efficiency for
solubilization of TCP and DCP for in vitro experiments. Second, evaluation of their potential
to promote plant growth under conditions of phosphorus deficiency in the media was not only
determined based on plant growth parameters but also characterized by the level of gene
expression changes during plant inoculation with the phosphorus-solubilizing bacterial strains.
We hypothesize that phosphorus-solubilizing bacterial strains not only can solubilize phosphate
in the substrate but also can regulate phosphorus-related pathways in plants as well as stimulate
plant growth and development. We speculate that at the initial stages of Salix growth, the effect
of phosphorus-solubilizing bacteria (PSB) will be noticeable at the transcriptomic level in the

leaf tissue.
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Materials and Methods

Phosphorus-solubilizing bacterial strain collection

The phosphorus-solubilizing bacterial strains used in this experiment are part of a
collection reported in our previous study (Koczorski et al., 2021). The bacteria were isolated
(autumn 2018) from the roots and rhizosphere soil of two willow species: '"Tora' (Svalof-
Weibull (SW species No. 910007, S. schwerinii x S. viminalis) and 'Loden' (SW 890129, S.
dasyclados). These willow trees were grown at two test sites established in 2014 as part of the
ECOLINK project in Uppsala (Sweden) and Rostock (Germany) (Hoeber et al., 2018). The
selection of PSB was performed using three selection media containing calcium triphosphate
(National Botanical Research Institute's phosphate growth medium (NBRIP) and Pikovskaya
(PVK)) or calcium diphosphate (DCP) as phosphorus sources (Koczorski et al., 2021). The
bacteria that showed the ability to solubilize phosphorus (presence of halo zones) were
classified into the PSB group and identified based on their 16S rRNA sequences (OP102593-
OP102680) (Koczorski et al., 2021).

Selection of phosphorus-solubilizing bacterial strains with the highest phosphorus

solubilization efficiency

In the present study, a total of 64 bacterial strains from the PSB collection belonging to
the species Pseudomonas, Bacillus, Erwinia, Serratia, Paenibacillus or Burkholderia
(Koczorski et al 2022) were screened. Solid NBRIP and DCP media were used to select the
phosphorus-solubilizing bacterial strains with the highest efficiency for phosphorus
solubilization (the composition of the media is given in Koczorski et al., 2021). The bacteria
were spot inoculated onto media (4 strains per Petri plate), and there were three replicates. The
bacteria were cultured in the dark at 28°C, and the diameter of the halo zone was measured after
1, 5and 10 days of culture. The results obtained were statistically analysed; the 10 most efficient
phosphorus-solubilizing bacterial strains were selected and used for further analysis. The 10
selected bacteria did not include strains that were pathogenic to humans and plants, despite their
high activity (data verified based on published literature).

The ten phosphorus-solubilizing bacterial strains selected in the previous step were
tested in liqguid NBRIP media. NBRIP medium was chosen since plants cannot efficiently
solubilize TCP on their own (Ticconiand Abel, 2004). In this part of the experiment, three
different P concentrations were used, namely, 0 M (NP), 1.0 M (0.3129 g/L TCP) (LP) and 2.0
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M (0.6259 g/L TCP) (HP), and noninoculated media with the same variants were maintained
as controls. The concentration of available P in the liquid NBRIP medium for all 10 strains was
determined using the spectrophotometric molybdenum blue method (30 samples in total).
Based on a statistical analysis, the 2 most effective phosphorus-solubilizing bacterial strains,
Paenibacillus spp. and Pantoea agglomerans, were selected and used to inoculate the plants in

the pot experiment.

Inoculation of two willow species with PSB in conjunction with varying

phosphorous contents

Pots were divided into two compartments using membranes and filled with sterile sand.
Loden and Tora willow cuttings with two or more nodes were inserted into the pots such that
there were two cuttings per pot. To minimize the effect of phosphorus sorption in the soil, quartz
sand was used as a substrate. The pot experiment was designed to include three phosphorus
concentrations and two willow species for inoculation treatments (control (Ctr), bacterium 1
(Pantoea agglomerans) and bacterium 2 (Paenibacillus spp.)). The temperature in the room
was set to 22°C with a photoperiod comprising 10 hours of light and 14 hours of darkness. After
the cuttings acclimated for 7 days, with the exception of the control plants, the pots were
inoculated with bacteria. The plants were watered thrice a week with a fertilizer solution with
one of three different P concentrations (NP, LP, HP) for 1 month. We aimed to reach the final
P concentrations (0.3129 g/L for LP and 0.6259 g/L for HP) in the first week of the experiment.
After the plants were cultivated for 5 weeks, we harvested them and measured the length of
their roots and shoots, along with measuring the fresh weights of their roots, shoots and leaves.
In addition, the total P content in leaves at the end of the experiment was examined via
inductively coupled plasma—optical emission spectrometry (ICP—OES). Fhe-avaHable-P-in-seil
substrate-was-measured-using-the-spectrophotometric molybdenum blue method after sample
extraction with 1% citric acid solution (Van Reeuwijk, 2002) for all the analysed variants in the
experiment (180 samples in total). A portion of the leaves obtained at harvest was flash frozen

in liquid nitrogen and stored at -80°C.

Statistical analysis

The plant growth parameters (leaf weight, shoot weight, root weight, shoot length, root
length) and phosphorus concentrations in leaves and soil were analysed using STATISTICA
v.13.3.721 (StatSoft, Poland). As the results obtained were not normally distributed, the
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Kruskal-Wallis test was used to determine significant differences. Dunn's post hoc test was
performed to determine differences between inoculation variants, different phosphorus
concentrations and the willow genotypes used. The data were analysed using 3-way ANOVA,
with soil P concentration (3 levels), Salix species (2 levels) and bacterial inoculation (2 levels)
included as factors, and their interactions were also evaluated. The response variables included

all the growth parameters and P concentrations in the soil and plant leaves.
RNA isolation

Total RNA was extracted from 100 mg of leaf tissue and crushed in sterile mortars filled
with liquid nitrogen. RNA extraction was performed according to the protocol of Chomczynski
and Sacchi (2006), with slight modifications. A total of 1000 pl of TRIzol reagent (Life
Technologies, Poland) was added to the crushed leaf material, which was then incubated for 5
minutes at room temperature. Then, 300 ul of chloroform was added, after which the material
was incubated for 15 minutes and then centrifuged at 12000 rpm for 15 minutes. A mixture of
0.8 M sodium chloride, 1.2 M sodium citrate and 200 pl of isopropanol was added to the upper
layer of the supernatant, after which the mixture was centrifuged. The resulting pellet was
washed twice with 75% ethanol. The RNA pellet was then resuspended in RNAse-free water
(50 pl) and stored at -80°C. The RNA samples were outsourced to the company Novogene

(Great Britain) for library preparation and transcriptome analysis.
Transcriptome analysis

The reference genome of Salix viminalis was acquired from Almeida et al. (2020). The
total RNA was sequenced using the Illumina platform in conjunction with P5 (P5-
AATGATACGGCGACCACCGAGA (5°-3’) and P5’-TTACTATGCCGCTGGTGGCTCT
(3°-5°) and P7 adapters (CGTATGCCGTCTTCTGCTTG-P7> (5’-3°) and
CATACGGCAGAAGACGAAC-P7 (3’-5%). After the removal of reads that were
contaminated with adapter sequences, that included unknown nucleotides that constituted more
than 10% of either read (N > 10%) and that were of low quality (base quality < 5) and
constituted more than 50% of the sequence, the genome of Salix viminalis retrieved from the
European Nucleotide Archive (ENA) was used as a reference for mapping using HISAT2 (cite
the publication of this reference). Assembly of the sequences was performed using StringTie
software with transcripts of class code type ‘u’. Quantification was performed using

featureCounts, and a differential analysis was performed using DESeq2 and edgeR with the
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following parameters: |log2(fold-change)| >= 1 &padj<= 0.05. Finally, enrichment analysis was

performed using clusterProfiler with a padj< 0.05.

Results

Selection of bacterial strains with the highest efficiency of P solubilization

The solubilization indices obtained from the experiment (given in the range from 0 to
1.6) are presented in the form of a heatmap where for each experimental variant (growth
medium: DCP and NBRIP, strain: 64 in total and time of cultivation: 1, 5 and 10 days), the
values are indicated based on colour differences (from blue to yellow) (Figure 1 A-B). The
values in Figure 1 are sorted according to the P solubilization efficiency measured on the
NBRIP medium after 1 day of bacterial cultivation as the main criterion for the selection of

microorganisms for further studies.

612 5 ED3 B
GL2_5_C01 Bacillu
L2 2 ED1 Baillu

u v
NBRIP_1 NBRIP_5 NBRIP_10 DCP_1 DCP_5 DCP_10

Figure 1 Heatmap of bacteria isolates ordered according to their P solubilization efficiency after 1 day of growth (from down
to top). Activity was measured using solubilization index (from halo zone diameter we subtracted colony diameter).
Measurements were taken after day 1, 5 and 10 from two selective media DCP and TCP. Blue colour indicates low
solubilization index, while yellow high solubilization index.

Of the 64 strains tested, 15 with the strongest ability to solubilize P on DCP and NBRIP

solid media were selected. In this group, we observed a predominance of species of the genus

79| Page



Bacillus (7 out of 15: Bacillus megaterium, Bacillus aryabhattai, Bacillus spp. and Bacillus
mycoides); Erwinia (2 out of 15: Erwinia spp.); and single strains of Rhizobium spp.,
Streptomyces spp., Pantoea agglomerans, Paenibacillus spp., Caballeronia glathei and
Serratia spp. The strains with the highest activity on NBRIP media after 10 days of incubation
belonged to Bacillus megaterium, Erwinia spp., Bacillus spp. and Bacillus aryabhattai. The
second DCP medium showed a slightly different distribution of strains in terms of their activity.
Among the 15 strains previously selected (based on the NBRIP medium), only four displayed
high activity for P solubilization of DCP: Caballeronia glathei, Bacillus aryabhattai, Pantoea
agglomerans and Paenibacillus spp. Notably, the strains with the highest activity on the DCP
medium included Pseudomonas frederiksbergensis, Mitsuaria spp., Paenibacillus spp. and
Pseudomonas spp. Among the group of strains, Bacillus megaterium, Bacillus aryabhattai,
Erwinia spp. and Caballeronia glathei were excluded from further study, as they were
previously reported to be potential plant pathogens (Abdel-Monaim et al., 2012, Narsing Rao
et al., 2019, Dobritsa et al., 2019, Parcey et al. 2022). A more detailed quantitative
determination of bacterial P solubilization efficiency in liquid media (NBRIP) with different P
contents showed that Rhizobium spp., Pantoea agglomerans, and Paenibacillus spp. were most
efficient at solubilizing P compounds (Figure 2). Among the strains with significantly lower
activity were Streptomyces spp., Bacillus megaterium, Bacillus aryabhattai, Acinetobacter spp.
and Pseudomonas spp., while the Mitsuaria spp. and Rhizobium lusitanum strains displayed the
lowest activity (Figure 2). These last two strains were excluded from subsequent stages of the
study. Rhizobium spp. emerged as members among the most active strains; however, this

species is not a typical endophyte and was excluded from further stages of the study.
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Figure 2 P solubilization level represented by presence of PO42 in 0,5 ml of bacteria inoculum (ODeoo 0.10) in liquid TCP
medium. Media were supplemented with 3 different P concentrations: NoP — blue, LowP — red, HighP — green. Letters indicate

significant differences between bacteria for each P variant.

Bacterial contribution to plant growth promotion under phosphorus-limited

conditions

All experimental factors (3 P concentrations, 2 willow species and 2 bacterial
inoculations) showed statistically significant effects on most plant growth parameters (Table 1;
Supplementary Figure 1,2). A slightly better plant growth stimulation effect was observed for
Paenibacillus spp. than for the other species (B2). Significant differences were also observed
in response to different concentrations of P in the soil substrate. The positive or negative effects
of the bacteria were dependent on the parameters tested, and the direction of change varied
between the willow species and the bacterial variants (e.g., significant inoculation x species
interactions listed in Table 1). High P concentrations in the soil significantly increased root
fresh weight and length, while a decrease in leaf fresh weight was observed (Table 1). Soil P
effects on plant growth patterns varied between the two willow species (e.g., the significant
species x factor interaction effects in Table 1). Changes in soil P concentration did not affect
the P content in the leaves (Supplementary Figure 3). Only B1 showed a significant decrease
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in leaf P content for the LP and HP treatments compared to the NP treatment for both Loden

and Tora (Supplementary Figure 3A-B).

Root length Shoot length ‘Wet weight of roots ‘Wet weight of leaf ‘Wet weight of shoot
MS effect F p-level MS effect F p-level MS effect EF p-level MS effect F p-level MS effect F p-level
(1) Inoculation 14542%  20.198* 0.00000*  1891.82* 99.578*  0.00000*  1.78164* 139.884* 0.00000* 304661* 130.063* 0.00000* 6.0201*  44.970* 0.00000%
(2) P concentration 92.89* 12.902%  0.00001* 81.30* 4.280*  0.01677*  227967* 178.986*  0.00000* T.1424% 30491*  0.00000* 1.7321% 12.939* 0.00001*
(3) Species 1068.67* 148.435*  0.00000* 264.36* 13.915* 0.00033*  2.41824*% 189.865* 0.00000% 0.1916 0.818 0368185 3.1836* 23.781% 0.00001*
M =(2) 16331%  22.684*  0.00000% 28032* 14.755%  0.00000%  017112*  13.435*%  0.00000* 2.4937* 10.646*  0.00000% 1.0162*  7591* 0.00003*
(=G 19321%  26.836*%  0.00000% 38.16 2.009  0.140142  031205%  24.500%  0.00000* 0.1297 0554 0576823 1.9774%  14.771*  0.00000*
@ =3 15413 21.408* 0.00000% 315.16* 16.589*  0.00000%  1.43582*  112.740%  0.00000* 49392*  21.086* 0.00000* 0.0498 0372 0.690339
D=@=3) 122.62* 17.032*  0.00000* 357.90* 18.839*  0.00000*%  056060*  44.015*  0.00000* 1.8046* 7.704*  0.00002* 1.1084*  8280* 0.00001*
Error 7.20 15.00 0.01274 0.2342 0.1339
Tukey test for unequal sample sizes:
(1) Inoculation Cir 11.62A Cir 2116 A Cir 038A Cir 1L1ZA Cir 1.07A
Bl 1238A Bl 3141B Bl 0.38B Bl 274B Bl 155B
B2 1542B B2 3516C B2 083C B2 269B B2 189C
(2) P concentration NP 11.29A NoP 30.62B NoP 036 A NoP 267C NoP 141A
LP 14.19B LowP 2764 A LowP 057B LowP 208B LowP 135A
HP 1393B HighP 2947 AB HighP 0.86C HighP 180A HighP 176B
(3) Species Loden 999 A Loden 2768 A Loden 045 A Loden 223A Loden 168B
Tora 1628 B Tora 3081B Tora 075B Tora 214A Tora 133 A

Table 1 ANOVA results for the effects of bacterial Inoculation (B1, B2), soil P concentration (NP, LP, HP) and willow plant

Species (Loden, Tora) on various plant growth traits. * indicate significant difference.

Transcriptome analysis of two willow species in response to inoculation and limited

phosphorus concentrations

A transcriptome analysis of two willow species was performed to determine the effects
of inoculation with the two selected PSB (B1 and B2) and different concentrations of P
compounds (NP, LP and HP). The most distinctive difference was observed for plants
inoculated with B2 of the Loden variety compared with the Ctr, where 2147 genes were
downregulated and 2296 genes were upregulated. In addition, a similar trend was observed for
both willow species in the HP and LP treatments: there was a greater number of genes that were
upregulated compared to those in the NP treatment, the number of which ranged from 426 to
1920 genes (Supplementary Figure 4). No significant trend was observed in terms of
downregulation of genes. The average numbers of all genes in Loden and Tora whose
transcription patterns differed from those of the control variant were approximately 2500 and
1000, respectively. According to Venn diagrams for the Loden species, a pool of genes common
to both the Ctr and B1 and B2 variants was lower in the NP (15009 genes) treatment compared
to the LP (18099 genes) and HP (18054 genes) treatments (Figure 3A-C). In addition, a very
low number of common genes between the B1 variants and the Ctr were observed in the LP
treatment for the Loden (Figure 4B) and Tora (Figure 3E) variants, which were 355 and 430,
respectively, the lowest values recorded. As shown in Figure 8, a Gene Ontology (GO)
enrichment analysis was performed, and the 30 most differentially expressed genes associated
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with p values under 0.05 are presented for three P concentrations and two inoculation variants
(bacteria B1 and B2 are compared to the corresponding non inoculated Ctr). Analysing the
effect of different P concentrations on the Loden willow species, we characterized the molecular
functions in the NP treatments according to the presence of a large number of genes responsible
for tetrapyrrole binding, haem binding, iron ion binding, GTP binding or ribonucleotide binding
(Figure 4A-B). The LP treatment revealed a high number of genes responsible for the process
of translation, and the HP treatment displayed a high number of genes associated with
cytoskeleton formation and rearrangement (Figure 5A-B, Figure 6A-B). In the case of the
inoculation effect, the Loden variants inoculated with B1 (rather than B2) demonstrated a high
expression of genes involved in cell membrane structure, phosphatase activity and acid
phosphatase activity (Figure 4, 5, 6). The variants inoculated with B2 were characterized by
genes involved in hydrolase activity and pyrophosphatase activity and many genes related to
cation and ion transport (Figure 4, 5, 6). For the LP treatment, significant changes in the
molecular functions of plants inoculated with B1 and B2 were observed, although some
similarities were detected. In response to this variant, a significant increase in the number of
genes responsible for DNA binding and regulation of transcription and translation was observed
(Figure 5A-B). However, enrichment of GO terms related to direct phosphorus solubilization
was not observed. Similar to the NP treatment, a number of genes responsible for the
biosynthesis and metabolism of peptides that make up cell membranes were noted. In the
category of biological processes, the variants inoculated with B1 under LP revealed processes
related to the stress response (especially oxidative stress) and the plant defence system (Figure
5A). In the HP treatment, a shift from transcription to translation and, in particular, to ribosome
synthesis was observed for the genes (Figure 5A-B). Moreover, genes related to chromatin
formation and the formation of ribonucleoprotein complexes were found. For the NP, LP and
HP treatments, GO terms associated with cell membranes were detected among the
differentially expressed genes. The plants inoculated with B2 for HP were also characterized

by genes related to different types of hydrolases, which was not observed in response to B1.
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Figure 3 Venn diagrams representing common and unique genes expressed among inoculation variants. Loden — A,B and C;
Tora— D,E andF;C — non inoculated control; B1 — Bacteria 1; B2 — Bacteria 2; NoP — No Phosphorus; LP — LowP; HP- HighP.

For the Tora willow species under NP, a high frequency of genes responsible for
transcription, DNA binding and organic acid metabolism was observed (Figure 4C-D). Plants
under the LP treatments were characterized by genes associated with transport and pollination,
whereas under HP, a high frequency of genes associated with chloroplasts, thylakoids and
photosystems | and Il was observed (Figure 5C-D, Figure 6C-D). For the effect of inoculation,
B1-inoculated plants showed molecular functions belonging to tetrapyrrole and haem-binding
activity and biological processes related to pollen recognition and formation and intercellular
communication (Figure 4C, 5C, 6C). The plant inoculated with B2 was mainly characterized as
expressing genes involved in metabolic processes and the biosynthesis of carboxylic acids,
oxyacids and organic acids (Figure 4D, 5D, 6D). The Tora willow species under LP showed a
change in gene expression and significant differences between the B1 and B2 variants (Figure
5C-D). In the case of the B1 variant, a high number of genes responsible for the stimulus
response even at the cellular level was noted. A large number of genes responsible for transport
also was detected. B2 under LP elicited the expression of a large number of genes responsible

for transcription (Figure 5D). The he expression of genes related to pollen production,
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pollination and modification of various proteins was also evident, albeit with lower numbers.
As with the LP treatment, little similarity was observed between B1 and B2 inoculation (with
the exception of genes encoding transferases) (Figure 5C-D). Inoculation of plants with B1
resulted in high expression of genes responsible for transferase activity and coenzyme binding.
A large number of genes related to the metabolic activity of various acids, glucan, lipids and
carbohydrates also emerged. Inoculation with B2 increased the expression of genes involved in
photosynthesis (thylakoid structure, photosystems I and Il) and the synthesis of structural
elements of plant cells. For each of the NP, LP and HP treatments, upregulation of a large

number of genes responsible for the activity of different types of transferases was observed.
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Figure 4 GO enrichment analysis scatter plots presenting the top 30 genes detected for the NP
treatment of inoculation and P concentration for two willow species, Loden (A-B) and Tora (C-

D). The results are presented in pairs (B1 and B2) and are compared to the respective controls.
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Figure 5 GO enrichment analysis scatter plots presenting the top 30 genes present for the LP

treatment of inoculation and P concentration for two willow species, Loden (A-B) and Tora (C-

D). The results are presented in pairs (B1 and B2) and are compared to the respective controls.
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Figure 6 GO enrichment analysis scatter plots presenting the top 30 genes present for the HP

treatment of inoculation and P concentration for two willow species, Loden (A-B) and Tora (C-

D). The results are presented in pairs (B1 and B2) and are compared to the respective controls.
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Gene expression regulation

Among the 10 most frequently up- or downregulated genes found in each experimental
variant, a general trend based on the willow species/species was observed in which genes for
the Loden willow species were downregulated and genes for the Tora willow species were
upregulated regardless of the experimental conditions tested (bacterial inoculant B1 or B2 and
P concentration). This was particularly evident for genes associated with biological processes

(Figure 7) and molecular functions (Figure 9).

Analysis of GO biological processes (Figure 7) revealed the occurrence of 86 different
up- or downregulated genes across all factors tested in the experiment. Among these genes, 43
were specific only to Loden, and 37 were specific to Tora. There were also 6 genes that were
either up- or downregulated in both plant species tested. These genes were responsible for the
cellular carbohydrate metabolic process, glucan metabolic process, glucan metabolic process,
defence response, response to auxin, and lipid biosynthetic process. In response to both
inoculation variants (B1 and B2), 13 common genes were observed, mainly those related to the
metabolism and biosynthesis of fatty acids, glucan, and carboxylic acids. A strong effect of
phosphorus (NP, LP, HP) was observed for fatty acid and monocarboxylic acid biosynthesis
and metabolism, for which downregulation was observed in the NP treatment and upregulation

in LP and HP treatments.
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Figure 7 Biological process-associated gene expression regulation for all willow species, PSB

and phosphorus concentrations. The red colour indicates upregulation of genes, while the

green colour indicates downregulation.
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In terms of the GO cellular components, 65 different genes were observed, of which 28
were specific only to Loden (mainly downregulation), and 27 were specific to Tora (mainly
upregulation) (Figure 8). At 10, the pool of common genes for cellular components was larger
than that for biological processes and included a large number of genes related to cellular
elements involved in photosynthesis, i.e., thylakoids, photosystems I and 11, the photosystem |1
oxygen-evolving complex and photosynthetic membranes. In response to different inoculants
(B1 vs. B2), we observed the occurrence of 16 common genes, which were associated with
terms related to chromosomes, the apoplast, DNA packaging or extracellular elements in
addition to photosystem elements. For genes associated with cellular components, we also
observed a strong effect of P on photosystems I and 11, thylakoids, the photosystem Il oxygen-
evolving complex, and the oxidoreductase complex; moreover, the NP treatment
downregulated the expression of these, in contrast to the LP and HP treatments, which

upregulated the expression of these genes.
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Figure 8 Cell component-associated gene expression regulation for all willow species,
PSB and phosphorus concentrations. The red colour indicates upregulation of genes, while the

green colour indicates downregulation.
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For GO molecular functions, our analysis revealed the presence of 73 genes, among
which 37 were expressed only in Loden, and 27 were expression in Tora (Figure 9). The pool
of common genes comprised 11 genes and included those mainly responsible for calmodulin,
haem and calcium binding, transferase activity, transcription and DNA-binding processes. We
observed that the gene pool shared by Loden and Tora was characterized by the lack of an
apparent division between downregulated and upregulated genes. The pool of common genes
that responded to both B1 and B2 totalled 12. The abovementioned group of genes was joined
by microtubule-binding activity, DNA-binding transcription factor activity and copper ion
binding. In the case of molecular functions, the influence of P on gene regulation was observed
only in the case of coenzyme binding, where the HP treatment elicited upregulation, which
contrasted with the NP treatment, which caused those genes to be downregulated. Additionally,
downregulation of two genes related to phosphatase activity was characteristic for the Loden
B1 NP treatment combination.
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Figure 9 Molecular function-associated gene expression regulation for all willow species, PSB
and phosphorus concentrations. The red colour indicates upregulation of genes, while the green

colour indicates downregulation.
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Discussion

In an era of climate change and a growing human population on Earth, there is a
challenge in providing humanity with adequate food and energy resources, which are critical
for such rapid population growth. The increased use of P fertilizers in agriculture worldwide is
causing many undesirable environmental changes and depleting the planet's supply of this
element (Filippelli, 2008; Alewell et al., 2020). The results of this experiment highlight the
large effects of phosphorus provided by PSB in terms of altering growth patterns and gene
expression, which manifested in the form of increased shoot growth for both willow species
and general upregulation of genes for Tora and downregulation of them for Loden. The findings
presented in this paper could constitute an important piece of the puzzle for developing effective

bioinoculants containing PSB to increase the soil P use efficiency of plants.

Phosphate-solubilizing bacterium selection

From a pool of 64 PSB, two strains with the highest TCP-solubilization potential were
selected (based on two screening stages carried out on solid and liquid TCP media) to
investigate the effects of inoculation on the growth of willow seedlings under different P
concentrations. The willow plants were grown in a substrate supplemented with TCP
(Cas(POa4)2), which is not a readily available source of P, and the phosphate solubilization
process carried out by the bacterium inoculants was the only source of available P, with the
exceptions of strains Bacillus aryabhattai (GL2 5 ED2) and Caballeronia glathei
(GTL2_4_RP10), which solubilized TCP and DCP equally well. Bacillus spp. are well-known
and well-documented P-solubilizing microorganisms and have been tested many times for their
use as potential biofertilizers of crop plants (Tahir et al., 2019; Ahmad et al., 2019; Miljakovi¢
etal., 2020; Mosela et al., 2022). In the present experiment, among the 15 most effective strains
that solubilized phosphates, Bacillus spp. also were predominant (7 out of 15). This study found
that Rhizobium sp. bacteria solubilized phosphate compounds most effectively, which
highlights their great potential not only for nitrogen fixation but also as free-living soil bacteria
that can solubilize P. Recent literature has confirmed the high efficiency of Rhizobium applied
to crop plants, but there are no reports of the role of this species in tree growth (Afzal and Bano,
2008; Jaybhay et al. 2017; Verma et al., 2020; Mir et al., 2021; Shome et al., 2022).

In the pot experiment, strains Pantoea agglomerans (B1) and Paenibacillus sp. (B2)
that effectively solubilized phosphates in both LP and HP media (analysed by the molybdenum
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blue method) were selected. Pantoea agglomerans is described as a plant growth-promoting
rhizobacterium (PGPR) capable of auxin biosynthesis, ACC deaminase production, ammonia
production, P solubilization and increasing plant tolerance to salt stress (Majumdar et al, 2015;
Cherif-Silini et al., 2019; Emami et al., 2021). Because willow trees do not constitute a food
crop, the potential pathogenicity of willow to humans was not an issue (Mackiewicz et al.,
2016). The second strain we selected was Paenibacillus sp., which is described in the literature
as a bacterium capable of nitrogen fixation; P solubilization; stimulation of the plant defence
system; and production of ammonia, HCN, IAA and siderophores (Kumari & Thakur, 2018;
Hussain et al., 2020; Selim, 2022). Both bacterial species have been previously experimented
with as bioinoculants of plant species such as barley (Canbolat et al., 2006), wheat (Hussain et
al., 2020), sugarcane (Quecine et al., 2012), poplar (Vaitiektnaité et al., 2021) and palm trees
(Saadouli al., 2021).

Effects of inoculation on willow growth

Inoculation with PSB and P treatments had significant effects on the growth patterns of
the tested plants. However, it was difficult to determine whether the changes were caused by
different soil P levels, bacterial inoculation, or a combination of both. Growth responses were
different for Loden and Tora. For Loden, an increase in shoot thickness was found in response
to higher soil P, while for Tora, the shoot length increased. In the NP treatment, the decrease in
the leaf fresh weight could have been the result of P deficiency, because P deficiency has been
shown to stimulate root allocation at the cost of leaf allocation (Ericsson, 1995). However,
changes in P allocation to the roots or the leaves could also be related to changes in substrate
pH, because increasing TCP concentrations may have increased the substrate pH. According to
Walle et al. (2007), the optimum pH for willow growth is between 5 and 7.5, and the process
of P solubilization by microorganisms is often associated with soil acidification. While alkaline
phosphorus compounds are being formed, the pH becomes equilibrated by the process of

microbial phosphate solubilization (Khan et al., 2014).

Effects of increasing P concentration and phosphate-solubilizing bacterium

inoculation on willow gene expression

Plant transcriptome studies are becoming an integral part of all analyses aimed at
determining the impact of biotic or abiotic stresses on various biological processes, cellular

components or molecular functions. There are a growing number of publications examining the
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transcriptomic responses of tree crops and the impact of factors such as drought (Pucholt et al.,
2015; Jia et al., 2020; Xu et al., 2021), salinity (Yao et al., 2018; Zhou et al., 2020; Pang et al.,
2022) and pest resistance (Wang et al. 2020). To date, however, there are no publications
showing differences in gene expression under P-deficient conditions. Our results allowed us to
determine the effects of phosphate-solubilizing bacterium inoculation with increasing
concentrations of plant-available phosphate on the expression of genes related to the P stress

response and P metabolism, mobilization and remobilization.

Our transcriptomic analysis showed high variability between the gene expression in the
leaves of the two willow species tested (Loden vs. Tora), the inoculation variants (B1 and B2)
and the P concentrations in the substrate (NP, LP, HP). The results showed that Loden exhibited
approximately 1500 more differentially expressed genes than did the Tora willow species. As
our previous study has shown, these species differ significantly in their morphology (Hoeber et
al. 2017) and root-associated microbiome (Koczorski et al. 2021). As reported by Hoeber et al.
(2017), Tora is characterized by highly efficient biomass production (tall shoots) but a smaller
leaf area. Conversely, Loden is characterized by a large leaf area but relatively low amount of
biomass production. Moreover, under NP conditions, Loden was shown to express a low
number of genes in common between both the B1 and B2 variants, suggesting that inoculation
significantly affects gene activity, specifically under these conditions. According to previous
studies, one of the plant responses to inoculation is increased activity of genes responsible for
DNA replication and cell division (Camilios-Neto et al. 2014). In addition, the activity of genes
related to response to stimuli, signalling, regulation of biological processes and metabolic
processes were observed (Sasha and Seal et al. 2015). In our analysis, similar gene activities in
both the Loden and the Tora willow species, especially under LP conditions, were observed.
Additionally, the expression of genes responsible for photosynthesis, transcription and
translation in the LP and HP treatments was also observed. This was manifested by the activity
of genes such as those involved in the glucan metabolic process, thylakoids, photosystems I and
I, translation, DNA-binding translation factor activity, transcription regulation and sequence-
specific DNA binding.

Phosphorus plays a very important role in the photosynthetic carbon reduction cycle,
also known as the Calvin-Benson cycle, because the final product of this process is 3-
phosphoglyceraldehyde (triose-P), which is then (already in the form of sucrose) transported to

the cytosol of the cells or remains in the chloroplasts where it is converted into starch (Rychter
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and Rao, 2005). Among the previously mentioned genes are also those responsible for glucan
metabolic processes. Glucan phosphatase plays an important role in the transient metabolism
of starch in leaves, as glucan phosphatase is the main storage material and consists mainly of
glucose polymers. During the diurnal cycle of photosynthesis, starch is deposited during the
day to be used up at night to provide sufficient metabolites needed for plant growth (Meekins
et al. 2016). Our results suggest that the bacteria present in the substrate significantly improved
the availability of starch and thus had a positive effect on plant growth. For the Tora willow
species inoculated with B1, activity of genes responsible for pollen recognition and formation
(NP and LP treatments) was observed. The direct effect of inoculation on pollen formation has
not yet been investigated, but according to a study by Lankinen et al. (2000), phosphorus has a
positive effect on the quantity and quality of pollen formed, while abiotic stresses such as
salinity do not affect this process. Among the variants tested, only the Loden willow species
inoculated with B1 under LP showed the expression of genes directly related to stress and
defence mechanisms. Studies conducted on Arabidopsis thaliana leaves under P-deficiency
conditions showed that these plants exhibit high expression of genes involved in phosphatase
synthesis and genes that encode ribonucleases and sulfolipid biosynthesis proteins that replace
P, contributing to P remobilization (Muller et al., 2007). Similarly, we detected genes involved
in ribonuclease activity and phosphoric ester hydrolase activity, which may indicate P-
deficiency stress. The genes indicated above (except for those encoding ribonucleases) were
also expressed at lower numbers in response to the other treatment combinations in this study,
which may be related to the rapid growth of the plants at an early stage of development. As a
woody plant species, willows are known for their rapid growth, and as research has indicated,
P remobilization and phospholipid replacement by sulfur and galactolipids is a strategy

employed to increase photosynthetic efficiency (Lambers et al., 2012).
Gene expression regulation

The information obtained in this analysis largely overlaps with the results obtained from
the GO enrichment analysis, providing additional information about genes that are upregulated
and downregulated. The first and most prominent result of the analysis is the observed trend, in
which the genes of the Loden willow species were downregulated and those of the Tora willow
species were upregulated. As mentioned earlier, this may be a result of the difference in biomass

allocation between the two willow species (Ericsson, 1995).

98 |Page



For the Tora willow species, a large effect of P on genes related to photosynthesis,
thylakoids and starch metabolism in the form of upregulation of photosynthesis, photosystems
I and I, thylakoid parts, carboxylic acid, carbohydrates, glucan metabolism and biosynthesis
genes was found. All of the abovementioned genes are highly dependent on P because it is a
component of ATP, NADPH, nucleic acids, sugar phosphates and phospholipids (Carstensen
et al., 2018). The effect of phosphorus on carboxylic acids seems to be substantial due to the
important role of these compounds as plant signalling molecules; also important are compounds
like malate, which can be converted into NADH and NADPH, thus increasing the efficiency of
photosynthesis (Mutz et al. 2013). Additionally, the presence of carboxylic acids has been
confirmed in the apoplast, where activity related to the regulation of stomatal opening occurs
(Mayer et al. 2010).

Among the downregulated genes for the Loden willow species, genes involved in lipid
peptide metabolism and biosynthesis, nucleic acids, and ion and metabolite transfer were
detected, while upregulation of genes involved in the defence mechanism and response to stress
was also observed. Gene expression studies conducted on plants subjected to P-deficiency stress
have indicated that the most common plant response to P deficiency is the downregulation of
genes involved in ATP synthesis, translation, transport, carbohydrate synthesis and
photosynthesis, which was observed for all the treatment combinations involving Loden (Bai
etal. 2014; Chu et al. 2018). In addition, the upregulation of genes related to sulfur compounds
was observed for the B2-inoculated Loden treatment combinations, indicating an attempt to
replace P to increase phosphorus-use efficiency (Lambers et al., 2012). Notably, plants in the
LP and HP treatments did not show signs of P deficiency, so the phenomena are related to
species differences and biomass allocation rather than P itself.
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Conclusions

Inoculation of Salix spp. with PSB increased soil phosphorus uptake and stimulated
plant growth, which was manifested through changes in the growth patterns of both willow
species and changes in the regulation of gene expression at the transcriptional level. Significant
species differences were observed between Loden and Tora in their responses to the two
inoculation variants and the different P concentrations in the substrates, the differences of which
were evident, e.g., an increase in shoot thickness for Loden in response to higher soil P and a
greater shoot length for Tora under the same treatment conditions. Transcriptomic analysis
showed that phosphate-solubilizing bacterium inoculation of the Tora willow species
significantly affected transcription in the leaves, affecting the upregulation of most genes,
especially those related to photosynthesis, which are highly influenced by phosphorus. A
general reduction in gene transcription levels was observed in Loden, especially for genes

involved in ion transport, transcriptional regulation and chromosomes.
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9. Summary of results

The subject of the research described in this thesis was the soil microbial and ecological
value of Salix spp. in short rotation coppices in Europe. According to the European Union
Directive (of April 2009) on the promotion of the use of energy from renewable sources
(Directive 2009/28/EC), 20% of all energy in Europe should be produced from renewable
sources. Biomass production for energy generation using Salix as a fast-growing tree species is
one of the promising ecological and efficient options. The first stage of the research was the
analysis of two Salix field sites from different geographic origins within Europe. The first site
was located in Uppsala (Sweden: 59.820375, 17.640334), and the second was located in
Rostock (Germany: 54.061391, 12.081857). Both sites were created through the ECOLINK-
Salix project, and the Salix genotypes were planted there identically. Two willow cultivars,
‘Loden’ (S. dasyclados) [L] and Tora' (S. schwerinii x S. viminalis) [T], were used in the study,
which are characterized by great morphological and physiological differences. ‘Loden’ is
characterized by a larger leaf area but less shoot growth, and ‘Tora' has a smaller leaf area but
reaches a larger size. This made it possible to test the influence of factors such as site conditions
(soil and climate) and planting design (monoculture vs. mixed cropping) on the occurrence and
diversity of the soil microbial diversity and the ratio of P solubilizing microorganisms (bacteria

and fungi).

In the first publication (P1), attention was focused on assessing the effect of growing Salix
genotypes in monoculture and mixed culture on soil nutrient availability at two test sites with
different soil and climatic conditions and analysing their effects on enzymatic P mobilization.
Using data obtained from 2014 and 2018 (the first rotation cycle), a comparison was made
between the plant availability of potassium, magnesium and phosphorus in the soil, and the
activity of acid and alkaline phosphatase was assessed as a marker for biocatalysis in P
mobilization. Mixed cultures, in contrast to monocultures, did not show a decrease in
phosphorus availability after a period of 4 years, but this did not affect biomass production
significantly. A higher activity of acid phosphatase compared to alkaline phosphatase was
observed in soils at both test sites based on site-specific soil pH (<7). As the initial nutrient
stocks at the two sites differed significantly, it was assessed that site interactions were the main

regulators of changes in nutrient concentrations available to willow.
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e The main factor influencing changes in nutrient availability (including phosphorus) in
short-rotation willow crops is the site and its biodiversity, which, by promoting the

diversity of the soil microbiome, contributes to the efficiency of P mobilization.

The next step (P2 and P3) was to isolate and evaluate the abundance of culturable
microorganisms capable of solubilizing phosphorus and to put this in the context of the total
microbial population in the rhizosphere willow roots (microbiome studies). At the selection
stage, three selective media were used, two containing calcium phosphate (NBRIP and PVK)
and calcium hydrogen phosphate (DCP). In this way, 22 fungal strains were isolated, among
which fungi of the genus Penicillium predominated. The fungi were characterized by a high
ability to solubilize calcium hydrogen phosphate, and their abundance was significantly higher
in samples taken from mixed sites (cv. Loden and Tora). The selection also yielded 88 bacterial
strains capable of solubilizing phosphorus, among which the genera Pseudomonas, Bacillus
and Erwinia dominated. The bacteria solubilized calcium phosphate much better, showing
relatively little activity on medium containing calcium hydrogen phosphate. The abundance of
both bacteria and fungi was higher in the rhizosphere soil, and higher in roots at mixed sites
than under monocultures. A higher abundance of P-solubilizing rhizosphere bacteria and fungi
was also observed relative to endophytes in the mixtures. When the total bacterial and fungal
community was examined, it was shown that the level of association with the plant (rhizosphere
microorganisms vs. endophytic microorganisms) most significantly affected both the
abundance and diversity of microorganisms. In the case of P-solubilizing fungi, Penicillum spp.
dominated only in soil, not in the roots, but in the case of bacteria, the Alpha- and

Gammaproteobacteria classes were maintained in soil and roots.

e The level of association with the plant (endophytes vs. rhizosphere microorganisms) is
the main factor influencing the diversity of both PSMs (bacteria and fungi) and the total

microbial diversity.

The final stage of the work (P4) involved setting up a pot experiment and starting to select
bacterial strains with the highest P solubilization efficiency. From a collection of 64 P-
solubilizing bacteria obtained at the beginning of the study, two strains were selected in two
stages. The first stage of selection was carried out on solid NBRIP (tri-calcium phosphate) and
DCP (di-calcium phosphate) medium and allowed the selection of 15 strains, which were then
subjected to further selection in NBRIP liquid medium after potential pathogens were

discarded. The two strains we selected were Pantoea agglomerans (B1) and Paenibacillus sp.
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(B2). The pot experiment examined 3 factors (in each possible combination) affecting willow
growth: cultivar (Loden, Tora), inoculation (control, B1, B2) and phosphorus concentration
(NoP - 0 g/l, LowP - 0.3129 g/l and HighP 0.6259 g/I). The experiment was conducted for one
month, and at the end, the following growth parameters were measured: wet weight of leaves,
shoot, and roots; length of shoot and roots; and phosphorus concentration in soil and leaves. In
addition, transcriptome analysis of leaves obtained from each variant of the experiment was
performed. The analysis of growth parameters showed a large effect of phosphorus on plant
growth that was manifested by a change in biomass allocation in shoots. Both willow species
at high phosphorus had significantly increased shoot biomass, but in the case of Loden, the
change was an increase in shoot thickness, and in the case of Tora, the change was in length.
Transcriptome analysis showed large differences between Loden and Tora species, where
common genes accounted for only ~15%. In addition, a trend was observed where genes of the
Tora species underwent upregulation and Loden downregulation. The Tora species was
characterized by high activity of genes responsible for photosynthesis and starch synthesis, both
of which are strongly influenced by phosphorus. The Loden species showed a general
downregulation of gene transcription, especially for ion transport, transcriptional regulation and
chromosome genes. Inoculation seemed to have less of an effect than species but did affect the
activity of genes such as fatty acids, glucan, carboxylic acid biosynthesis and metabolism and
transcription-related processes. The greatest effect of phosphorus was seen primarily for the
genes encoding photosystem I and Il, thylakoids, photosystem Il oxygen evolving complex,
and oxidoreductase complex, which were upregulated for the HP viroid and downregulated for
the NP viroid. Among the active genes were also those responsible for phosphatase synthesis
but only for the Loden B1 NP variant.

e Phosphorus significantly alters biomass allocation by stimulating shoot growth in length
for Tora and in width for Loden. In addition, it significantly affects gene transcription,
causing upregulation of genes related to photosynthesis for Tora and downregulation of

genes related to transcription or ion transport in Loden.
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10. Discussion

Mixed Salix plantations prevent nutrient loss

The first aim of the study was to examine the nutrient availability and phosphatase
activity of soils and their changes depending on the design of Salix spp., i.e., pure cultures or
mixed cultures. The samples were from 2014 and 2018, i.e., the first cutting cycle of Salix
rotation systems. Soil analysis showed that Mg and K reserves were at optimal levels, but
phosphorus was below the recommended amount (10-18 mg P/100 g soil) (Hoffmann, 1991).
The high availability of nutrients in the soil at both sites is understandable, as these areas were
previously used as agricultural land and thus were frequently fertilized (Lutter et al., 2016). The
nutrient surplus at the German and Swedish sites, which were agricultural land in the past, is in
agreement with previous studies (Kahle et al., 2010) and clearly indicates that there is no need
to fertilize the coppice during the initial growth phase. Additionally, a positive correlation was
observed between biomass and P and K in the early growth phase and a negative correlation
with P and K in the later growth phase, indicating an important role for these two elements in
the early growth phase of willows. Willows are known for their high phosphorus uptake
capacity, especially in situations where they have a properly functioning symbiosis formed with
ectomycorrhizal fungi (Rennenberg and Herschbach, 2013). The soil nutrient supply at both
sites decreased over 4 years, especially for plants planted as monocultures, and similar results
were also obtained for the willow species Salix purpurea, 'Hotel' (Ens et al., 2013). In addition,
the Loden species used in this experiment is known for its ability to efficiently uptake nutrients,

especially in combination with other willow species (Hoeber et al. 2017).

The activity of acid phosphatase was three times higher than that of alkaline
phosphatase. Previous studies conducted at these sites reported a pH value of approximately 6
(Koczorski et al., 2021), which promotes the activity of this type of phosphatase. In addition,
studies indicate a slow decrease in pH in short rotation coppices, which gradually increases acid
phosphatase activity (Pellegrino et al., 2011). Phosphatase activity at the German site decreased
significantly after 4 years, which may be related to the naturally occurring vegetation forming
a dense network of fine roots (Lugli et al., 2019). No correlation of phosphatases with
phosphorus was observed, while a positive correlation with potassium appeared. This indicates

a probable lack of influence of phosphorus on phosphatase activity and suggests that the activity
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of these enzymes may be controlled by a number of other, more complex factors. The high
correlation of phosphatases with K may be related to its important role as a cofactor for many
enzymes. Studies conducted on Cucumis sativus L. indicated increased activity of acid
phosphatases in the presence of K ions (Tabaldi et al., 2007). Increased acid phosphatase
activity may also be related to the interaction of arbuscular and ectomycorrhizal fungi. As
established by Baum et al. (2018), these fungi play an important role in promoting acid
phosphatase activity in Loden and Tora species and indicate increased activity in mixed

cultures.

The level of plant association as the main factor shaping fungal and bacterial diversity in
willow short-rotation coppices

The next stage of the work was to investigate the influence of soil properties, planting
system and level of association with the plant on phosphorus-solubilizing bacteria and fungi
and to establish their role and contribution compared to that of the willow microbiome. A
selection of fungi (P2) and bacteria (P3) on solid media was performed, resulting in the isolation
of 22 fungal and 88 bacterial strains with the ability to solubilize phosphorus. Among the most
frequently isolated fungal strains at both test sites examined in this study was the genus
Penicillium. This fungus is often used in research on P solubilizing fungi, and Penicillium
bilaiae is marketed by NovoZymes as a bioinoculant to increase phosphorus mobilization
(Chatli et al., 2008; Patil et al., 2012; Sharma et al., 2012). For the test site in Germany, the
fungal genus most frequently isolated was Clonostachys. It was isolated from both the
rhizosphere and roots of willow. In the literature, this fungal species is described as one of the
endophytes of willow (Hosseini-Nasabnia et al., 2016). Among the isolated P solubilizing
bacteria, the genera Pseudomonas, Erwinia and Bacillus predominated. All the aforementioned
genera are known for their ability to solubilize phosphorus and other plant growth-promoting
properties and are frequently used in research, especially Pseudomonas (Yu et al., 2011; Sarker
et al., 2014) and Bacillus (Liu et al., 2015; Chawngthu et al., 2020). These strains have positive
effects on crops such as wheat (Liu et al., 2019), maize (Viruel et al., 2014), rice (Gomez-
Ramirez and Uribe-Velez, 2021) and some trees (Kurek et al., 2013). Another phosphorus
solubilizing bacterial strain I frequently isolated was Erwinia sp. In the literature, this bacterium
is often described as a plant pathogen, but we did not observe any visible symptoms of infection
in willows. Erwinia sp. are quite rare in the literature but are reported to have the ability to

promote plant growth, and their presence has been confirmed in the underground and
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aboveground parts of trees such as almond (Guzman et al., 2021), apple and pear (Rezzonico
et al., 2016) and in agricultural crops such as barley (Li et al., 2021). Among the
microorganisms isolated, rhizosphere bacterial and fungal strains are much more common than
endophytic strains. Plants are known to synthesize substances capable of attracting or inhibiting
microbial entry by acting as a filter through which only selected microorganisms can enter
(Jacoby et al., 2017; Taulé et al., 2021). In addition, we observed a much higher abundance of
P solubilizing microorganisms isolated from mixed crops and the lowest for the Loden species.
This indicates that both species and planting system (mixed cropping) have an effect on
bacterial and fungal biodiversity. This effect may be related to increased competition between
both plants and microorganisms, consequently leading to increased biodiversity (Weih et al.,
2019).

The data obtained from the microbiome survey indicated a dominance of
Dothideomycetes, which is consistent with other studies conducted on willows (Yergeau et al.,
2015). Dothideomycetes was also the only fungal class that showed differences between willow
species. For bacteria, dominance of the genera Actinobacteria and Alphaproteobacteria was
observed, both in the soil environment and in willow roots. Similar results, but from
contaminated sites, were obtained by Tardif et al. (2016) and Yergeau et al. (2015). Microbiome
studies again showed large, significant differences between the levels of association with the
plant. This indicates the strong selective pressure that the plant exerts on rhizosphere
microorganisms, and higher diversity in this environment is observed for both fungi (e.g.,
Hrynkiewicz et al., 2012; Yergeau et al., 2015; Thiem et al., 2018; Furtado et al., 2019) and
bacteria (e.g., Kielak et al., 2008; Bulgarelli et al., 2012). In the case of fungi, the classes
Agaricomycetes and Pezizomycetes occurred more frequently as endophytes, and
Tremellomycetes and Mortierellomycetes occurred more frequently as rhizosphere fungi.
Among the first two classes, ectomycorrhizal fungi are mainly found, and saprophytic fungi are
found in the second group, which explains the results we obtained (Li et al., 2018; Francioli et
al., 2020). In the case of bacteria, as mentioned above, the differences between association
levels were not due to changes in bacterial diversity but rather to changes in bacterial
abundance. Studies of soil parameters have shown that fungal communities are mainly
dependent on climatic and soil conditions and nutrient content. Furthermore, bacterial

communities are dependent on pH and soil structure (Lauber et al., 2008; Furtado et al., 2019).
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Phosphorus solubilizing bacteria alter the growth patterns and gene expression of

willows

The final stage of this work (P4) was to investigate the dynamics of gene expression
and the effect of inoculation on two Salix species under phosphorus-deficient conditions. In the
first part of the study, two strains with the highest phosphorus solubilization efficiency were
selected from a group of 64 P solubilizing bacteria to carry out a pot experiment on two willow
species (Loden and Tora). The first was a strain belonging to the species Pantoea agglomerans,
which has been described in the literature as a plant growth-promoting rhizobacterium capable
of synthesizing ACC deaminase, auxins, and ammonia and stimulating plant salt stress
tolerance (Majumdar et al., 2015; Cherif-Silini et al., 2019; Emami et al., 2021). As willow is
not a food crop, its pathogenicity was not an issue (Mackiewicz et al., 2016). The second P
solubilizing bacterial strain we selected was Paenibacillus sp., capable of stimulating the plant
defence system and synthesizing ammonia, HCN, IAA and siderophores (Kumari & Thakur,
2018; Hussain et al., 2020; Samain, 2022). Both bacterial species have been used as
bioinoculants of plants such as barley (Canbolat et al., 2006), wheat (Hussain et al., 2020),
sugarcane (Quecine et al., 2012), poplar (Vaitiektnaité et al., 2021) and palm trees (Saadouli
al., 2021). The study showed a large positive effect of phosphorus-solubilizing bacteria on plant
growth parameters. For the high phosphorus (HP) variant of the experiment, the plants
additionally showed changes in the root:shoot ratio in both willow species (Loden and Tora).
The change in biomass allocation observed between the variant without access to phosphorus
and the one with high soil P content was manifested by an increase in shoot biomass in the HP
variant. The phenomenon of a change in biomass allocation was noted by Ericsson (1995),
where increased phosphorus concentration resulted in an increase in the root-to-shoot length
ratio of the plants tested. Investigations of the willow leaf transcriptome showed a large
difference in the number of active genes, with the average number of active genes being 1,500
higher for Loden. The two willow species used show a large difference in both morphology
(Hoeber et al. 2017) and the root microbiome (Koczorski et al. 2021). The study by Hoeber et
al. (2017) shows that Tora has a high biomass production efficiency and smaller leaf area, while
Loden has a larger leaf area and smaller biomass. Further analysis of the leaf transcriptome
revealed the presence of GO terms such as DNA replication, cell division, response to stimulus,
signalling, and regulation of biological and metabolic processes. The activity of these genes in
the literature is often linked to the plant's response to inoculation, and their occurrence was

observed for both Loden and Tora under low phosphorus (LP) availability conditions
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(Camilios-Neto et al. 2014; Sasha and Seal, 2015). Additionally, a high number of GO terms
related to photosynthesis was observed for the LP and HP variants. This was associated with
the expression of photosystem | and Il, thylakoids and glucan metabolism process genes.
Phosphorus is very important in the photosynthetic carbon reduction cycle called the Calvin-
Benson cycle, the final product of which is 3-phosphoglyceraldehyde (triose-P), and glucan
phosphatase plays an important role in transient starch metabolism in leaves (Meekins et al.
2016). Of all the experimental variants, only Loden inoculated with strain B1 showed
expression of genes directly related to stress. Studies in Arabidopsis thaliana under P-deficient
conditions showed high activity of phosphatase synthesis genes, ribonucleases and sulfolipid
biosynthesis genes that replace P, contributing to P remobilization (Muller et al., 2007).
Willows are species characterized by a very fast growth rate, which may explain some of the
symptoms of phosphorus deficiency, and attempts to replace phosphorus by sulfur and
galactolipids may be an attempt to increase phosphorus use efficiency (Lambers et al., 2012).
The study observed large differences between the upregulation and downregulation of genes,
where the Tora species was characterized by overall upregulation and Loden by downregulation
of genes. For the Tora species, a large P effect was found on genes related to photosynthesis,
thylakoids and starch metabolism in the form of upregulation of photosynthesis, photosystem |
and II, thylakoid part, carboxylic acid, carbohydrates, glucan metabolism and biosynthesis. All
the abovementioned genes are strongly associated with phosphorus because it is a component
of compounds such as ATP, NADPH, nucleic acids, sugar phosphates or phospholipids
(Carstensen et al., 2018). Loden showed downregulation of lipid peptide metabolism and
biosynthesis, nucleic acid, ion and metabolite transfer genes. As indicated in the literature, some
of these genes are associated with the phosphorus deficiency stress response, and these genes
were expressed in all phosphorus variants (Bai et al. 2014; Chu et al. 2018). Notably, the LP
and HP variants for Loden showed no visible signs of deficiency of this element.
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11. Final conclusions

Mixed culture willow planting systems, in contrast to monocultures, increase enzymatic
P mobilization by promoting the diversity of microorganisms in both the rhizosphere
and root interior of Salix species.

. The level of plant association is the main factor driving both fungal and bacterial
diversity, signifying the importance of species-specific selection of P solubilizing
microorganisms for potential biofertilizers.

Phosphorus solubilizing bacteria can significantly promote Salix growth and

change gene expression by regulating P cycling-related genes.
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12. Future outlooks

Application of the P solubilizing microorganisms isolated in the present study to other
tree species and arable crops to compare their compatibility and efficiency in interaction
with other host plants.

Further analysis of plant physiological traits, which are affected by microbial
colonization of plants, was performed to describe the potential of biofertilizers to secure
crop yield.

Extension of the selection scheme for P solubilization efficiency to a larger number of
microorganisms, including mixtures of bacteria and fungi. This will allow the inclusion
of synergistic or antagonistic interactions between microorganisms.

Extending the characterization of P solubilizing microorganisms to establish their other
properties related to promoting plant growth and development.

Development of biofertilizers to increase the P use efficiency from the soil pool in crop
production and decrease the need for P fertilization and P loss into ground and surface

waters.
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