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pracy doktorskiej w celu udostępniania dla potrzeb działalności naukowo-badawczej lub dydak-
tycznej



Contents

Front matter vii
List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Abstract (English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Streszczenie (po polsku) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1
1.1 Cosmic voids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Software pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Galaxy formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Void detection via geometric optics . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Cosmology 4
2.1 The cosmological standard model . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 The isotropic and homogeneous Universe . . . . . . . . . . . . . . . . 4
2.1.2 Epochs of the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Distances in Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Structure Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Linear Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 The cosmic web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Gravitational lensing and geometric optics . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Geometric optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Method 30
3.1 Initial Conditions – mpgrafic . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Single-level simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Zoom simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 #-body problems – Ramses . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 #-body problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Ramses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Voids – Revolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Spherical-expansion tophat heuristic model . . . . . . . . . . . . . . . 41
3.3.2 Watershed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 Void centres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Halo Finder – Rockstar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Spherical collapse toy model and dark matter halo properties . . . . . . 47

iii



CONTENTS iv

3.4.2 Halo finders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.3 Rockstar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Merger-history tree – consistent-trees . . . . . . . . . . . . . . . . . . . . . 51
3.6 Semi-analytical galaxy formation – sage . . . . . . . . . . . . . . . . . . . . . 53

4 The role of the elaphrocentre 58
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Software pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Elaphrocentre and other definitions of void centres . . . . . . . . . . . 64
4.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.4 Reproducibility versus cosmic variance . . . . . . . . . . . . . . . . . 69

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.1 Simulation pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.2 Infall rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Galaxy Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.4 Elaphro-acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.1 Infall rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.2 Galaxy sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.3 Elaphro-acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.4 Future extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Hierarchical structure 88
5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Cosmic voids in lensing maps 96
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 Software pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.2 Simulation geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.3 Void detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.4 Matches to intrinsic voids . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.5 Detector variables Σ, W, \, f . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.2 Surface overdensity Σ . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.3 Weak-lensing shear W⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.4 Optical scalars \ and |f | . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.4.1 Void lensing studies when intrinsic voids are known . . . . . . . . . . 115
6.4.2 Blind (redshift-free) searches for voids . . . . . . . . . . . . . . . . . . 120
6.4.3 Projected void concentricity and obscuring cosmic web structures . . . 120

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



CONTENTS v

7 Conclusion 123
7.1 Galaxy formation in voids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Geometric optics through voids . . . . . . . . . . . . . . . . . . . . . . . . . . 125

References 126



List of Figures

2.1 Cosmic microwave background observed by COBE DMR . . . . . . . . . . . . 6
2.2 Supernovae type Ia distance–redshift relation . . . . . . . . . . . . . . . . . . 9
2.3 Structure evolution through inflation. . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 The cosmic web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Sketch of a lensing plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Particle mesh schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Schematic Voronoi tessellation . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Schematic merger-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Simplified recipe to build a galaxy in a halo . . . . . . . . . . . . . . . . . . . 53

4.1 Void size distribution in a 1283 particle run . . . . . . . . . . . . . . . . . . . 67
4.2 Relative void size distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Differential halo number counts in a 1283 particle simulation . . . . . . . . . . 70
4.4 Amplitude of infall rate vs fraction of halo particles in the void 5H∩V . . . . . 71
4.5 Decay rate g depending on the fraction of halo particles in the void 5H∩V . . . 72
4.6 Amplitude of the infall rate depending on the relative position in the void . . . 73
4.7 Infall decay rate depending on the relative position in the void . . . . . . . . . 74
4.8 Adisk in dependence of 5H∩V . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.9 Adisk in dependence of the relative position in a void . . . . . . . . . . . . . . . 77
4.10 Spin parameter _ in dependence of 5H∩V . . . . . . . . . . . . . . . . . . . . 77
4.11 Spin parameter _ in dependence of the relative position in a void . . . . . . . . 78
4.12 Virial radius 'vir of haloes in dependence of 5H∩V . . . . . . . . . . . . . . . 78
4.13 Virial radius 'vir of haloes in dependence of the relative position in a void . . . 79
4.14 Hypothetical radial acceleration ¤E‖ around the centre of a void . . . . . . . . . 80
4.15 Hypothetical tangential acceleration ¤E‖ around the centre of a void . . . . . . . 81
4.16 5H∩V vs the relative position in a void A/'eff . . . . . . . . . . . . . . . . . . 83

5.1 Comparison of density slices with frozen modes . . . . . . . . . . . . . . . . . 89
5.2 Comparison of halo spin in different environments . . . . . . . . . . . . . . . 92
5.3 Comparison of Adisk in different environments . . . . . . . . . . . . . . . . . . 93
5.4 Comparison of stellar masses of galaxies in different environments . . . . . . . 94
5.5 Comparison of formation redshift of central haloes in different environments . . 95

6.1 Sky map and radial profile of the surface overdensity Σ . . . . . . . . . . . . . 109
6.2 Correlation of position and radii of 3D voids and 2D voids identified in Σ . . . 110
6.3 Radial profile of the averaged tangential weak-lensing shear W⊥ . . . . . . . . . 112
6.4 Correlation of position and radii of 3D voids and 2D voids identified in W⊥ . . . 113
6.5 Sky map and radial profile of the Sachs expansion \ . . . . . . . . . . . . . . . 116

vi



LIST OF FIGURES vii

6.6 Correlation of position and radii of 3D voids and 2D voids identified in \ . . . 117
6.7 Sky map and radial profile of the Sachs expansion |f | . . . . . . . . . . . . . . 118
6.8 Correlation of position and radii of 3D voids and 2D voids identified in |f | . . 119



List of Tables

4.1 Fit parameters to the decay rate . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Median disk scale, _ and 'eff of void and non-void galaxies . . . . . . . . . . . 75
4.3 Median elaphro-acceleration estimates . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Robust best fit parameters for Adisk, 'vir and _ vs void-centric distance . . . . . 85

5.1 Volume and galaxy fractions per environment in Bolshoi . . . . . . . . . . . . 91

6.1 Parameters used in our two-dimensional void detection algorithm . . . . . . . . 100
6.2 Numbers of detected intrinsic three-dimensional voids and two-dimensional voids108
6.3 Matching probabilities between three-dimensional and two-dimensional voids . 108

viii



Abstract
Cosmic voids may play key roles in cosmology, both as an environment for galaxy formation
that disfavours the virialisation of dark matter haloes, and as having a gravitational lensing effect
of dispersing a light bundle rather than focussing it.

This thesis has two main aims. First, we investigate if the location of a galaxy in the cosmic
web has a measurable effect on its properties. We denote the potential hill of a void as the
“elaphrocentre”, which should counteract the formation of a matter halo and weaken matter
infall. Second, we explore to what degree geometric-optics maps can reveal the underdensities
in the intrinsic, non-luminous matter distribution of cosmic voids.

We carry out cosmological #-body simulations, building merger-history trees for the sim-
ulated haloes and populate them with galaxies using semi-analytical recipes. The same tools
are employed on the Bolshoi simulation for a significantly increased mass resolution. Voids are
identified using watershed algorithms. Based on an #-body realisation we estimate a surface
overdensity map and maps of weak gravitational lensing and geometric-optics scalar variables.
We propose a heuristic algorithm with which we identify voids in the projected radial profiles
of these detector variables.

While we do not find evidence that an elaphrocentric position weakens matter infall, we do
find a significantly later formation epoch of galaxies in voids.Wefind void galaxies being of lower
mass, smaller and having a higher spin parameter. Galaxies modelled in the Bolshoi simulation
also yield later formation epochs of haloes in voids and, for halo masses "vir >∼ 1010"�/ℎ,
higher spin parameters for galaxies in underdense environments. The differences in the Bolshoi
simulation are found for sub–cluster-mass haloes, i.e. masses below ∼ "vir = 1010"�/ℎ–
1011"�/ℎ. For a fixed mass, the Bolshoi simulation analysis yields a significantly higher stellar
mass in galaxies in the dense regions. Overall, we find that the isolated environment of a void
yields quantifiable effects on galaxy formation.

In our geometric-optics work, our heuristic algorithm shows that maps of the weak-lensing
tangential shear, the Sachs expansion and the Sachs shearmodulus significantly reveal the centres
of the underlying three-dimensional watershed-detected voids.

In this thesis, we have shown that the cosmic void environment yields measurable differences
in galaxy properties compared to galaxies found in denser regions. Moreover, we have extended
the prospects for the observational detection of voids to the use of geometric-optics maps, as
we find preliminary evidence that our algorithm provides a viable technique that should provide
predictions for spectroscopic survey followups.

ix



Streszczenie
Kosmiczne pustki mogą odegrać kluczową rolę w kosmologii, zarówno w badaniach wpływu
środowiska na powstawanie galaktyk poprzez hamowanie procesu wirializacji hal ciemnej mate-
rii, jak i w badaniach efektu soczewkowanie grawitacyjnego poprzez rozpraszanie niż skupianie
promieni świetlnych.

Niniejsza rozprawa ma dwa główne cele. Po pierwsze, badamy czy położenie galaktyki
w ramach kosmicznej struktury ma mierzalny wpływ na jej właściwości. Szczyt potencjału
kosmicznej pustki oznaczmy jako “elaphrocentrum”, które powinno przeciwdziałać procesowi
skupiania się materia i hamować jego przebieg. Po drugie, badamy w jakim stopniu mapy optyki
geometrycznej pozwalają na wyznaczenie rejonów o obniżonej gęstości w rozkładzie ciemnej i
nie promieniującej materii obecnie w ramach kosmicznych pustek.

Badania te oparte są na podstawie symulacji #-ciałowych, z których skonstruowane zo-
stały drzewa historii-połączeń skupisk materia, w których zostały zagnieżdżone galaktyki na
podstawie pół-analitycznych procedur. Te same metody zostały zaadoptowane do symulacji
Bolshoi w celu poprawienia rozdzielczości masowej. Kosmiczne pustki zostały zidentyfikowane
za pomocą algorytmu wododziałowego. Następnie, na podstawie symulacji #-ciałowej, zostały
skonstruowane mapy o podwyższonej gęstości oraz mapy soczewkowania grawitacyjnego, a
także odpowiadające im skalary optyki geometrycznej. Na podstawie uzyskanych w ten sposób
map, został skonstruowany heurystyczny algorytm do identyfikacji kosmicznych pustek oraz ich
radialnych profili w ramach wyżej wymienionej parametryzacji.

Uzyskanewynik sugerują, iż położenie galaktykwodniesieniu do elaphrocenrumniewpływa
na osłabienie temp spadku materii, jednakże obserwowany jest znacznie późniejsze tempo
formowania się galaktyk znajdujących się we wnętrzu kosmicznych pustek. Galaktyki te, do-
datkowo, charakteryzują się mniejszymi masami, mniejszymi rozmiarami oraz, dla masy hal
"vir >∼ 1010"�/ℎ, wyższym parametrem rotacji. Galaktyki zidentyfikowane w ramach symu-
lacji Bolshoi, które znajdują się w kosmicznych pustkach także charakteryzują się opóźnio-
nym tempem formowania i wyższym parametrem rotacji. Różnice w ramach symulacji Bolshoi,
wskazują namasy z zakresu podgromadowego, tzn. dla masmniejszych od∼ "vir = 1010"�/ℎ–
1011"�/ℎ. Analiza oparta na symulacji Bolshoi oraz wyróżnionych masach wyraźnie wskazuje
na wyższe masy gwiazdowe w ramach rejonów o podwyższonej gęstości. Na podstawie tych wy-
ników wyciągnięty jest wniosek, że kosmiczne pustki jako środowiska wyizolowane wpływają
ilościowo na procesy formowania się galaktyk.

Praca oparta na optyce geometrycznej i heurystycznie zdefiniowanym algorytmie wska-
zuje, że mapy słabego soczewkowanie-grawitacyjnego, ścinania, oraz mapy parametru ekspansji
Sachsa i parametru ścinania Sachsa są w stanie jednoznacznie zidentyfikować centra kosmicz-
nych pustek, które zostały wyselekcjonowane za pomocą algorytmu wododziałowego.

Niniejsza rozprawa wykazuje, że galaktyki, które uformowały się w ramach środowisk
kosmicznych pustek mają mierzalnie inne własności niż galaktyki które uformowały się w
ramach rejonów o podwyższonej gęstości. Co więcej, niniejsza rozprawa także otwiera nowe
prospekty dla identyfikowania kosmicznych pustek w oparciu o mapy optyki geometrycznej.
Przedstawione w niej wstępne badania oraz wypracowany algorytm mogą stanowić ważną
metodę w detekcji kosmicznych pustek, co z kolejki pozwoli na dodatkowe badania oparte na
spektroskopijnych przeglądach galaktycznych.
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Chapter 1

Introduction

1.1 Cosmic voids
Thanks to wider and deeper surveys we can probe the processes shaping the distribution of
matter on the largest observational scales of the Universe. In this thesis we focus on a prominent
component of the large scale structure, namely the cosmic voids, which are a pristine environment
to probe cosmological models as well as galaxy formation. Cosmic voids are characterised by
being underdense regions; originally, in galaxy surveys these regions were defined as regions
devoid of galaxies. They dominate the volume of ourUniverse, but due to their deficit of luminous
matter, their observational inspection faces several challenges.

An idealised void can be thought of as a spherical underdense region that grows in physical
size and becomes more underdense over time as it pushes matter to its outer edges. Thus,
compared to the surrounding Universe, which in comparison to the void is overdense, a void
exerts what is effectively a repulsive gravitational force. A void is a hill in the gravitational
potential. Moreover, in contrast to strongly overdense regions, a void should induce a negative
spatial curvature. For all these reasons, voids are not only nearly devoid of galaxies, but they
also constitute an environment that should disfavour the collapse of dark matter haloes.

The isolated environment of a galaxy forming in a void should also result in the formation
and evolution of the galaxy with little external influence. A void galaxy should, in comparison
to galaxies that do not form in voids, have fewer merger events throughout its lifetime.

1.2 Software pipeline
In this thesis, we start to investigate the effect of the environment on galaxy formation in cosmo-
logical #-body simulations. We implement a fully reproducible pipeline based on established
cosmological software to generate a realisation of thematter distribution of the Universe, starting
with generating the initial conditions. We identify haloes over the several generated time steps
and build a merger-history tree based on these haloes. To model galaxies in the simulation, we
use semi-analytical recipes that will generate the right trends over thousands of galaxies. Voids
are identified using a watershed void finder. Based on this pipeline we identify void galaxies
at redshift I = 0 and compare chosen properties of these galaxies to all galaxies that were not
found in a void.

1



CHAPTER 1. INTRODUCTION 2

1.3 Galaxy formation
In the first main application of this pipeline, we investigate if the environment of a cosmic void is
a favourable environment for the formation of large, diffuse galaxies. These galaxies can usualy
be classified, observationally, as low surface brightness galaxies (LSBGs). We hypothesise that
the effect on a galaxy of forming at the gravitational hill of a void should reduce the matter
infall, or at least make it more constant over time, yielding a later collapse of the halo. Moreover,
LSBGs are suspected to have a higher spin parameter that will naturally increase their disk
size (if they are disk galaxies) and make them more diffuse. We thus chose to investigate the
matter infall into haloes, the formation epoch, the spin parameter, the disk size of the galaxy
and the virial radius of the halo. While we do not find any difference in the infall rates, we
find significantly later formation epochs as well as higher spin parameters for void galaxies in
comparison to non-void galaxies. This result is promising, as later formation epochs correspond
to lower ambient mean matter densities, leading to lower dark matter halo densities, and may
imply lower surface densities of disk galaxies.

1.4 Void detection via geometric optics
Beside their possible influence on galaxy formation, cosmic voids are used to probe cosmological
models by studying the voids’ size, growth, abundance, shape and how matter flows out of voids
in cosmological simulations. The second part of this thesis presents an analysis of how structures
identified in geometric-optics sky maps are related to the real, intrinsic three-dimensional
structures. We estimate the effects exerted on light bundles propagating through a dark matter
distribution generated in an #-body simulation that is placed at I = 0.5. We use the watershed
mechanism to identify voids in the three-dimensional galaxy distribution that is generated using
semi-analytical tools. These steps use the most of the stages of the pipeline introduced for the
first part of the thesis. Independently from the watershed detection of voids, we calculate a
projected surface overdensity map as well as maps of weak gravitational lensing and the Sachs
geometric-optical scalars based on our simulated matter distribution and gravitational potentials.
We propose and implement a novel, heuristically derived algorithm for detecting voids using
their expected projected radial profiles derived from the geometric-optics maps.

Given the projected sky-plane centres of the three-dimensional watershed-detected voids, we
find significant evidence of correlated void centres in the chosen projected quantities. Conversely,
recovering the centres of the three-dimensional voids from the sky-plane information alone is
significant using the weak-lensing shear or either of the Sachs optical scalars. This investigation
shows preliminary evidence encouraging observational studies of gravitational lensing through
individual voids, either blind or with spectroscopic/photometric redshifts. Moreover, our method
is sensitive to the underlying darkmatter distribution rather than the luminous matter distribution
of galaxies. The combination of a few, or all, of the geometric-optics parameters might be
developed into a void finder working only on the lensing signal, providing a unique method to
trace voids in the dark matter distribution.

1.5 Thesis structure
The outline of this thesis is as follows. In chapter 2 we briefly review the standard cosmological
model that underlies this work. The chapter is further divided into a discussion of the isotropic
and homogeneous background model in Sect. 2.1.1, the different epochs of the background
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model in Sect. 2.1.2 and finally how distances are defined in cosmology in Sect. 2.1.3. In
Sect. 2.2 we explore the structures that we observe in the Universe. This section is divided into
a brief discussion of cosmological linear perturbation theory in Sect. 2.2.1 that describes how
matter perturbations evolve in the background Universe and an introduction to the cosmic web in
Sect. 2.2.2. Sect. 2.3 discusses gravitational lensing and gives a short introduction to the theory
of how an inhomogeneous matter distribution affects light propagation.

In chapter 3we discuss themany numerical tools thatwe use and their theoretical justification.
The chapter itself is structured to match the individual software packages, starting with the
generation of initial conditions in Sect. 3.1. In Sect. 3.2 we explore briefly how to evolve an
ensemble of dark matter particles, with the initial velocity perturbations and displacements from
a perfectly regular grid, into the cosmic web structure that is observed. We discuss cosmic voids
and how they can be detected using a watershed algorithm in Sect. 3.3. Dark matter haloes and
how they are detected using a phase-space friends-of-friends algorithm are discussed in Sect. 3.4.
Finally, we give a brief overview of semi-analytical galaxy formation recipes in Sect. 3.6.

Chapters 4–6 correspond to the individual publications directly relating to this thesis. In
chapter 4 we present our galaxy formation pipeline and our first results investigating the role of
the void environment on galaxy properties in cosmological #-body simulations. This chapter
closely follows the published paper (Peper & Roukema, 2021), describing work of which a
large majority was by me, implementing the tools and methods described above. Chapter 5
goes one step further and aims to study the link between the inner structures of the cosmic web
and the properties of galaxies. This chapter describes the work that was mostly mine, using
essentially the same tools as in Peper & Roukema (2021), but using #-body simulation outputs
not generated by me. As of the date of submitting this thesis, this paper is still being finalised
for submission (Jaber et al., 2023).

Finally, we present our analysis of light propagation through a matter distribution derived
from cosmological #-body simulations for the detectability of voids in chapter 6. This chapter
closely follows the submitted paper (Peper, Roukema, & Bolejko, 2023), describing work of
which a large majority was by me, implementing the tools and methods described above.

Our general conclusions and outlook of this work are presented in chapter 7.



Chapter 2

Cosmology

2.1 The cosmological standard model

2.1.1 The isotropic and homogeneous Universe
Cosmology is the scientific discipline that tries to answer questions such as: what the curvature
and topology of the Universe are, how the Universe started, how the structures we observe
today were generated, and how the Universe and the structures within will evolve in the future.
Tremendous advances have been made in the last century on some of these questions, starting
with the presentation of the theory of general relativity by Einstein (1915). Einstein’s equations

'`a −
1
2
6`a' + Λ6`a =

8c�
24 )`a, (2.1)

where '`a is the Ricci tensor, ' is the Ricci scalar, Λ is the cosmological constant and )`a is the
energymomentum tensor, locally link the geometry of the space-timewith the energy density and
model the trajectories of particles according to the given geometry. This soon was coupled with
the cosmological principle, inspired from the Copernican principle. The Copernican principle is
given as stating that we are typical observers in the Universe, and that the location of the earth,
or, increasing the size of our reference point, the position of the solar system or the location
of the Milky Way, is not specially favoured. Soon after the introduction of general relativity,
in the 20s and 30s of the XXth century the scientists Alexander Friedmann, Georges Lemaître,
Howard P. Robertson and Arthur Geoffrey Walker together are generally credited with finding
a general, homogeneous and isotropic solution to the Einstein equations (Friedmann, 1922;
Lemaître, 1927; Robertson, 1929; Walker, 1937). The homogeneity and isotropy assumption is
the practical implementation of the cosmological principle. This model separates spacetime into
a sequence of time snapshots of the spatial section of the Universe. Written in modern notation,
the model defines the scale factor 0(C), with 0 = 1 at the current time. The snapshots differ
only in scale, in proportion to 0(C), and are given a coordinate system described as comoving,
in which 0(C) is ignored. In this sense, the cosmological principle became a pillar of modern
cosmology. A more generic version of the principle is closer to the Copernican principle, and
states that the Universe is statistically homogeneous and isotropic on large scales and thus
any observer in the Universe will statistically make the same observations, rather than making
identical observations.

The currently preferred model in this family of solutions has a finite age, which gives a finite-
sized observable sphere. The observable sphere has a radius of roughly 14 Gpc (the calculation
can be done with the formalism we briefly explain and by using eq. (2.15)). In the context of the

4
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cosmological principle, large scales, above which we assume the cosmological principle to be a
good approximation, means scales above ∼ 100 Mpc (Mukhanov, 2005).

Lemaître in 1927 Lemaître (1927) and Hubble in 1929 (Hubble, 1929) estimated the speed
with with galaxies can be described as moving away from us (in the terminology of Newtonian
cosmology) in proportion to their distance.

The proportionality factor is the Hubble–Lemaître parameter �, whose local value is called
the Hubble constant �0. The Hubble–Lemaître parameter is normally defined as

� (C) = ¤0(C)
0(C) , (2.2)

where the dot denotes a derivative with respect to cosmic time. Lemaître interpreted his estimate
in the context of his solution, implying an expanding Universe model.

The following decades showed that the homogeneous, isotropic solutions together with the
expansion implied a hot, dense, plasma-dominated early phase of the Universe, where the plasma
was in Planckian equilibrium, with a blackbody spectrum, and big bang nucleosynthesis (BBN)
took place. The expansion, blackbody radiation and BBN together form the observational basis
of the Hot Big Bang model. An early confirmation of this reasoning was found in 1941 by
Andrew McKellar, who found blackbody radiation of 2.3K (McKellar, 1941), whose source he
considered to be unknown. Howver, the importance of this measurement was only understood
much later. The cosmic microwave background was postdicted (unknowingly, since lack of
communication made it appear to be a prediction) in 1948 by Ralph Alpher and Robert Herman
(Alpher & Herman, 1948a,b) and was again measured in 1965 by the radio engineers Arno
Penzias and Robert Wilson who discovered an unexplainable radio noise in their data (Penzias
&Wilson, 1965). The noise was identified to be the cosmic microwave background (CMB). The
COBE (1992) observations of the early 90s showed it to be perfect black body radiation with a
mean temperature of 2.725 K, see e.g. Fixsen (2009). In the top panel of fig. 2.1 we can see that
the signal of the CMB indeed is isotropic. However, the advance in technology made it possible
to detect fluctuations in the CMBmap, shown in the other panels of fig. 2.1. Nowadays, we know
these fluctuations as the CMB dipole (middle panel), which is a measure for our own velocity
with respect to the background system of the Universe, and the real fluctuations in the CMB.
The later ones are the measurable imprint of density perturbations, which originated in quantum
fluctuations, at the time of last scattering, when the CMB photons were emitted (lower panel).

As observed by a sequence of observers at rest in the comoving coordinate system, a photon
emitted by a distant galaxy at an epoch C with scale factor 0(C) has a wavelength in the observers’
frames that changes along the path from the galaxy to the observer at the Sun. As shown by
Synge (1964) and reviewed by Narlikar (1994), the Minkowski spacetime wavelength in the
observer’s frame at the Sun is given by

1 + I :=
_obs
_em

=
00
0
=

1
0
, (2.3)

where I is called the cosmological redshift, _obs and _em are the observed and emittedwavelength
and 00 := 1 is the current scale factor.

Based on the version of the cosmological principle in which theUniverse is exactly homogen-
eous and isotropic and using the scale factor 0(C), the Friedmann–Lemaître–Robertson–Walker
(FLRW) line element, in natural units, with spherical coordinates A (the comoving tangential
arc-length for an angle of one radian, also called the “areal radius”, from “area” plus “-al”),
\ ∈ (0,c) and q ∈ (0,2c), is

dB2 = −dC2 + 02(C)
(
dA2 lim

A→A ′
1

1 − : A′2
+ A2

(
d\2 + sin2 \ dq2

))
, (2.4)
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Figure 2.1: Cosmic microwave background constructed from Cosmic Background Explorer (COBE) Differential
Microwave Radiometer (DMR) differencing measurements. In the top panel we see the monopole of the CMB
as expected by the cosmological principle. In the middle panel the monopole is subtracted and one sees clearly
a dipole is dominating. The bottom panel shows the CMB after also subtracting the dipole. In the equator of the
bottom panel we see the emissions of the Milky Way dominating the emission and small fluctuations above and
below the galactic plane. Image: p public domain, NASA: LAMBDA project/COBE DMR data COBE (1992)

where : is a constant representing curvature. The limit in the areal radius coordinate is required
for the equator in the positive curvature case, because division by zero is undefined. Using the
radial comoving distance, j, instead of the areal radius as a radial coordinate, and introducing the
conformal time [ via the relations dC = 0(C)d[ and [(C = 0) = 0, and rewriting 0 as depending
on [, the line element can be rewritten as

dB2 = 02([)
(
−d[2 + dj2 + A2(j)

(
d\2 + sin2 \ dq2

))
(2.5)

where the areal radius A (j) is given by

A (j) =


sinh

(√
−: j

)
√
−:

, : < 0
j, : = 0
sin

(√
: j

)
√
:

, : > 0 .

(2.6)

This line element (in either form) needs to be used in Einstein’s equations (eq. (2.1)) to find
solutions for 0(C), thus providing the basic equations for the curvature-related components of
modern cosmology.

https://lambda.gsfc.nasa.gov/product/cobe/cobe_images/m_d_53s_1111.gif
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Homogeneity and isotropy of the Universe do not imply a flat (: = 0) 3-dimensional
spatial section. The other simply connected spaces are a 3-sphere, which is characterised by
a positive curvature (: > 0) is necessarily finite in volume (closed); and a 3-hyperboloid,
which has a negative curvature (: < 0), and may be open (infinite) or closed (finite). For
each of these curvatures, many different topologies of space are now known to be possible
(Luminet & Roukema, 1999, e.g.), well beyond the original multiply connected quotient of the
3-sphere proposed by Lemaître (1927). The relation between the topology of space and local
dynamics was discovered theoretically earlier this century (Roukema et al. 2007; for more recent
developments, see Vigneron & Roukema 2023 and references therein), but has not yet been
detected observationally. A key-result of the era of precise cosmology is that as an observational
fit, the spatial curvature is weak and thus a 3-dimensional Euclidean space indeed is a good
approximation.

The content of the Universe is generally modelled as an ideal gas for which the energy–
momentum tensor usually is written as

)`a = D`Da (n + ?) + 6`a?, (2.7)

where n is the energy density, ? is the pressure, D` is the 4-velocity, and 6`a is the metric
(eqs (2.4) or (2.5)). If not stated otherwise in the section, then we note that greek alphabet
indices run over (0,1,2,3), where the 0th component is the time component, and latin alphabet
indices run over (1,2,3), i.e. only the spatial components.

The spatial flatness of the standard model of the Universe additionally simplifies the areal
radius to A (j) = j and the metric tensor to

6`a = 0
2([) [`a, (2.8)

where [`a is the Minkowski metric (diag([`a) = (−1, + 1, + 1, + 1); unrelated to the conformal
time [).

The Friedmann equations, for any sign of curvature, are derived by inserting the FLRW line
element, eqs (2.4) or (2.5), into Einstein’s equations eq. (2.1), where the time–time component
yields the first Friedmann equation (2.9) and the spatial components give the second Friedmann
equation (2.10) as

�2 =
8c�

3
n − :

02 +
Λ

3
=

8c�
3
(nm + nr + nΛ + n: ) , (2.9)

¤� + �2 = −4c�
3
(n + 3?) + Λ

3
. (2.10)

In the first Friedmann equation we see that the evolution of the Universe is driven by the energy
density of the Universe, though we split the energy into three reservoirs, matter nm, radiation
nr, and the cosmological constant nΛ, and write the curvature dimensionally as energy n: .
Originally, the cosmological constant was only introduced by Einstein to get a static solution for
the Universe (Einstein, 1917). Starting with the first Friedmann equation we define the critical
density n2 ≡ 3

8c��
2
0 and the density parameters Ω-0 = n-,0/n2 where the - represents the

various components in the Universe and the 0 denotes that we refer to the quantity measured
today. The critical density is exactly the energy density of a model without spatial curvature
and without a cosmological constant. Furthermore it follows from the definition of the critical
energy density and eq. (2.9) that ∑

-

Ω- = 1. (2.11)
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To model the time evolution we need to model the time dependence of the different energy
components. To do so we introduce an effective equation of state

? = Fn, (2.12)

where F is a parameter that will depend on the epoch of the Universe, i.e. it depends on which
component dominates the energy budget of the Universe at a given epoch. For example for a
universe that is matter dominated, F = 0.

By taking the covariant derivative ∇`) `a, setting it to zero and only taking the a = 0
component we recover the conservation law

¤n = −3� (n + ?). (2.13)

If we insert eq. (2.12) into eq. (2.13), then we can solve the differential equation in time
and get the time dependence of the different energy components. Insertion of the previous result
into the first Friedmann equation eq. (2.9) and solving it in terms of the scale factor yields the
different scale factor relations for each epoch. The solutions can be characterised as

n ∝ 0−3 and 0 ∝ [2 ∝ C2/3, for F = 0 (matter dominated),

n ∝ 0−4 and 0 ∝ [ ∝ C1/2, for F =
1
3
(radiation dominated),

n = const and 0 ∝ 4�iC , for F = −1 (vacuum/dark energy dominated; �i = constant).
(2.14)

With this result, and using n: ∝ 0−2 by definition, we can rewrite the implicitly time
dependent form of eq. (2.9) as

�2 = �2
0
[
Ωm0(1 + I)3 +Ωr0(1 + I)4 +ΩΛ0 +Ω:0(1 + I)2

]
. (2.15)

However, in contrast to eq. (2.15) which contains the full expression, the standard cosmo-
logical model a few decades ago was the Einstein–de Sitter model that assumed a Universe
which is completely matter dominated, with no cosmological constant. This model faced several
problems. A significant problem was the age crisis. A universe which only consists of matter,
Ωm = 1, and has a Hubble constant of roughly �0 = 70km/(Mpc s) can be calculated by solving
the differential equation eq. (2.15) in time and yields an age of the Universe of roughly 9 Gyr.
In the 90s of the previous century, measurements of globular clusters and measurements of
radioactive isotopes such as 232Th in stars (Butcher, 1987; Morell et al., 1992) already yielded
a much older Universe. The unexpected solution came with the faint galaxy counts, correlation
functions and redshift distribution constraints in the early 90s (Fukugita et al., 1990; Roukema
& Yoshii, 1993; Yoshii & Peterson, 1995), and gravitational lensing estimates (Fort et al., 1997)
and new data of supernovae Ia in the late 90s that indicated an acceleration of 0(C) (Riess et al.,
1998; Schmidt et al., 1998; Perlmutter et al., 1999). Supernovae Ia are empirically standardisable
candles that allow for statistically precise distance measurements.

We visualise this trend in fig. 2.2 taking data from the Supernova Cosmology Project
“Union2.1” SN Ia compilation, which includes 19 datasets and 580 supernovae Suzuki et al.
(2012). For a flat universe, the conclusion to corresponding to an accelerated scale factor is
to set the cosmological constant to a positive value. For comparison, we show a curve for a
hyperbolic Universe with Ωm0 = 0.3 and Ω:0 = 0.7, which matches the data less well than a
model with a cosmological constant. Today, we denote this energy component more generally
as “dark energy”; this dominates the total energy budget of the Universe. This discovery led
to the success of the Λ Cold Dark Matter (ΛCDM) model that matches most of extragalactic
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Figure 2.2: Compilation of supernovae distance measurements using the data provided in Suzuki et al. (2012);
the style is adapted from e.g. fig. 4 of Riess et al. (1998). The upper panel shows the distance modulus `
of supernovae versus their measured redshift. For visualisation we present three different, exact cosmological
solutions, an ΛCDM Universe (orange), an Einstein–de Sitter Universe (green) and a hyperbolic Universe with
negative curvature (red). The lower panel shows the distance modulus residuals comparing to the hyperbolic model
characterised by Ωm0 = 0.3, ΩΛ0 = 0. The best fit model for the supernovae data is the ΛCDM model.

observations reasonably well. Recent CMB measurements of the Planck collaboration give the
following best-fit parameter for the fundamental cosmological parameters (Planck Collaboration
et al., 2020):

Ωm0 = 0.315 ± 0.007, Ωr0 ≤ 10−4 , 1

Ω:0 = 0.001 ± 0.002, ΩΛ0 = 0.685 ± 0.007.
(2.16)

1This value is taken from Gorbunov & Rubakov (2011).
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2.1.2 Epochs of the Universe
In the previous sectionwe derived the basic equations that govern the evolution of the background
model – the exact solution of Einstein’s equations. The cosmological model also includes density
perturbations. These density perturbations will grow and form the observable structures, most
prominently the luminous galaxies. Their growth rate depends on the background model, i.e.
which component in eq. (2.15) dominates the Universe at a given time. Thus, we first derive an
estimate for when each component dominated the Universe. In cosmology, the scale factor, and
equivalently via eq. (2.3), the redshift of an object that emitted photons when the scale factor
had that value and is observed today, is often used equivalently to the cosmic time. A slice of
the Universe today is parametrised this way by I = 0. The time slicing by redshift approaches
infinity if we extend the matter-dominated (or radiation-dominated) to earlier epochs naïvely to
C → 0+. However, a more physical limit is the epoch of last scattering, which is approximately
I = 1100. Moreover, we saw that modern measurements show the Universe’s scale factor is
best-approximated as accelerating, whereas in an Einstein–de Sitter model, the Universe’s scale
factor would be decelerating. We know that the Universe today is Λ dominated. The transition
to a Λ dominated Universe must have happened in the younger history of the Universe, during
the epoch of galaxy formation. Hence, we neglect the curvature and the radiation component for
the following estimates.

From eq. (2.15) we derive

¤02 = �2
0

(
Ωm0

03
0
0
+ΩΛ00

2

)
. (2.17)

Taking another time derivative of this expression yields

¥0 = 0
2
�2

0

(
2ΩΛ0 −Ωm0

(00
0

)3
)
. (2.18)

Measurements today indicate that 2ΩΛ0 > Ωm0 and thus that the scale factor is accelerating.
However, for sufficiently high redshifts the above equation states that the second derivative of
the scale factor becomes negative, thus the transition from deceleration to acceleration occurred
in our recent history in the Universe at a redshift of Im−Λ−eq = (2ΩΛ0/Ωm0)1/3 − 1 ≈ 0.63 using
the values in eq. 2.16.

When we continue to go back in time it becomes clear from eq. (2.15) that in the early
Universe there must have been a time when radiation dominated the total energy budget. In
cosmology, the term “radiation” is used loosely to refer to all relativistic particles. A relativistic
neutrino at the time of last scattering can well be non-relativistic today and hence change the
sector to which it contributes energy. The epoch of equilibrium can be inferred from the time
dependencies we discovered in eq. (2.14),

1 + Ir−m−eq =
00
0eq
≈ Ωm0
Ωr0
∼ 104. (2.19)

The temperature, or energy, decreases over time proportionally to the redshift. Thus we can write

)eq = )0(1 + Ir−m−eq) ∼ 104K ∼ 1eV. (2.20)

This is a simplified approach; for a better estimate we would need to include effect of the three
neutrino species. Such a precise calculation yields according to Gorbunov & Rubakov (2011) a
temperature of )eq = 0.76 eV and via eq. (2.20) a redshift of roughly 3265. Before this time the
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Universe was very hot and dense. Its dominant physical content was a dense plasma in which
photons were not able to propagate freely. The observed CMB can be understood as an echo
of this epoch as it contains the information physically encoded during the epoch. We can now
explain the term used above, “last scattering”: this means the epoch when the density of the
Universe dropped to a level where photons were able to propagate freely; these first photons are
now measured as the CMB.

Before that time there were no atoms, and the Universe was too hot for light nuclei to form.
We are now considering the epoch of big bang nucleosynthesis (BBN), whichwill provide crucial
insights into the chemical composition of our Universe. We limit ourselves to the formation of
light nuclei. The first nucleon that will freeze out of the plasma is the neutron due to its higher
mass compared to protons. The fundamental interaction that we consider is

? + 4− ←→ = + a4 . (2.21)

For a particle of type - the number density can be given as

=- = 6-

(
<-)

2c

)3/2
exp ((`- − <-)/)) , (2.22)

where 6 is the number of degrees of freedom of the particle, < is the mass, ) is the temperature
and ` is the chemical potential. The process eq. (2.21), as long as the energy is sufficiently high,
is in equilibrium meaning that the chemical potentials fulfil

`p + `e = `n + `a . (2.23)

The chemical potentials `e and `a are negligible compared to the others, see e.g. Gorbunov &
Rubakov (2011) Chapter 8, which lets us relate the number densities of neutrons and protons by

=n
=p
= exp

(
−(<n − <p)/)

)
, (2.24)

where we set <n/<p ≈ 1 and used that both particles have the same degrees of freedom for the
spin. To estimate the freeze-out time we compare the interaction rate Γ of the proton-to-neutron
interaction (eq. (2.21)) to the Hubble time (1/�0). We can express the interaction rate as

Γ = =a 〈fE〉 , (2.25)

where =a = =a0 (1+I)3 = =a0 ()/)0)3 ∝ )3 is the neutron number density and 〈fE〉 is the averaged
cross section for the process. The cross section can be calculated with tools from quantum theory,
using effective field theory, which is valid only for low energies. Such a calculation would be
out of the scope of this thesis, so we only present the result that 〈fE〉 ∝ �F)

2, where �F is the
Fermi constant. The freeze-out happens when Γ ≈ �. In eq. (2.14) we derived how the scale
factor scales in a radiation dominated Universe, so we can estimate the Hubble rate at the time
as � ≈ )2/"pl with "pl being the Planck mass. Using the above relations yields the rough
estimate for the freeze-out temperature of

)f ≈ 1 MeV, (2.26)

which converts to a neutron to proton fraction of

=n
=p
=

1
6
. (2.27)
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With this simple estimate we can conclude how much matter ends up in hydrogen and helium.
If we assume that all neutrons end up in helium, then we can write the fraction of helium as

.p =
4=He
=b

=
4(1/2=n)
=p + =n

=
2=n
=p

1 + =n
=p

≈ 1
4
, (2.28)

where =b is the number density of all baryons (protons and neutrons). This very simplistic
approach yields that 25% of the protons end up in helium. Isotopes with proton numbers of
� = 5 and � = 8 are not stable and will eventually decay again. Three-particle interactions are
unlikely. Thus we approximate that no heavier elements are formed at BBN. We conclude that
75% of the mass initially must be in the form of hydrogen, which eventually will form and fuel
stars and lead to remnants in planetary disks around the stars that will allow life to form in (at
least) one planetary system.

For completeness, we would like to mention cosmic inflation. Inflation is an early epoch of
exponential expansion that is hypothesised to solve problems that came up within the ΛCDM
model, e.g. the flatness problem and the horizon problem. These problems are the questions of
why the curvature is fine tuned to be “extremely close” to zero and why the CMB has a universal,
nearly uniform temperature over the whole sky. Within the observable sphere to the limit of last
scattering, many areas are not causally connected at the epoch of CMB emission if we limit
the early universe model to the radiation dominated behaviour of 0(C). These areas would not
have been able to interact and achieve a uniform temperature through a process tending towards
equilibrium. In eq. (2.14) we derived the growth of the scale factor for this epoch which is
characterised by a negative effective pressure. This is equal to the assumption that the epoch of
inflation is dominated and driven by a scalar field. Small perturbations are stretched during the
inflationary period and dependent on their size they may grow larger than the size of the horizon.
These modes are considered to be frozen as they cannot evolve and causally interact with the
structures in the Universe.

In cosmology we distinguish between subhorizon

_ph �
1
�
, or equivalently :[ � 1, (2.29)

and superhorizon
_ph �

1
�
, or equivalently :[ � 1, (2.30)

Fourier modes of density perturbations. This process is sketched in fig. 2.3 where we sketch how
the inverse of the Hubble parameter, named the Hubble length or the particle horizon, evolves
over the different epochs of the Universe. As shown in eq. (2.14), the dependence of the Hubble
scale 1/� on the scale factor will be different in each different epoch, but the growth in the
physical length scale of a fixed comoving scale _pert will always, by definition, by proportion to
0(C). During exponential growth, when the Hubble parameter is a constant, modes can freeze.
They can re-enter the horizon during the radiation or matter dominated epoch. The perturbations
that enter the horizon or never froze are the seeds of structure formation and eventually led to
structure in the observable Universe.

As the ΛCDM model suggests, we are now in the dark energy dominated epoch of the
Universe, where the Hubble length is again approaching a constant. Thus, modes above a certain
wavelength will never re-enter the horizon. In order to solve the previously mentioned problems
of the standard model, we need around 60 e-foldings (factors of e in the growth of 0(C)). The
epoch of inflation was short. The initial time is approximately given by the Planckian time
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Ci = 10−43B. For the simplest models it should end at about Cf ∼ 10−34B − 10−36B (Mukhanov,
2005). After the exponential growth of the Universe, the density and thus the temperature should
have dropped significantly. To return to the conditions of the standard Hot Big Bang model,
we need to reheat the Universe, which is modelled by the decay of the scalar field that caused
inflation.
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Figure 2.3: This figure sketches the behaviour of the Hubble length 1
�

and the wavelength of two perturbations
over time following the solutions of the background model presented in eq. (2.14). While the horizon stays constant
during inflation the perturbations grow and, given an initial size, eventually a certain range of perturbations will
freeze out during inflation, sketched at the time 0f . During the radiation and matter dominated epochs of the
Universe these modes can re-enter the horizon, visualised by the event 0e. Once these initial perturbations have
entered the horizon again, they can evolve and will grow into the structures we see in the Universe. The figure is
adapted from Kolb & Turner (1990).
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2.1.3 Distances in Cosmology
Measurements of the distance to astronomical objects are not trivial. For close objects, we
can use the parallax method, which compares the apparent movement of nearby objects with
the quasi static celestial position of faraway stars. The first reliable measurements of distances
using the parallax method goes back to Friedrich Bessel in the early 19th century. The second
step of the ladder uses the Hertzsprung–Russell diagram, in which Antonia Maury’s stellar
classification (Maury & Pickering, 1897) played a key role (Hoffleit, 1994). This diagram relates
the luminosity (the energy emitted per second in the rest frame) of stars – obtained thanks to
parallaxes – to their colour. Since colour only changes weakly with distances to stars in the
Galaxy, this step extends the distance to which stellar distances can be estimated. The third
step uses cepheids, which can be understood as pulsating stars. The period of the pulses is very
stable for this special class of stars. The relation between the frequency of the pulse strongly
correlates to the luminosity of a cepheid. Hence, it was possible to expand the distance ladder by
another step. Another step in the distance ladder uses supernovae of type Ia, which, as mentioned
before, are standardisable candles, for which luminosities can be estimated to within a few tenths
in the absolute magnitude. Since the late nineteenth century, the measurement of the spectra
of stars has been a key element of observational astronomy. In these spectra we can identify
characteristic absorption lines at a sharply defined energy level. As mentioned above, the energy
in the reference frames of a sequence of fundamental observers scales with the expansion as
a> = ae/(1 + I). Thus, we can measure the redshift of an object by measuring the shift in the
redward direction (towards lower frequencies) using its spectroscopic data.

We now consider the question, above left hidden, of how to define distance in a relativistic
cosmological model. Photons travel along null geodesics, with a zero invariant interval from
their emission to absorption, so there is no physically intrinsic distance travelled by a photon.
Instead, “the distance a photon travels” is only defined after choosing a method of projecting a
photon’s trajectory into spatial sections of a universe model.

For a light ray we can set the condition dB2 = 0 in eq. (2.5) and derive the expression, for
any of the curvatures of an FLRW model, relating conformal time to the lookback distance,

3lookback =

∫ 0

j

0(j′) dj′ =
∫ [0

[

0([) d[′ =
∫ C0

C

dC′ = C0 − C , (2.31)

where j is the comoving distance, as above, with values j at the distance of an observed galaxy
and zero at the observer; [ is the conformal time, as above, with values [ at the epoch of an
observed galaxy and [0 at the observer; and C is the cosmic time, as above, with values C at the
epoch of an observed galaxy and C0 at the observer.

The radial comoving distance j is sometimes also called the “coordinate distance”:

3C := 00 j := j . (2.32)

The path of the light can be projected to the current time, making the path length j.
Alternatively, a small interval in the radial direction can be projected to the spatial slice at

the epoch, giving what is called a “physical distance”, i.e. the radial comoving distance interval
times the scale factor,

3phys :=
∫ j2

j1

0(C)dj′ ≈ 0 (Cmid)
∫ j2

j1

dj′ = 0 (Cmid) (j2 − j1) = (1 + Imid) (j2 − j1) , (2.33)

where Cmid is an average of C1 and C2. This physical distance grows with the expansion of the
Universe, which was already seen in the Hubble–Lemaître law (which itself can be used to infer
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naïveHubble–Lemaître distances, that differ from the relativistically justified distances discussed
here). This physical distance is appropriate for the study of the local physics of galaxies and the
cosmic web over a short enough distance interval, in the radial direction from the observer.

Via the condition derived from the line element −dC = 0(C)dj and with the derivation of the
cosmological redshift we can find the relation for the comoving distance to 0(C) or � (C), with

3C(I) =
∫ I

0

dI′

� (I′) . (2.34)

The next “distance” needed is the areal radius A (j) given in eq. (2.6) above for the three
signs of curvature. This is the comoving length of an arc of one radian in angular size. An
observationally useful distance measure derived from the areal radius is the angular diameter
“distance”, which is the physical length of an arc of one radian in angular size, i.e.

�A = 0(j) A (j) . (2.35)

The reason for the name is that it is the distance at which an object would be placed if its
physical size Gobj and its measured angular size \ were interpreted in a static Euclidean space,
ignoring the relativistic derivation. The physical size Gobj is \ times the physical arc length, so
Gobj = \ 0(j) A (j), giving this static-Euclidean-interpreted distance as

Gobj

\
= 0(j) A (j) = �A . (2.36)

Yet another useful distance measure is the luminosity distance, which relates the luminosity
! of an object to its emitted photon flux �. It is defined as

3L =

√
!

4c�
, (2.37)

where � is the bolometric flux of photons (e.g. in erg/s), motivated by analogy with the inverse
square laws of static Euclidean space.

The comoving area of a sphere crossed by photons, emitted by a source at the centre of the
sphere, can be calculated using the areal radius (hence the name “areal”) as

�(I) = 4cA2(j) . (2.38)

Let us heuristicallymotivate an expression for the flux �. The photon flux is defined as the energy
of photons crossing through the area � per unit time. Classically imagining particles being
emitted from a point source, it is clear that that the summed energy of photons, equivalently the
number of photons, crossing a fixed number of square cm, for example, is inversely proportional
to �. Additionally, the flux will be proportional to (1 + I)−2 due to two projection effects – the
redshifting of a photon and time dilation – so that the full expression for the flux, measured on
Earth, can be written as

� =
!

(1 + I)2�(I)
=

!

4c(1 + I)2A2 . (2.39)

Inserting this relation into eq. (2.37) we find the relation between the areal distance (comoving
one-radian arc length), the angular diameter distance and the luminosity distance is

3L = (1 + I) A = (1 + I)2�A. (2.40)

By introducing the distance modulus, for 3! given in Mpc,

` = < −M = 5 log(3!) + 25 , (2.41)

where < is the measured bolometric apparent magnitude and M is the absolute bolometric
magnitude, we can derive the model curves in fig. 2.2.
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2.2 Structure Formation
In fact, the assumption of a homogeneous and isotropic Universe is a strong simplification.
Measurements of the spatial distribution of galaxies show instead a highly inhomogeneous
distribution. Matter clumps into clusters of high density connected by dense filaments and walls.
Between these overdense regions we measure large underdense regions that we call comsic
voids. Sloan Digital Sky Survey (SDSS) observations suggest that voids fill up to 70% of spatial
volume (Mao et al., 2017). These structures form the cosmic web, which is well observed and
can be reproduced very well by simulations.

2.2.1 Linear Perturbation Theory
In this section we discover a short approach to investigate the evolution of matter perturbations
without going into the details of cosmological perturbation theory. For the first part of this section
we follow the excellent description ofMukhanov (2005).We assume small perturbations, keeping
only linear order perturbations, and thus the perturbed components of the Einstein equations,
the metric and the energy momentum tensor, will be written as

6`a = 6
(0)
`a + X6`a and )`a = )

(0)
`a + X)`a . (2.42)

In the leading order of perturbation theory, scalar, vector and tensor perturbations decouple and
we can decompose the metric into these different parts. Using Helmholtz–Hodge decomposition,
we can rewrite X6 explicitly as

X6 = 02
(
−2q −(�,8 + �8)

−(�,8 + �8) 2kX8 9 + 2�,8 9 + �8, 9 + �9 ,8 + ℎ8 9

)
. (2.43)

The scalar perturbations q, k, �, and � exhibit gravitational instability and thus lead to structure
formation. They are induced by inhomogeneities in the energy density. The vector perturbations
are described by the vectors �8 and (8 and are related to the rotationalmotion in fluids. They decay
very quickly and thus are less important than the other perturbations. The tensor perturbations
ℎ8 9 are related to gravitational waves.

This section aims to give a rough overview about structure formation and the growth of
perturbations, which eventually lead to the formation of the structureswe observe in theUniverse.
As matter perturbations are described by scalar perturbations, the discussion here is mostly
restricted to scalar perturbations alone. However, before we can investigate the time dependence
of scalar perturbations, we need to fix all degrees of freedom in eq. (2.43). The necessity of
fixing the degrees of freedom becomes clear when we consider that there is a transformation

6
(0)
`a (GU) + X6`a (GU) = 6(0)`a (HU) , (2.44)

in which the perturbations are only an artifact of transforming from coordinate system GU to
system HU. By fixing the degrees of freedom we only consider physical perturbations of the
metric. The following calculation will be carried out in conformal coordinates. Let us consider
the coordinate transformation

GU → G̃U = GU + bU, (2.45)

where bU are infinitesimally small functions of space and time. Under such a transformation the
metric tensor will take the form

6̃`a (G̃d) =
mGW

mG̃`
mGX

mG̃a
6WX (Gd) = 6(0)`a (Gd) + X6`a − 6(0)Wa bW,` − 6(0)`X b

X
,a + O(b2), (2.46)
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where we ignore higher orders of b. With this expression we directly see that the perturbed part
of the metric tensor consists of

X6̃`a = X6`a − 6(0)`a,Xb
X − 6(0)

Xa
bX,a − 6

(0)
`W b

W
,` . (2.47)

Together with eq. (2.43) we now can write down the perturbations in the new coordinate system
and find

q̃ = q − 0
′

0
b0 − b0′, k̃ = k − 0

′

0
b0, �̃ = � + Z ′ − b0

�̃8 = �8 + b′⊥ 8, �̃ = � − Z, �̃8 = �8 − b⊥ 8,
(2.48)

where we again used the Helmholtz decomposition b8 = b8⊥ + Z ,8. The line element for scalar
perturbation, only including q, k, �, and � now can be expressed as

ds2 = 02 [
−(1 + 2q) d[2 − 2�,8 d[ dx8 + [(1 + 2k)X8 9 + 2�,8 9 ] dx8dx 9

]
. (2.49)

Moreover, we see in eq. (2.48) that only b0 and Z occur in the scalar perturbations which means
that we have two degrees of freedom. Gauge freedom now can be used to make any of the
variables vanish. The simplest gauge invariant – linear combinations of these functions – are the
Bardeen potentials

Φ = q − 1
0
[0(� + �′)]′ and Ψ = k − 0

′

0
(� − �′). (2.50)

Probably the most famous, and most used, gauges are the conformal gauge and the synchron-
ous gauge. The conformal-Newtonian gauge is defined by fixing

�N = �N = 0. (2.51)

It is therefore also called longitudinal gauge or shear-free gauge since, as we can see in the line
element, there is no shear in an expanding volume element in this gauge. The line element takes
the form

dB2 = 02 [
−(1 + 2Φ)d[2 + (1 + 2Ψ)X8 9dG8dG 9

]
, (2.52)

which we use again in section 6. We see later that in a universe without anisotropic stress we
haveΦ = −Ψ. Conformal-Newtonian gauge is popular due to its very simple form as it only has a
diagonal component. The name is inspired by the physical understanding of the role ofΦ andΨ.
As we will see Φ fulfils a Poisson-like equation and is thus the generalization of the Newtonian
potential that describes the volume expansion, whereas Ψ describes the spatial curvature.

In chapter 2.3 & 6 we work in conformal-Newtonian gauge. However, as we aim to give a
rather complete overview, synchronous gauge will also be mentioned. As the name suggests, all
clocks in all points of space are synchronized in this gauge (Landau&E.M.Lifschitz, 2009). This
can be achieved by a vanishing X60U component. Additionally, we need the condition 600 = −1,
which in our notation means qS = �S = 0. The line element thus takes the form

dB2 = 02 [
−d[2 + [(1 + 2kB)X8 9 + 2�,8 9 B] dx8dx 9

]
. (2.53)

A disadvantage of this gauge, in contrast to the conformal-Newtonian gauge, is that it is not
uniquely fixed. There exists a whole class of synchronous coordinate systems. However, the
importance of this gauge is nevertheless crucial as it is used in many numerical codes, e.g. in
CLASS (Blas et al. 2011; this code is public, but currently distributed under a non-free licence).
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With the metric fully defined we can derive the Christoffel symbols of the second kind
(symmetric definition)

Γ
d
`a =

1
2
6df

(
6fa,` + 6`f,a − 6`a,f

)
, (2.54)

and the Riemann tensor

'
d
f`a = Γ

d
af,` − Γd`f,a + Γd`UΓUaf − Γ

d
aUΓ

U
`f . (2.55)

By contracting the first and third index of the Riemann tensor we derive the Ricci tensor '`a and
hence have the full left-hand side of the Einstein equations (eq. (2.1)). For the sake of brevity
we do not derive the explicit expressions of the above relations. The right-hand side consists of
the energy–momentum tensor for which we assume a perfect fluid yielding

)
`
a = (n + ?)D`Da + ?X`a . (2.56)

We decompose the energy density and the pressure into a background and a perturbation as
n = n̄ + Xn and ? = ?̄ + X?. For the 4-velocity, we use the same decomposition, thus

D̄` =

(
D0

®0

)
and XD` =

(
XD0

®E

)
. (2.57)

The velocity is a time-like vector that, with our sign convention, will always fulfil D`D` = −1
and therefore we can show that the velocity decays as

D` =
1
0

(
1 −Φ
®E

)
. (2.58)

Finally, we use the Helmholtz theorem again to decompose the velocity perturbation into a scalar
and a vector field E8 = E,8 + E⊥ 8 and derive an expression for the energy–momentum tensor in
first order perturbation theory

X)
`
a =

(
−Xn (n̄ + ?̄)E,8

−(n̄ + ?̄)E, 9 X? X8
9

)
. (2.59)

Having also the right-hand side expression of the Einstein equations we now can express these
equations including the perturbations yielding

ΔΦ − 3H(Φ′ + HΦ) = 4c�02Xn, (2.60)

(Φ′ + HΦ),8 = 4c�02(n̄ + ?̄)E,8, (2.61)

[−Ψ′′ +H (−2Ψ +Φ)′ + (2H ′ +H2)Φ + 1
2
Δ(Φ +Ψ)]X8 9 −

1
2
(Φ +Ψ),8 9 = 4c�02X?X8 9 , (2.62)

where Δ := ∇ · ∇ in these equations is the Laplacian and ′ := d/d[, a derivative with respect
to conformal time [. Equation (2.60) makes clear why we call Φ the generalised Newtonian
potential, as this equation has the form of the Poisson equation. Based on eq. (2.62) it also
becomes clear thatΦ = −Ψ. Taking the off-diagonal entries the equation simplifies to (Φ+Ψ),8 9 =
0. Given that this has to hold globally for all perturbationswemust conclude thatΦ = −Ψ. Hence,
we rewrite eq. (2.62) as

Φ′′ + 3HΦ′ + (2H ′ + H2)Φ = 4c�02X?, (2.63)
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which now gives us the full Einstein equations in linear perturbation theory.
This set of equations also allows us to study the time evolution of scalar perturbations and

thus how matter perturbations grow during the different epochs of the Universe. We follow
Schwarz (2008) and start this estimate by defining the relativistic density contrast for each fluid
(0 defines the fluid, typically cold dark matter or baryons)

Δ0 ≡
Xn0

(n̄ + ?̄)0
, Δ ≡

∑
0

(n̄ + ?̄)0
n + ? Δ0 , (2.64)

where Δ now denotes a perturbative quantity. The peculiar velocity (a velocity with respect to
the background FLRW model) can be expressed as

E =
∑
0

(n̄ + ?̄)0
n + ? E0 . (2.65)

Similarly to eq. (2.13), we can take the derivative of eq. (2.59) and recover the conservation law,
resolved into Fourier modes (since we assume a flat spatial hypersurface; see eq. (2.78) below),
which for a mode with wave number : is

Δ′0 = :E0 + 3Φ′ . (2.66)

The Euler equation – differential equations derived from fluid dynamics – for this problem is
given by

E′0 + (1 − 322
0)HE0 = −22

0:Δ0 − :Φ. (2.67)

The last thing we need to introduce is a hypersurface-invariant variable

Z =
Xn

3(n̄ + ?̄) +Φ, (2.68)

which can either be interpreted as the perturbation of spatial curvature on a constant density
hypersurface or as the relativistic density contrast on a uniform curvature hypersurface. The
variable is constant for superhorizon modes for every different epoch. Inserting Z into eq. (2.66)
yields Z ′0 = 3:E0. For superhorizon modes, with :[ � 1, Z0 is approximately constant, since
the mode is frozen.

Rewriting eq. (2.60) in Fourier space yields

− :2Φ − 3HΦ′ − 3H2Φ = −(H ′ −H2)Δ. (2.69)

Let us consider superhorizon modes (: � H ) first. In this case we can neglect ΔΦ and Φ′
in the 00-component of the Einstein equation eq. (2.60). If we insert the Hubble parameter
H2 = 8c�

3 02n , then we derive
Xn

n̄
=

2
Φ
, (2.70)

and then inserting this in the definition of the hypersurface variable eq. (2.68), using ? = nF,
yields

Z =
2
3

Φ

3(1 + F) +Φ. (2.71)

Thus Z stays constant during the different epochs, so we can compare the initial potential during
radiation domination (F = 1/3) with the final potential during matter domination (F = 0),
obtaining

Φf =
9
10
Φi. (2.72)
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As Z stays constant also for F = −1 the potential Φ needs approach zero at early times.
For subhorizonmodes (: � H ) we combine the continuity equation eq. (2.66), its derivative,

the Poisson equation in Fourier space (eq. (2.69)) and eq. (2.67). We drop all terms with Φ and
Φ′ as they are negligible compared to :2Φ in this regime, obtaining

Δ′′< + HΔ′< =
3
2
(1 + F)H2Δ , (2.73)

using 22
< = 0 andH ′ = −1

2H
2(1 + F). Now it is easy to see how matter evolves over time. First

we look at the radiation dominated epoch, in which F = 1
3 and H = 1

[
. Furthermore it is clear,

since it is radiation dominated, that Δ = ΔA . Substituting this in eq. (2.73) leads to

Δ′′< +
Δ′<
[
− 2
[2ΔA = 0. (2.74)

The solution of this differential equations has the form

Δ< ∝ 11 + 12 ln([), (2.75)

where 11 and 12 are constants. This is only the homogeneous solution. During the matter
dominated epoch F = 0,H = 2

[
and again it should be clear that Δ = Δ<. Again this is inserted

in eq. (2.73) and the solution to the differential equations yields

Δ< ∝ [2 ∝ 0. (2.76)

Lastly, we study the perturbations during Λ domination, so F = −1 and H = const. This leads
to

Δ< = const . (2.77)

We have the interesting result that matter perturbations cannot grow in a Λ dominated Universe.
As alreadymentioned above, thematter perturbationsΔ( ®:,I) are characterised by their power

spectrum 〈
Δ( ®:,I)Δ( ®:′,I)

〉
≡ %(:,I)
(2c)3

X( ®: + ®:′) (2.78)

since we assume a flat spatial hypersurface (the topology restricts which modes are allowed; a
trivial topology allows a continuous range of modes). %(:,I) is the power spectrum which gives
a measure for how many perturbation of which length, equivalently characterised by the wave
vector ®: , exist. The power spectrum can be measured from observations, thus yielding a direct
probe of cosmological perturbation theory. The challenging tasks that are beyond the scope
of the background review in this thesis include how to model the power spectrum and relate
matter perturbations to it in the radiation dominated epoch, and how to model their transition
through to the matter dominated epoch. Instead, in section 3.1 we accept the standard approach
for use in generating the initial conditions describing matter-epoch perturbations appropriate for
an #-body simulation.
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2.2.2 The cosmic web
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Figure 2.4: The cosmic web derived from a pure dark matter #-body simulation. The figure displays the density
distribution of a slice of a realisation of the Universe. The brighter yellow parts visualise regions of higher density
while blue regions are underdense. We clearly see a web-like structure spanning the simulation and smaller scale
structures of lower density contrast within the voids. Most galaxies will form in the overdensities, or close by, while
a few galaxies will form in the rather underdense areas of the web.

We learned about the homogeneous, isotropic background model of the Universe and how
the background Universe evolves in the ΛCDM model according to the Hot Big Bang model.
Moreover, we studied density perturbations, which are normally thought to start as quantum
fluctuations that were spread out by cosmic inflation and then grow in size and amplitude to
form the structures that we observe today. This section will explain what cosmologists call
large-scale structure or the cosmic web.

A visualisation of the cosmic web can be seen in fig. 2.4, which shows the density distribution
of a slice of an#-body simulation.We clearly see that there is aweb-like structure of overdensities
that spreads through the space. These overdensities can be characterised as clusters (nodes in
the cosmic web) which are the most massive structures, followed by filaments and walls which
connect the different clusters. In between we see huge underdense regions which are known
as cosmic voids that dominate the volume budget of the Universe. Unfortunately, in contrast
to most other disciplines of physics, we cannot create small test labs to study, for example,
structure formation or galaxy evolution. We thus rely on cosmological #-body simulations and
fine-tune these to represent what is seen observationally. We can also extrapolate results based
on simulated data to estimate what we expect to see in observations.

Historically, the overdense regions such as clusters are much better studied because they con-
tain more luminous matter and hence they are easier to detect. However, the first measurements
of underdense regions go well back over 40 years (Gregory & Thompson, 1978; Jõeveer et al.,
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1978; de Lapparent et al., 1986). In these first galaxy catalogues the authors noted that there are
regions which are devoid by galaxies. From these measurements it is known that a high volume
fraction of the Universe consists of large underdense regions. More recent measurements have
increased our knowledge about these underdense regions, now known as cosmic voids or voids
in the cosmic web. Sloan Digital Sky Survey (SDSS) measurements show that cosmic voids
dominate the volume of our Universe, constituting 60% of the volume in Pan et al. (2012)’s
analysis and 70% of the volume in Mao et al. (2017)’s analysis. Several more SDSS-related
analyses have shown that void sizes span about an order of magnitude, ranging from 10 to
200 Mpc/ℎ−1, with higher numbers of smaller voids (Hoyle & Vogeley, 2002, 2004; Pan et al.,
2012; Nadathur & Hotchkiss, 2014; Sutter et al., 2014; Pisani et al., 2014, 2015a,b; Mao et al.,
2017).

Even though most galaxies will form in more dense regions, namely the filaments and the
clusters, some galaxies will form in cosmic voids. Simulations show that inside voids, there is a
hierarchical substructure of over- and under-densities that is similar to the larger scale structures
found in the cosmic web, i.e. nodes, filaments and walls (Gottlöber et al., 2003), but traced by
dark matter haloes of much lower mass.

Depending on the chosen catalogue and void detection algorithm, a modest fraction of
galaxies can be considered as being located in voids. For example, Pan et al. (2012) estimate
that about 7% of galaxies are located in voids. The true volume that is occupied by voids is hard
to assess and generally depends on the method used, but since the fraction of volume may be as
high as 80% (for theoretical estimates, see e.g. Colberg et al., 2008; Cautun et al., 2015), they
are suspected to play a key role in relation to dark energy (e.g. Buchert et al., 2016).

Furthermore, voids themselves are fascinating objects to study as they can yield important
insights about the nature of the Universe and their size, abundance, shape and density profile can
be used to probe the cosmological standard model. The way that matter clumps in voids and how
it is pushed outside is studied to derive the matter density and dark energy parameters Ωm0 and
ΩΛ0. For example, Dekel & Rees (1994) use the radial peculiar velocities of galaxies in order
to estimate the matter content of the Universe, arguing that a low matter Universe will result in
lower velocities. Bernardeau et al. (1997) argue that since accelerations exerted by gravity will
account for luminous and dark matter, the velocity field can be used to re-model the underlying
mass distribution and thus can be used to estimate the matter content of the Universe. Fliche &
Triay (2010) investigate how the cosmological constant Λ influences the growth of an isolated,
spherical void.

Using #-body simulations, we can also use voids test other aspects of cosmological models.
Li et al. (2012) study 5 (') gravity by adding a fifth force, acting in the very dense regions
of clusters, to an #-body simulation and study the size of voids in the model. They find that
the Universe in such a modified gravity scenario hosts significantly more voids of larger sizes
compared to the standard ΛCDM model. The shape of voids is used by Bos et al. (2012) in five
cosmological simulations, each using a different dark energy model. The authors conclude that
the differences between the models are significant and should be measurable, and thus the shape
of voids can be used to test and falsify specific dark energy models. Defining and detecting voids
in observational and simulated data is therefore a crucial task and will be explained in section
3.3.

A void will grow in size over time and become more empty as matter is pushed towards
its edges. The void acts against the clumping of matter in its interior. A galaxy forming in a
cosmic void, especially at the centre of a cosmic void, should have difficulties to form due to the
lowest densities and the trend against clumping. This trend is twofold. Naïvely we expect that the
effective force that pushes matter out of the void whould act against structure formation. We also
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expect a comparably undisturbed formation and evolution of the galaxies as there are fewer other
massive structures that might interact gravitationally with the galaxies via tidal effects or collide
(merge) with them. Moreover, it is shown that in order to turn around prior to collapse, a dark
matter halo needs to undergo a phase of positive spatial curvature (Roukema &Ostrowski, 2019;
Vigneron & Buchert, 2019; Ostrowski, 2020). A void, on the contrary, will induce a negative
spatial curvature and thus counteract the formation process of dark matter haloes. These effects
will be stronger the deeper a galaxy resides in a void.

Observational void galaxies are measured to have lower masses, being bluer, smaller and
having a higher specific star formation rate (Hoyle et al., 2005; Patiri et al., 2006; Kreckel et al.,
2011). Some studies that probe the properties of void galaxies while fixing their stellar mass
do not find any substantial difference between void galaxies and non-void galaxies. Beygu et al.
(2016) find that the measured differences are mostly caused by the statistically lower mass of
void galaxies. However, other studies find that void galaxies have an enhanced star formation
rate for a fixed mass (Florez et al., 2021). Further studies are needed to resolve this apparent
contradiction.

Recent studies investigate the molecular gas content of void galaxies. Whereas Florez et al.
(2021) find higher gas masses for void galaxies, Domínguez-Gómez et al. (2022) do not find any
significant difference between void galaxies and galaxies in filaments and clusters. It remains
an open question if galaxy formation is heavily influenced by the large-scale environment of the
void or rather by the small scale environment.

In chapter 3 we explore the steps that are needed to generate a realistic density distribution
derived from initial conditions. We explain the tools that are used to identify structures – dark
matter haloes and voids – in the resulting density distributions. With these tools in place, we are
able to probe the above assumptions in a controlled way and study the statistical effects on void
galaxies.
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2.3 Gravitational lensing and geometric optics
Einstein’s theory of gravity is, up to the present day, a very successful and powerful tool that
describes the measured Universe. A consequence of the theory is that light rays travel on straight
lines in the space-time. A perturbation in the density field thus will influence the path that a
light ray will take. Even in Newtonian gravity we can explain that matter will have a measurable
effect on light propagation e.g. by connecting the energy of a photon to a mass using the
analogy between waves and mass that was proposed by de Broglie 1924. However, predicting
the measured deflection was a great success for GR and increased the acceptance of the theory. In
this section we introduce a simple approach to estimate the lensing signal following Bartelmann
& Schneider (2001), and continue to the geometric-optics approach following Sasaki (1993) and
Clarkson et al. (2012).

2.3.1 Gravitational lensing
If an object with a high gravitational mass, the lens object, lies between a galaxy and an observer,
then the light bundle emitted by the galaxy will be deflected and deformed while propagating.
This effect can be so strong that a single galaxy can have multiple visible images as multiple
light bundles reach the observer. For the rare setup that the emitting source, the lens and the
observer are well aligned it is possible to measure Einstein rings, which means that the source
appears as a ring around the lens. As galaxies are usually not perfectly spherical or the disk is not
observed face-on, estimating the real deflection and the shear that the light bundle experiences
can be difficult. However, a unique feature of lensing observations is that the light ray sees all
the matter, not just baryonic matter. By extracting the lensing signal it is thus possible to probe
the underlying matter distribution of the Universe.

An illustration of the lens effect can be seen in fig. 2.5. If we consider a single mass as the
source of lensing, then we can write the deflection angle, as long as the impact parameter b is
much larger as than the Schwarzschild radius of the source, i.e. the light bundle passes the lens
object with a sufficient distance, as

Û =
4�"
22b

, (2.79)

where " is the mass of the lens object. That is however only valid if the light bundle only
sees one lens object which, in general, will not be the case. As we have seen in section 2.2.2
and fig. 2.4 there are several structures within the cosmic web that will have an impact on a
light bundle, thus the more realistic case is that a light ray travels through the Universe seeing a
matter distribution with multiple effective lensing objects. As long as the deflection caused by
the gravitational field is small the problem can be linearised, which means that the total effect
on the light ray is the vectorial sum of the deflections each lensing object will cause.

Let us divide the Universe into cells of size d+ and mass d< = dd+ . A light ray, far away
from the lensing source will travel along the unperturbed path A3. In this approximation the
deflection angle is small, therefore the path of the light can be approximated as a straight line
close to the lensing source, the source acts as one effective potential. This is possible as the
energy of the light ray is negligible compared to the energy of the mass that causes the deflection
which is similar to the Born approximation from quantum physics, meaning that we can solve
the equation for the path of the light without taking the motion of the lens object into account.
Thus, the impact vector ®b = (b1, b2) is independent of the affine parameter _ that characterises
the light ray’s trajectory.

We characterise the light ray by (b1, b2, A3), i.e. its path far away from the lensing source
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Figure 2.5: A simplified sketch for a light bundle that experiences a deflection for a single lens. Image adapted from
Bartelmann & Schneider (2001)

and the impact vector caused by the mass of the lens object. The total (effective) impact vector
is therefore given by the difference ®b − ®b′, taking into account that there are multiple lensing
objects influencing the light bundle, acting on a light ray at position ®A = (b′1, b

′
2, A
′
3) . The total

deflection angle, the sum of several lensing objects, with the qualitative arguments above, now
can be written as

®̂U( ®b) = 4�
22

∑
d<(b′1, b

′
2, A
′
3)
®b − ®b′

| ®b − ®b′|2

=
4�
22

∫
d2b′

∫
dA′3d(b

′
1, b
′
2, A
′
3)
®b − ®b′

| ®b − ®b′|2

=
4�
22

∫
d2b′Σ( ®b′)

®b − ®b′

| ®b − ®b′|2
,

(2.80)

where we introduced the surface mass density Σ( ®b′) ≡
∫

dA′3d(b
′
1, b
′
2, A
′
3) in the last step. This

approximation for the deflection angle is valid as long as the deviation from an undeflected light
ray is small on the scale on which the mass distribution changes, which is the case for almost all
astrophysical cases.

We now aim to get an analytical expression for the deflected position on the sky ®[. In fig. 2.5
we can read that ®[ = �OS ®V and ®b = �OL ®\. Moreover, by using the angular diameter distance
(eq. (2.36)) and assuming that U is very small, we can read �OS =

®[+�LS ®U
®\

and hence

®[ = �OS
�OL
®b − �LS ®̂U( ®b) (2.81)
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and by inserting ®[ and ®b rewrite it as

®V = ®\ − �LS
�OS
®̂U(�OL ®\) ≡ ®\ − ®U( ®\), (2.82)

where we define the scaled deflection angle ®U( ®\) ≡ �LS
�OS
®̂U(�OL ®\). According to fig. 2.5 an

observer will see an object at position ®\ while its true position is ®V. It can occur that the equation
has more than one solution, meaning that the object is visible at several different positions in the
sky. Such a lens is called "strong". It is common to introduce the dimensionless quantities

^( ®\) = Σ

Σcrit
, (2.83)

where Σcrit =
22

4c�
�OS

�OL�LS
is the critical surface mass density. Σcrit can be used to distinguish

between "strong" and "weak" lensing. If Σ > Σcrit, then ^ > 1 which results in multiple images
for a single object. Rewriting the scaled deflection angle with ^ we find

®U( ®\) = 1
c

∫
d2\′^( ®\′)

®\ − ®\′

| ®\ − ®\′|2
. (2.84)

We can now formulate a lensing potential by noticing that we can write ®U = ∇Ψ and therefore

Ψ( ®\) = 1
c

∫
d2\′^( ®\′) ln( | ®\ − ®\ |). (2.85)

Ψ is the equivalent of a gravitational Newtonian potential. Using d
d®\ ln | ®\−®\ ′ |

= X( ®\ − ®\′) we can
show that ^ and Ψ satisfy the Poisson equation ΔΨ( ®\) = 2^( ®\).

With these equations we can now find the deflection on the sky via solutions of the equations.
As light of extended bundles gets deflected differentially the shape of the image will deviate
from the original image of the source. Probably the most famous observations of this deflection
are the previously mentioned Einstein rings, though this deformation of the image will generally
produce bright arcs that do not have to be rings. We can connect the observed image with the
image of the source via the amplification matrix

Θ0S = �
0
1Θ

1
O. (2.86)

As there is no emission nor absorption of light, using Liouville’s theorem we can conclude that
the surface brightness of the image must be preserved. The measured surface brightness thus
can be expressed as

�O( ®\) = �S®1( ®\). (2.87)
If the source is much smaller than the scale on which the lensing properties change, then we can
linearise the mapping and write an explicit form for the amplification matrix as the Jacobian of
the potential

� =
m ®V
m ®\

= X8 9 −
m2Ψ( ®\)
m\8m\ 9

=

(
1 − ^ − W1 W2 − l
W2 + l 1 − ^ + W1

)
. (2.88)

The convergence ^ is defined over the Poisson equation, W is the shear and l the rotation, which
will be dropped for simplicity. The shear is thus given by

W1 =
1
2
(Ψ,11 −Ψ,22) =

1
c

∫
d2 ®\′^( ®\′)

(\2 − \′2)
2 − (\1 − \′1)

2(
(\1 − \′1)2 + (\2 − \′2)2

)2 (2.89)
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and
W2 = Ψ,12 = Ψ,21 =

1
c

∫
d2 ®\′^( ®\′)

−2(\1 − \′1) (\2 − \′2)(
(\1 − \′1)2 + (\2 − \′2)2

)2 . (2.90)

If the weak lensing convergence ^ is azimuthally symmetric, similarly this has to hold true for
Σ based on eq. (2.83), then it can be shown that

W = W1 + 8W2 = Σ(< \) − Σ(\) =
2
\2

∫ \

0
\′Σ(\′)d\′ − Σ(\), (2.91)

where we wrote ®\ in polar coordinates. Assuming the deflection is small we can use a Taylor
expansion and write

�$ ( ®\) = �(
(
®10 + �( ®\0) ( ®\ − ®\0)

)
. (2.92)

Let us assume the image of the source is a perfect sphere. It is then clear that the image seen by
an observer becomes an ellipse. The ratio of the semi-axes compared to the radius of the original
image are given by the content of the amplification matrix. The ratio is given by the inverse of
the eigenvalues which are 1 − ^ ± |W |. The ratio of the solid angles is given by the inverse of the
determinant of �. The fluxes are the integrals over �( and respectively �$ . Their ratio is given
by the magnification

` =
1

det(�) =
1

(1 − ^)2 − |W |2
. (2.93)

With this set of equations we have heuristically derived the fundamental equations and concepts
for weak lensing.

2.3.2 Geometric optics
While weak lensing only holds true assuming an FLRW background, the optical scalars, first
derived by Sachs (1961), hold true for any background. A light ray propagating through a matter
distribution will be deflected according to the inhomogeneities which in the context of linear
order perturbation theory are characterised by Φ, see eq. (2.52). A description can be found in
Sasaki (1993) and Clarkson et al. (2012).

Clarkson et al. (2012) formalise the propagation of a bundle of light rays G` (aB), where a
is the affine parameter and B labels the geodesic. Let us assume a monochromatic light bundle
with propagation vector :` and using the geometric optics approximation meaning that the
wavelength of the light is much smaller than the structures in the Universe. In this approximation
we can assume that the phase of the light ray is constant and thus there is no deformation due
to any rotation of the image. Such a light bundle is described as irrotational null geodesics such
that

:`:
` = 0 , :`;a:a = 0 , :`;a − :a;` = 0. (2.94)

The connection vector [a = dG`/dB connects neighbouring geodesics of the bundle, with a
tangent vector :` = dG`/da. Describing the change of [a while the light bundle propagates
along the affine parameter a therefore gives full information about the shape of the light bundle.
The connection vector can at each point be chosen to be orthogonal to :`. We span the space
orthogonal to the affine parameter by introducing the dyad basis 4�` , where � = (1,2) such that
6`a4�` 4

�
a = X

�� and [`0 :` = 0. We can construct the orthogonal space spanned by the dyad basis
such that the connection vector in the dyad basis can be written as

[` = [14
`

1 + [24
`

2 , (2.95)
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and vice versa
[� = 4�`[

` . (2.96)
The geodesic deviation equation is given by

:U: V∇U∇V[a = '`aUV:
a:U[V. (2.97)

We rewrite this equation in the dyad basis using d
da = :

`∇` and that the dyad basis is parallel
transported as d

da 4
a
�
= 0 as

d2

da2[� = '`afd:
a:f4

`

�
4
d

�
[� ≡ '��[�, (2.98)

where '�� is defined over the equation above. According to Clarkson et al. (2012) the linearity
of this equation implies

[� (a) = ��
� (a)

d[�

da

����
a=0

, (2.99)

where ��
�
is a Jacobian matrix. Inserting the solution back into the geodesic deviation equation

eq. (2.98) yields
d2

da2�
�
� = '

�
��

�
� , [� (0) = 0 ,

d��
�

da
(0) = X�� . (2.100)

The latter two expressions can be thought of boundary conditions.
Clarkson et al. (2012) then defines the deformation matrix ( as

d��
�

da
= ��

�(
�
� (2.101)

and we rewrite the geodesic deviation equation, which is a second order differential equation, as
a first-order differential equation in ( as

d(�
�

da
+ (��(

�
� = '

�
� . (2.102)

Via its connection to the Riemann tensor the deformation matrix contains all information about
the energy distribution seen by the light bundle. The deformation matrix usually is decomposed
as

( =

( 1
2 \̂ 0
0 1

2 \̂

)
+

(
f̂1 f̂2
f̂2 −f̂1

)
. (2.103)

\̂ and f̂ are the optical scalars; here we use the decomposition according to eq. (3.12) of Sasaki
(1993) with an additional factor of 1

2 in front of \̂ compared to Clarkson et al. (2012). If we
insert this expression for the deformation matrix back into eq. (2.102), then we can derive the
expression for the optical scalars

d\̂
da
+ 1

2
\̂2 + 2|f |2 = '�� (2.104)

df̂
da
+ \̂f̂ = '0

0 − '
1
1 + 8('

0
1 + '

1
0). (2.105)

Sasaki (1993) argues that in linear order perturbation theory we can find approximations relating
the optical scalars to the perturbations and rewrite the optical scalars as

d\̂
da
+ 1

2
\̂2 + 2|f |2 = 8c�dl2 (2.106)

df̂
da
+ \̂f̂ = ��0�0 ≈ (2Φ;�� − X��Φ;�

;�)l
2, (2.107)
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where l is the energy of the light ray.
The weak lensing formalism and the Sachs optical scalars both measure the deflection of

a light bundle. It is straightforward that these two measures of deflection thus can be related.
Clarkson et al. (2012) find that the two Jacobian matrices are related over the angular diameter
distance �� in a FLRW Universe by

��� (a) =
��
�
(a)

�� (a)
. (2.108)

If we insert this relation into eq. (2.101), then we can find the relation between the weak lensing
parameters and the optical scalars via

(�−1)��
d

da
(���) + X

�
�

d
da
(��)

1
��

= (�� . (2.109)

Inserting eqs. (2.103) and (2.88) will yield the analytical expression between (\̂, f̂) and (^, W)
(see eqs (41)–(43) in Clarkson et al. (2012)). As the optical scalars are more general such a
relation can be useful in some cases.



Chapter 3

Method

This pipeline used for this thesis aims to build a realistic galaxy population starting from
initial conditions that are modelled by generating a realisation of the initial perturbation power
spectrum, evolving this into the spatial density distribution of the cosmic web using #-body
simulations, classifying the large-scale structure – voids and haloes – in the cosmic web, and
populating the haloes with galaxies using semi-analytical recipes based on the halo’s merger-
history trees.

The work presented in chapter 4 and 6 will be fully reproducible. We follow the Maneage
scheme of reproducibility (Akhlaghi et al., 2021). The software presented below is embedded in
the Maneage template, meaning that we create an independent directory on the used machine in
which all necessary software will be installed. Software packages are indicated by their version
numbers and SHA512 checksums for the upstream versions of software used in our pipeline.
This method avoids problems such as software not compiling or giving substantially different
results due to the versions of software installed on the parent system. Reproducibility of the
method, together with the free licence of the code, allow users to quickly check and validate
the presented results and the used tools. We present a heavily numerical approach where the
individual steps will be briefly discussed in the following sections.

3.1 Initial Conditions – mpgrafic
We have learned about the evolution of our Universe and density perturbations. The initial
perturbations are believed to be quantum fluctuations which are stretched during inflation. In
this analysis initial conditions for the density and velocity perturbations are generated with
mpgrafic (Prunet et al., 2008). This software package was designed to enable easy, correct
generation of the initial conditions for a multiscale “zoom” simulation. Moreover, mpgrafic is
published under a free-software licence, the GNU General Public License version 2 or later,1
which satisfies one of the Akhlaghi et al. (2021) criteria (criterion 8) for high-quality scientific
reproducibility (Rougier et al., 2017).

3.1.1 Single-level simulation
For the derivation of the mathematical basics we follow the description of (Bertschinger, 2001).
Let us assume a density distribution X(G) in real, flat space. Using the Fourier transform it can

1https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
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be written as
X(®G) =

∫
d3: exp(8®: ®G)X̃( ®:), (3.1)

where X̃( ®:) is the same distribution in Fourier space. The Fourier distribution is then split into
Gaussian white noise b ( ®:) and an evolution/transfer function ) (:) as X̃( ®:) = ) (:)b ( ®:). The
white noise has to satisfy

〈b ( ®:1)b ( ®:2)〉 = X3( ®:1 + ®:2), (3.2)
which implies that the power spectrum is normalized and the modes are independent.

The transfer function is defined here specifically for this type of numerical generation of
initial conditions. It differs from the usual transfer function that describes the transition from a
primordial Harrison–Zel’dovich-like spectrum through to a post-recombination spectrum. The
transfer function in this context contains all the information about both the pre-recombination
spectrum and the evolution of the modes through this epoch, and is defined

) (:) :=
√
%(:). (3.3)

By using the Fourier transformation on infinite, simply connected flat space, ) ( |G |) =∫
d3:
(2c)3 exp(8®: ®G)) (:) and b (G) = (2c)3

∫
d3: exp(8®: ®G)b ( ®:), it is easy to check that we can

represent the density perturbation as

X(G) =
∫

d3G′b ( ®G′)) ( |®G − ®G′|). (3.4)

In other words, we see that a Gaussian density perturbation can be constructed by the convolution
of white noise and the transfer function.

The main task of mpgrafic is the discretisation of these equations on the 3-torus. First we
investigate the case for a single-scale simulation. To do this let us assume a box (fundamental
domain of the 3-torus) of length ! with " grid points in each direction. The grid position
consequently can be written as ®G( ®<) = (!/") ®< where <8 ∈ [0,1,..,"] (i.e. ®< is a vector in
N" , where N is the set of natural numbers including zero). The sum is the discretised version
of an integral. Thus, using the adimensional wavenumber ®̂ = ®:!/(2c), we can rewrite 3.1 as

X( ®<) =
∑
®̂

exp
(
82c
"
®̂ · ®<

)
) (:)b ( ®:). (3.5)

The correlation function (which is adimensional) can be written as

b ( ®:) = "−3
∑
<

exp
(
−82c
"
®̂ · ®<

)
b ( ®<). (3.6)

The discrete form of the Dirac delta is the Kronecker delta and eq. (3.2) becomes
〈b ( ®<1)b ( ®<2)〉 = "3X3

 ( ®<1, ®<2) (3.7)
The algorithm now consists of the following steps

1. Generating independent b ( ®<) at every grid point

2. Calculate eq. (3.6) with a Fast Fourier Transform algorithm

3. Multiply b ( ®:) with the discrete power spectrum

4. Calculate eq. (3.5) with a Fast Fourier Transform algorithm
The outputs of mpgrafic can then be used according to the Zel’dovich approximation

(Zeldovich&Grishchuk, 1984) to generate both an initial peculiar velocity field and proportional
particle displacements as initial conditions of an #-body simulation.
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3.1.2 Zoom simulations
Understanding zoom simulations helps to understand the history of the development of the
mpgrafic code, although we did not run zoom simulations for this thesis.

The challenging task in the early 2000s was to generate a high resolution grid beyond the
limitation of available computer memory (RAM). The solution chosen was to generate a high
resolution grid nested into a coarser grid. Today, current computer hardware allows us to generate
a high-resolution grid over the full volume which is sufficient for many purposes.

We are nevertheless interested in understanding the technique behind zoom simulations as
this technique is still frequently used. Therefore we derive the formalism here. A recent example
of a high-powered zoom simulation is the Cosmic-Zoom project (Liu et al., 2023).

Let us assume a two-level grid with different resolutions. The coarse grid again has " grid
positions. The subgrid is laid over the coarse grid. It lies on "B points of the coarse grid and
additionally is characterised by the refinement factor A which specifies how many points the
subgrid contains per position of the coarse grid (see fig. 1 Bertschinger (2001)). Each cell of the
original coarse grid is therefore split into A3 subcells which themselves form the subgrid. The
position now obviously is dependent on two integers because we can move on both grids at the
same time. The position can be written as

G( ®<, ®=) = ®G0 +
(
!

"

) (
®< + 1

A
®=
)
. (3.8)

Conventionally we introduce an offset, ®G0 = (1 − A)!/(2A") (1,1,1) here to set the origin in the
centre. The first step now is again to generate the density perturbations on the coarse grid as
before, additionally there is a refined white noise b ( ®<,®=) generated. The white noise b ( ®<,®=) is
then convolved with a high resolution transfer function. The code has to ensure that b ( ®<,®=) has
the same large-scale structure (long wavelength) as b ( ®<). To do this the code has to generate
uncorrelated white noise b1( ®<,®=) with variance (A")3 and model the following relation

b ( ®<, ®=) = b ( ®<) + (b1( ®<, ®=) − b1( ®<)) (3.9)

with
b1( ®<) ≡ A−3

∑
=

b1( ®<, ®=). (3.10)

We can understand this method as follows. First the subgrid takes coarse-grained white noise
and then small corrections b1( ®<, ®=) − b1( ®<) are added. By constructing it like this we enforce
the white noise to fulfil ∑

=

b ( ®<, ®=) = A3b ( ®<). (3.11)

Moreover, the refined white noise has to preserve the low-frequency structure of the coarse grid.
That is ensured by the above construction, the sum of all white noise grid positions equals the
white noise of the coarse grid. The covariance of this white noise is

〈b ( ®<1, ®=1)b ( ®<2, ®=2)〉 = (A")3X ( ®<1, ®<2)X ( ®=1, ®=2). (3.12)

The method consists of many convolutions of the subgrid. Analogous to 3.5 we set the density
perturbation as

X( ®<,®=) =
∑
®:

exp(8®: · ®G( ®<,®=))) (:)b ( ®:), (3.13)
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where the sum runs over ®: = 2c
!

(
®̂ + " ®1

)
and thus over all points of both grids. The technical

challenge is to convolve 3.13 without summing over the whole Fourier space. Using the Fourier
transforms for b ( ®<,®=), ) ( ®<,®=) and the linearity of G( ®< − ®<′, ®= − ®=′) it is possible to show that
we can rewrite 3.13 as

X( ®<,®=) =
∑
®<′,®=′

b ( ®<′,®=′)) ( ®< − ®<′, ®= − ®=′). (3.14)

We note down
b ( ®<, ®=) =

∑
®:

exp
[
8®: · ®G( ®<, ®=)

]
b ( ®:) (3.15)

and
) ( ®<, ®=) = (A")−3

∑
®:

exp
[
8®: · ®G( ®<, ®=)

]
) (:). (3.16)

By rewriting 3.13 like above we do not need to sum over the whole grid anymore. It is now
possible to calculate the density perturbations only over the subgrid. b ( ®<,®=) can be drawn
from independent Gaussian random distributions with mean 0 and variance (A")3 fulfilling eq.
(3.10); outside the subgrid b ( ®<,®=) = 0. The transfer function can be estimated as above though
this requires O(A6"3

B"
3) operations. Bertschinger (2001) suggests more efficient methods to

estimate the transfer function on the subgrid that will not be considered further in this thesis.
Assuming a cubic box for our subgrid we want to compute the Fourier transforms

b ( ®:′) = 1/#B
∑
®G

exp(8®:′®G( ®<,®=))b ( ®:′), (3.17)

where #B = (2A"B)3 is the total number of grid points in the subgrid and

) ( ®:′) =
∑
®G

exp(8®:′®G( ®<,®=))) ( ®:′). (3.18)

The sum runs over all positions in the subgrid. The Fourier space is a different one than before,
note the ®:′ since we change the Volume from + = !3 to + ′ = ((2"B/")!)3. The final step
is to perform the convolution 3.4 in :-space and then Fourier-transform it. We refer the reader
to Bertschinger (2001) and (Prunet et al., 2008) for the implementation of the mathematical
description presented above.

3.1.3 Fast Fourier Transform
In computational science the technique of Fast Fourier Transforms (FFT) has become very
important. One ofmany examples is described above: the generation of initial conditions requires
to perform several FFTs during one run. FFTs are commonly used in many different disciplines,
where frequencies of a signal have to be analysed (e.g. telecommunication, maths and physics).
There exist many different algorithms for the FFT, but the general idea is to have a fast algorithm
to perform the discrete Fourier Transform of a given function. An example was introduced in
Cooley & Tuckey (1965). This abstract work can be used to explain the Discrete Fast Fourier
Transform as shown in Mkleine & other Wikipedia contributors (2023). Assume we want to
make the Fourier Transform of a vector ®G = (G0,G1,...,G=). The Fourier Transform then is given
by

5< =

2=−1∑
:=0

G: exp(−2c8
2=
<:), (3.19)
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with < = 0,1,...,2= − 1. Let us split the Fourier Transform in a sum over all even indices and a
sum over all odd indices, i.e. G′

:
= G2: and its Fourier Transform will be 5 ′

:
and G′′ = G2:+1 with

the Fourier Transform (FT) 5 ′′
:
. It immediately follows that we can write the FT as

5< =

=−1∑
:=0

G2: exp
(
−2c8

2=
<2:

)
+
=−1∑
:=0

G2:+1 exp
(
−2c8

2=
<(2: + 1)

)
(3.20)

=

=−1∑
:=0

G′: exp
(
−2c8
=
<:

)
+
=−1∑
:=0

G′′: exp
(
−2c8
=
<:

)
(3.21)

= 5 ′< + exp
(
−c8
=
<:

)
5 ′′< for < < = (3.22)

= 5 ′<−= + exp
(
−c8
=
(< − =):

)
5 ′′<−= for < ≥ = (3.23)

Calculating 5 ′< and 5 ′′< for < = 0,...,= − 1 is sufficient to calculate all FTs, the calculation time
thus nearly halved.

A widely used FFT is FFTW, the “Fatest Fourier Transform in the West” (Frigo & Johnson,
2012), licensed under the GNU General Public License version 2 or later.2 The mpgrafic
software currently uses FFTW2.

2https://www.gnu.org/licenses/old-licenses/gpl-2.0.html

https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
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3.2 #-body problems – Ramses

3.2.1 #-body problems
In physics we often come across a rather simple problem that is easily solvable for two particles
but becomes unsolvable (in an exact analytical sense) for #-body systems. The maybe most
famous example, or at least the first problem we encounter during our studies, is the elastic
collision of two bodies which is an easy task and fully deterministic. The elastic collision
of three particles is analytically solvable by calculating it in the centre-of-mass frame, which
effectively decreases the dimension of the problem by one and leads to a continuous spectrum.
The #-body collision is not solvable analytically. The same holds true for many problems,
like the Coulomb forces on the electrons in an atom. While the hydrogen atom is analytically
completely solvable, we fail to find an exact, generic analytical solution for the helium atom.
Usually we use approximations to solve these problems, especially when continuing to quantum
mechanical models, e.g. we can treat the electron–electron interaction as a perturbative term and
calculate the energy corrections by solving the Schrödinger equation.

However, every problem eventually will become analytically unsolvable when we take too
many bodies into account. A challenging problem arises in the context of cosmology. We cannot
create little laboratory sized universes to test our cosmological model. If we want to test our
cosmological and gravity models, we have to test them with large #-body simulation. The
challenging task is to perform a large simulation of millions (modern simulations easily use
billions) of particles.

Gravity has a unique role when we look at the four fundamental physical forces. The coupling
constant of gravity is, when compared to the other forces, rather weak. We experience this in our
daily lives, as ordinary household magnets exert a stronger force on an object than the Earth’s
gravitational attraction does. On the other hand, the weak and strong interaction have a limited
length and electromagnetic forces are shielded by a conjugate charged particle. The gravitational
force is not shielded as we do not know any particle that carries a negative mass; its action length
– in its Newtonian model – is infinite, though its strength decreases over large distances. In
Newtonian physics we can express the force between two objects of masses <1 and <2 and with
a spatial separation A as

� = −�<1<2

A2 . (3.24)

We see that the strength of the force drops rapidly but nonetheless every object feels every
other particle exerting a gravitational force on it. These small forces are especially important
in cosmology as there is no other, stronger, force working on a particle. Thus, reasonable
approximations are needed to perform #-body simulations. In the following we explore some
of the basics of an #-body simulation. Nearly all #-body problems can be summarized by the
equation

* (®G0) =
#∑
8=0

� (®G8,®G0), (3.25)

where 8 is a summation over all particles. This formula means that a given variable* at position
®G0 is the summed up interactions � of all particles at positions ®G8. Using this scheme for
gravitational force on a particle of mass < we find, similarly to eq. (3.24) but in vector form,

®� (®G0) =
#∑
8=0
−�<<8

A2
8

Â8, (3.26)

where Â8 is the unit vector in the direction of particle 8 and A8 is the spatial distance.
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3.2.2 Ramses
In this thesis, we use the Ramses code Teyssier (2002) to perform #-body simulations, aimed
at approximating the standard cosmological model (chapter 2) and generate a realisation of
the density distribution. Ramses is published under a free-software licence, CeCILL,3, which
satisfies Akhlaghi et al. (2021) reproducibility criterion 8.

We follow Teyssier (2002) and add information about the numerical tools from Hockney &
Eastwood (1988) together with Lindholm (1999). In Newtonian physics the motion of a particle
is fully described by the Vlasov-Poisson equations given by

dE8
dC

= −∇Gq and ΔGq = 4c�d, (3.27)

where q is the gravitational potential and d is the matter density. To discuss how Ramses is
solving these equations and how it evolves particles over time we first have to understand how
Ramses is organizing its data.

Cosmological #-body methods

There are different methods to solve the Poisson equation. A few will be explored in this section.

Particle–particle (PP) Calculating the force exerted by every particle in the simulation on
every other particle is not practical since its computation time scales as ∼ #2 for # particles.
Moreover, for a standard 3-torus simulation, the covering space is infinite, so a first-principles
calculation would require an infinite number of pairwise force calculations. Even worse, in the
Newtonian, instantaneous particle–particle attraction model, the net vector values ®� in eq. (3.26)
are divergent sums, i.e. they are undefined. A simply connected infinite Newtonian model has
the same problem if it is statistically approaches homogeneity on successively larger scales.
Switching to a model of potentials (eq. (3.27)) bypasses these divergences.

The naïvest of these approaches, calculating direct particle–particle attractions for a single
copy of each particle in the covering space, is called the particle–particle method (PP) method
and is conceptually the easiest solution to the problem, as it only requires calculating the sum in
eq. (3.26).

Particle–Mesh (PM) The Particle–Mesh algorithm (PM) bypasses the above issues of New-
tonian approaches by representing the field equations, e.g. the density estimation in the Poisson
equation, on a mesh, changing from a continuous derivative for the Laplacian to finite differ-
ences. Doing so means that the algorithm is only sensitive to fluctuations that have a larger
wavelength than the mesh grid size. The algorithm then interpolates the (density) field on the
particle position and performs force calculations based on the interpolation. In the context of a
cosmological #-body simulation we can visualise the particle–mesh algorithm by placing every
particle in a mesh-cell, see fig. 3.1.

Based on such a mesh definition we derive the matter density around a particle and we solve
eq. (3.27). A naïve and easy approach to assign a mass to each cell is the nearest gridpoint
method (NGP). The mass <8 of a particle 8 is assigned to the cell of volume + with the closest
mesh point to the particle. The density is then<8/+ . Ramses instead uses the cloud-in-cell (CiC)
method to estimate the matter density, which, in general, should give a more realistic estimate.
The mass of the cell is assigned corresponding to the intersection of the “cloud” of a particle

3http://www.cecill.info

http://www.cecill.info
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Figure 3.1: An illustration of an example particle mesh adapted from Lindholm (1999). The particles are laying in
a cell of the mesh, the code knows about the neighbours of every cell and of the displacement of the particle.

and the cell. In fig 3.1 the cloud is shown by the green sketched box around the particle. In this
case most of the mass is assigned to cell 1. Cells 2 and 3 are getting nearly the same amount of
mass assigned to them and only a small fraction is assigned to cell 4. The limitation of mesh
codes is that the precision relates to how fine the mesh grid spacing is defined. The particle mesh
code is faster than calculating the force contribution of every single particle in a single copy
of the fundamental domain, but it is imprecise when it comes to close interactions. Hockney &
Eastwood (1988) state that a correlated system with interacting particles would require so many
mesh points that the PM method would even exceed the computational time of the PP method.

Particle-particle–particle-mesh (P3M) A significant improvement can be done by includ-
ing particle–particle interactions of nearby particles; the method becomes a particle-particle–
particle-mesh code (P3M). The P3M method splits the problem into a smooth, slowly varying
large scale interaction and a rapidly changing short range interaction. In such a method we
assume a length Ae to quantify the problem. Every particle closer to the particle of interest
than Ae has to be taken into account by particle–particle interactions. Doing so combines the
speed of the PM code for the far away perturbations while keeping a correct treatment of the
close environment. It is obvious that this algorithm gets very expensive once the particles have
clustered in the simulation. A solution was proposed by Couchman (1991) by using an adaptive
version of the P3M method. The idea is to search for mesh cells (starting or joining a mesh-cell
chain) with a high operation count. The algorithm counts the particles in a chain cell and if the
number of particles is above a set threshold, then it will refine the chain cell into smaller cells.
The order of refinement is crucial for obtaining better results. The algorithm approximates the
amount of computational savings as a function of a parameter !, the number of refined cells,
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and chooses ! to maximize the savings.

Tree code Another method is that of tree codes, e.g. Barnes & Hut (1986) created one of
the first tree-code algorithms. When a distribution of particles is sufficiently far away we can
model this distribution by a single, heavier particle that is located at the centre of mass of the
particle distribution. The particles get divided into boxes, each of these boxes has 8 children in a
three-dimensional case (in 2D the box would have 4 children). This is called a octree structure.
The boxes are successively subdivided until every child box contains a maximum of one particle.
Following the tree analogy, these children are called leaves. To quantify if a particle is sufficiently
far away from a target particle, we can establish a rough check by introducing

\ =
�

A
, (3.28)

where � is the length of a side of the box of the current target particle and A is the distance
between the target particle and the centre of mass of a different box. We have to set a threshold
for \ to decide if a node is sufficiently far away to use the approximation of using a single higher
mass particle or if the code needs to go to the next level of the tree hierarchy and use child boxes.

It is clear that this algorithm will use the highest order (coarse) grid boxes for far particles
while successively including more children boxes when getting closer to the particle of interest.
If \ = 0, the algorithm reverts to the PP method. The code traverses the nodes starting from the
root and then decides if a node is sufficiently far away and calculates the net force. Even though
this algorithm seems to be faster than the standard PP codes, it needs significantly more memory
to store the additional data, as it is necessary to connect all children with their parents and vice
versa.

Adaptive mesh refinement (AMR) Ramses makes use of a combination of all the above
mentioned methods. It uses adaptive mesh refinement (AMR) (Teyssier, 2002). This method
defines the mesh on a recursively refined, spatial tree. The approach combines the advantages
of the speed of fast Poisson-solvers from PM and the high dynamical resolution of tree codes.

The basic structure of Ramses is a fully threaded tree (Khokhlov, 1998). The basic element
is not a single cell but eight sibling cells (3D, four siblings in 2D) analog to the octree structure.
These eight sibling cells are called an oct. The refinement level is denoted by ;. Every oct in
level ; is linked to its neighbouring octs, its parent cell in a higher refinement level ; − 1 and
to its children octs at ; + 1. If an oct has no children, then it is called a leaf. On the highest
order level ; = 0 a uniform Cartesian grid of a user-defined resolution (specified by the number
of particles) builds the base of the tree structure. When updating the properties of the particles
the time integration can be performed in two different ways, with a constant timestep ΔC for all
levels or using a timestep adapted at each level. In the latter case, the equations of motion are
solved for ΔC on the ; = 0 level and in adaptive smaller timesteps on the lower levels. At ; = 1
we have to solve the equations in two timesteps, at ; = 2 for four timesteps and so on.

To cope with the evolution of the dark matter distribution from an almost uniform grid with
small initial perturbations up to the complex structure of the cosmic web the code needs to
generate a refinement map deciding where the density gets too high so that further resolution is
needed. In Ramses the user has to define a refinement criterion; a common refinement criterion
is the gradient of a flow variable exceeding a threshold. The code runs through 3 phases, starting
from ;<0G and ending at ; = 0, to mark the cells that need refinement.

1 If a cell has a marked or an already refined children, then mark it.



CHAPTER 3. METHOD 39

2 Mark the neighbouring cells.

3 If the cell matches the refinement criteria, then mark it.

After the cells have been marked for refinement the code needs to update the tree structure
accordingly. Ramses starts to go through all cells starting at the coarse grid, ; = 0, level. The
code will create the cell’s child-oct when a leaf cell, a cell that previously had no child, is marked
for refinement. The code destroys the child-oct of a cell when it is not marked for refinement.
Ramses does not need to build up the complete refinement-map at every timestep from scratch.
Typically, only a few octs are created and destroyed as the #-body simulation evolves over time.
New octs are included into the existing tree structure or existing octs are deleted from it.

The core component of the Ramses #-body simulation is to solve the Vlasov-Poisson-
equation, eq. (3.27). As stated above, Ramses does this similarly to a PM code.

1 Approximate the matter density d by using CIC.

2 Solving the Poisson equation on the mesh to obtain the potential q.

3 Compute the acceleration of the mesh by using the gradient of the potential.

4 Compute the acceleration of each particle using an inverse CIC scheme.

5 Update the particle velocity by using the acceleration.

6 Update the particle position by using the velocity.

When computing the density field the algorithm first takes particles on level ; into account.
After that the algorithm will take the neighbouring particles into account when their cloud
overlaps with the volume of interest. Once Ramses has derived the matter density it can start
to solve the Poisson equation. The coarse grid solutions are unaffected by any effect of the fine
grids while the boundary conditions of the coarse grid solutions are passed to the finer grids
via linear interpolation. The Poisson equation at the uniform grid at ; = 0 is solved with a Fast
Fourier Transform, the higher order grids are solved with a relaxation method that we describe
now.

Ramses uses the conjugate gradient algorithm (CGA) to solve the Poisson equation. The
algorithm was designed to search for the minimum of a function and can also be used to solve
a set of differential equations. This section follows the description presented in Hockney &
Eastwood (1988). Assume a function of the shape

�q = 1, (3.29)

which has the same shape as the Poisson equation and will be solved. Define the quadratic
function

+ (q) = 1
2
q) �q − 1)q, (3.30)

where 1 is a vector containing all matter density values at each charge point of the mesh. q is as
suggested the potential vector. The matrix � can be computed using a mesh relaxation method,
Ramses uses the Gauss–Seidel method, yielding

q=+18, 9 =
1
4

(
q=8+1, 9 + q

=
8−1, 9 + q

=
8, 9+1 + q

=
8, 9−1

)
− 1

4
d8, 9 , (3.31)
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where 8 and 9 are the indices for the cells. With this formula we can compute the entries for the
matrix. The CGA can only be used when � is positive definite and symmetric, which is ensured
by using the finite difference approximation for −∇2, i.e.

d2q

dC2
=
q(C − ΔC) − 2q(C) + q(C − ΔC)

ΔC2
+ O(ΔC). (3.32)

Differentiating eq. (3.29) we obtain the gradient vector A

A = �q − @ = m+
mq

(3.33)

and the second derivative shows us that � is determined by

m2+

mq8mq 9
= �8 9 . (3.34)

From the latter two equations we can conclude that all first derivatives are zero at a solution to
eq. (3.29) (�q − 1 = 0) and that, if � is positive definite, then this is a minimum.

The algorithm now calculates the gradient A0 at the initial position for an initial value q0. It
then searches for the minimum along the direction B̂ = −Â0. By construction this direction has
the steepest slope. Assume the algorithm finds a minimum at q1. The next direction to search
for a minimum is chosen to be a superposition of B0 and the next steepest-descent direction (see
fig. 6-4 in Hockney & Eastwood (1988))

B1 = −A1 + VB0 with V =
A1 × A1
A0 × A0

. (3.35)

After a few steps the algorithm will eventually find the global minimum and the iterative scheme
stops.
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3.3 Voids – Revolver

3.3.1 Spherical-expansion tophat heuristic model
The simplest approach to model a void is to model it with an isolated upside-down tophat
profile in a homogeneous, isotropic FLRW background. This is a reasonable toy model. Even
if the void initially does not possess a perfect tophat structure, the density profile will naturally
evolve towards it. This tophat model was first developed for a spherically symmetric, tophat,
overdensity profile to describe matter infall into a cluster (Gunn & Gott, 1972; Lilje & Lahav,
1991), though it was noticed that there is a closely related solution for underdensities (Sheth &
van de Weygaert, 2004).

The underdense density perturbation of a cosmic void will, in contrast to overdensities such
as clusters, expand faster than the background. Hence, voids grow in size over time and will
become more empty as the matter is stretched more and more thinly over time. Such an idealised
structure can be thought of as a conjunction of concentric matter shells that will each evolve
based on the scale factor behaviour of an FLRW 0(C) solution as a spatially bounded patch (a
thick spherical shell) of an FLRW hypersurface.

Details of this toy model are given in App. A of Sheth & van de Weygaert (2004) in a self-
contained compact form. Based on this model, Sheth & van de Weygaert (2004) characterise
void formation by the following processes:

• Voids expand faster compared to the background model and in contrast to the overdense
regions, which collapse. This faster expansion is approximately spatially constant within
the void, so the expression “super-Hubble bubble” can be used to describe the void as a
bubble that expands faster than the background Hubble–Lemaître expansion rate.

• As the void expands the density will decrease, which is called evacuation. To first order
the effect is only due to the higher volume of the void, while at second order the void loses
matter to the surroundings.

• The expansion will drive the void to become more spherical.

• The density profile will tend towards the shape of an upside-down tophat.

• As the density inside a void becomes more homogeneous in this toy model, structure
formation is damped and eventually will completely stop.

• As the matter shells are pushed outwards, they will form a ridge at the edge of the void.

• The expansion is not completely Hubble-like: some of the inner shells will pass the
outermost shells, due to their higher velocity, and the process becomes non-linear. We
denote this process as shell-crossing.

This very simplistic model was first used to generate simulations of hierarchical void formations
that were able to generate the well observed cosmic web. Walls, filaments and clusters in this
approach are not directly modelled but a direct consequence of matter being pushed to the edge
of the voids.
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Figure 3.2: A schematic example, in two dimensions, of the Voronoi tessellation where blue dots represent the
tracers and orange lines indicate the borders of the Voronoi cells.

3.3.2 Watershed
We have now learned about a simplistic, theoretical description of voids being perfectly spherical
underdensities. As mentioned in section 2.2.2, voids yield a pristine environment to probe
cosmological models such as dark energy models. One major goal of this work will be to
investigate whether this special environment has a measurable influence on the formation and
evolution of galaxies. Galaxies located in voids will be much more isolated than those in dense
environments. Thus their evolution should not be influenced by disturbances like mergers as
much as in the case of galaxies forming in other environments. We do this study based on
numerical data, although the tool described in this section is also designed for and used to
identify voids in observational catalogues.

In our pipeline we use the watershed void finder revolver to identify voids (Nadathur
et al., 2019). Revolver includes its own void finding technique, but for this work we only
focus on it as a wrapper for ZOBOV (ZOnes Bordering On Voidness) (Neyrinck, 2008). Thus
we first introduce the watershed method underlying ZOBOV. Revolver is published under a
free-software licence, the GNU General Public License version 3,4 satisfying Akhlaghi et al.
(2021) reproducibility criterion 8.

A straightforward and easy definition of a void is a sphere; in fact there exist void finders that
build upon this simplified model by defining voids as spheres or merged spheres, e.g. Kauffmann
& Fairall (1991a);Müller et al. (2000). However, this still is a strong simplification that in general
will not hold true for an observationally detected void. Voids tend to become more spherical as
they grow, yet do not become exactly spherical – in particular because they have to coexist with

4https://www.gnu.org/licenses/gpl-3.0.html

https://www.gnu.org/licenses/gpl-3.0.html
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surrounding structures of the cosmic web.
Since we aim to identify void galaxies – galaxies that are “in” voids, the question of how we

define the borders of a void is significant. Differences in deciding on the boundary of a void will
give different consequences for classifying galaxies as void galaxies or as belonging to another
environment.

Watershed finders as ZOBOV do not assume any shape of the void. In fact, they aim to
find voids with as few model dependent input parameters as possible and are close to being
parameter-free. We outline the key steps of the watershed method in the following:

1st

First the code estimates the density using the Voronoi Tessellation Field Estimator (VTFE). See
fig. 3.2. The tessellation technique is another way to estimate the local density in discrete data
(we recall the CiC method introduced in Sec. 3.2). The VTFE divides the space into cells, where
each cell contains the space around a particle which is closest to this particle. The density of
a particle 8 is now defined as di = 1/+i, where +i is the volume of the cell. The volume on
the contrary is the convex hull of the Voronoi cell. Moreover, it is straightforward to define
the neighbouring particles with this method. An alternative estimator could be the Delaunay
Tessellation Field Estimator (DTFE). In fact, the two methods are closely related as they are
inverse to each other. Voronoi cells isolate one particle per cell, while Delaunay tessellations
join particles in triangles (in two dimensional flat space) or tetrahedra (in three dimensional
flat space). The points of the triangle or tetrahedron for the Delaunay tesselation are chosen so
that the circumscribing circle does not include any of the other data points. A more detailed
discussion of the DTFE method can be found in Schaap (2007). Given a Delaunay tesselation,
the Voronoi cells can be constructed by taking the centres of the circumscribing circles as the
vertices for the faces of the polyhedron (in three dimensions) of each Voronoi cell. ZOBOV uses
the qhull library to first construct the Voronoi cells of the tracer distribution.

2nd

The next step is called zoning. In this step, ZOBOV associates each particle with a local density
minimum. A local minimum is defined as a cell which has a density less than or equal to all of its
neighbouring cells. To find the minimum cell to which a particle in cell 80 should be associated,
if the particle is not already in a cell that is a local minimum, then the particle is associated
with its neighbouring cell 81 of lowest density. If cell 81 is not a local minimum, then the search
continues successively to the lowest density cell 82 that neighbours cell 81, and then to cell 83 that
neighbours cell 82 if necessary, until a local minimum 8= is found for the particle whose actual
location is in cell 80. This can be loosely visualised as water iteratively flowing down each local
neighbourhood of maximum steepness until it reaches a local minimum. The cells of the set of
particles associated with a given locally minimal cell is defined as a zone.

3rd

Based on this definition of zones, the code continues with the watershed step. Imagine the
density field as a mountainous area with valleys, peaks and saddle-shaped ridges, where heights
represent densities. The method begins with setting a “water” level in the lowest density cell of
a zone. This starts off the definition of a void. The water level is then gradually raised in the
zone, covering neighbouring cells and adding them to the void. If water reaches a saddle point
(or void boundary for a perfectly symmetric void), then the water leaks into the neighbouring
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zone. If the central particle of the zone, in which the water leaks into, has a lower density than
the lowest density cell of the starting zone, then the process stops. This void cannot grow any
further. Otherwise, the zone will be added to the void and the process continues to increase the
water level. By construction, the original minimum of the zone, where water was first added,
corresponds to the minimum density of the void. This process is repeated for all identified zones.
This method leads to one parent void (the deepest) that fills the whole volume. All other voids
are subvoids of the parent void. We consider the growth of voids and subvoids further in the 5th
step.

4th

The next task is to find a way to state the statistical significance of the part of a zone identified
as a (sub)void, i.e. whether the object is really a void. To do so we introduce dl, the density at
which water flows across a saddle point or void boundary into a neighbouring zone (“l” stands
for linking). We define the linking-density contrast as A (E) ≡ dl (E)

dmin
(where “v” is an identifier for

a void), where dmin is the minimal density of the void. The linking-density contrast A is converted
to a probability based on the assumption of a Poisson distribution of the particles. Neyrinck
(2008) models the cumulative probability %(A) that a void with linking-density contrast A arises
from a Poisson particle distribution based on two numerically generated distributions (one with
1283 particles and one with 2563 particles) and finds a best-fit approximation

%(A) ≈ exp
(
−5.12(A − 1) − 0.8(A − 1)2.8

)
. (3.36)

%(A) now gives an estimate of the probability that the detected void arises from Poisson noise
thus that it is not real.

Additionally, we can use a theoretical, physical rule-of-thumb, arguing that the natural dark
matter density of a top-hat void that has undergone expansion is dvoid ≈ 0.2dmean. Neyrinck
(2008) suggests that this criterion be used as sanity check on the void population. He found that
all voids detected satisfied this requirement, so none were eliminated by this extra criterion.

5th

As mentioned above, the watershed method leads to one dominating void. There are three
different ways to deal with this.

The first option is to accept it. This requires no parametric choices, but is inconvenient if
“isolated” voids are to be studied, and not their subvoids.

The second option is to specify a significance level and to cut all voids below a fixed
significance level derived from the Poissonian probability %(A) (eq. (3.36)). This is equivalent
to a restriction setting a minimum for the linking-density contrast A (E). If a subvoid is excluded
via this criterion, then all zones that joined the parent void due to the accretion of the subvoid
are removed.

The third option is to determine the most probable extent of voids by comparing the prob-
ability that the particle distribution of a void could arise from a Poisson particle distribution
before and after adding a zone to the void. The estimate is based on the linking-density contrast
A. Following (Neyrinck, 2008) we define the significance (8 for each zone-adding event. The
significance of zero zone additions is defined as (0 ≡ %(A (I)), where % is the probability that
the particle distribution of the first zone of the void, indicated as I, arises from a Poisson particle
distribution. The union of I and a void after the 8th adding event to the zone I will be called
E8, with E0 = I. Assume that 9 zones are added in the (8 + 1)th zone-adding event; we call the
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set of these 9 zones /8+1 = {I8+1, 9 }. ZOBOV now compares the probability that E8 and all of
the zones in /8+1 are individually a Poissonian chance event to the probability that their union,
E8+1 = E8 + /8+1 , is a chance event. Based on these two probabilities, the code decides if the
extension of the void makes sense; we can recursively define (8+1, knowing (8, as

(8+1 = (8
%(A (E8+1))

%(A (E8))Π 9%(A (I8+1, 9 ))
, (3.37)

where A (E8+1) = dl(E8)/dmin(I), with dl(E8) being the lowest density of the subsample of
particles at the ridge separating the zones of void E8 to the newly added zones in the event /8+1.
If the significance of the union is lower than the significance of the single zones, then their union
is statistically favoured. Additionally, to prevent voids from growing into haloes, we can set a
maximal linking density can be set, such as dl,max = 0.2dmean.

In contrast to the early theoretical descriptions of voids, a watershed void has no information
regarding shell crossings, so the work of connecting spherical-expansion model voids with
numerically detected watershed voids is not yet completed (Nadathur & Hotchkiss, 2015a,b).

3.3.3 Void centres
As a first step we are interested in the formation history of galaxies near the centre of a void.
We stated in section 2.2.2 that the evolution of galaxies that formed in voids might differ from
galaxies evolving in more dense environments. It is a fair assumption that the most significant
difference will be found in the centre of the void. Our hypothesis is that galaxies near the centre
of a void will naturally tend to be large and underdense. It seems to be natural that a large,
underdense galaxy will evolve in an area that shares the same properties. Moreover, a void
centre is a special place in the cosmic web, since the evolution of a galaxy will be undisturbed
by other galaxies coming close by or merging with it.

How do we define the centre of a void? An obvious choice of the centre could arise from
the watershed mechanism, by defining the centre of the void as a central position in the cell of
lowest density in the void. Revolver provides us with two different approaches. It returns what
it calls a “volume averaged barycentre” and calculates it via

®2 =
∑
8

®G8
+8
, (3.38)

where ®G8 are the position vectors of all particles in the void and +8 is the corresponding volume
of the Voronoi cell. In fact, this definition gives the geometrical centroid, not the barycentre (the
barycentre is, by definition, mass-weighted).

The second centre returned by revolver is the circumcentre, which indicates the lowest
density cell and the three lowest density neighbours. The centre returned by the code is the
circumcentre of a sphere that goes through all four particles of the lowest density cell and the
three neighbours. This should approximately mark the location of lowest density in the void.

A third approach is to use the gravitational potentials that are accessible from cosmological
simulations. While the void is a minimum in density, it is a maximum in potential. We use the
routine in revolver to estimate the maximum potential in a void based on the particle with
the highest potential and its three highest-potential neighbours. By searching for the maximum
of the potential, we find the spatial position in a void that is a gravitational equilibrium point
– within the Poissonian gravitational model of the simulation, the gravitational forces exerted
by the matter in surrounding walls and clusters cancel each other. This equilibrium point is, of
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course, unstable. We refer to this location in a void as the void’s “elaphrocentre”. Due to the
correlation between density and potential in the Poisson equation, we expect the circumcentre
and elaphrocentre to not differ significantly.

Nadathur, Hotchkiss, & Crittenden (2017) investigate if they can trace the gravitational
potential using the voids properties in their simulations. They find that they can trace the
gravitational potential by introducing a new void observable, which is a combination of the
average galaxy density and the size of the voids.
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3.4 Halo Finder – Rockstar

3.4.1 Spherical collapse toy model and dark matter halo properties
The growth of matter perturbations eventually leads to the structures we observe today. Gravita-
tional attraction will create massive structures, including galaxies and clusters of galaxies. The
underlying dark matter distribution clumps first, creating haloes of various sizes. The extended
process in which dark matter collapses to an overdense structure is ended by virialisation. Galax-
ies will form in dark matter haloes, so in order to have a cohesive descriptive chain, from initial
perturbations up to galaxies, we briefly describe the formation of dark matter haloes following
Cooray & Sheth (2002).

The evolutionary history of dark matter haloes is in general very difficult and not linear.
Thus it is not possible to solve it completely analytically. A simplified approach is provided in
the spherical collapse model that assumes that a halo can be modelled as a spherical top-hat
perturbation.

In comoving distance units, an overdensity perturbation shrinks since the early universe, e.g.
per the Zel’dovich approximation (Zeldovich &Grishchuk, 1984). However, in physical distance
units, the perturbation initially expands, just slightly slower than the expanding background
Universe. The “turnaround” epoch is the epoch when the perturbation has sufficiently slowed
down its expansion in physical distance units that it starts collapsing. In this simplified approach
of the spherical collapse model, presented here in the Einstein–de Sitter case, the turnaround
epoch of a perturbation is characterised by a parameter called the development angle reaching
the value Θ = c, and the collapse epoch by Θ = 2c. However, a real halo is not perfectly
homogeneous and spherical, nor is the process linear.

Instead of collapsing, the halo structure rather reaches virial equilibrium. Let us denote the
initial comoving size of the perturbation as '0 and the initial density of the perturbation as X8.
As the Universe evolves over time also the comoving size ' of the perturbed region changes over
time. We define the density in the region as (1 + X) = ('0/')3. The growth of the perturbation
with respect to the background in this model is given by (eq. 51 of Cooray & Sheth 2002)

'0
'(I) =

62/3

2
(Θ − sinΘ)2/3

(1 − cosΘ) . (3.39)

With this equation, we can estimate the density at turnaround, Θ = c, which is (6c)2/43 ≈
5.55 times the mean density. If a halo collapses, then we can also infer that the density would
diverge to infinity according to this model. In reality, particles will bypass the halo’s centre,
and those that are bound may gradually reach a virialised equilibrium. In order to estimate the
overdensity at which the halo virialises, it is common to assume that the halo virialises at half
the turnaround radius. The background universe expands during the time between turnaround
and collapse by the factor (1+ Ita)/(1+ Icol) = 22/3. Thus, the background density at collapse is
four times as low as at the time of turnaround. As the spatial size of the perturbation is half the
turnaround radius, the density of the perturbation is eight times higher. Thus, in total, the mean
density of the virialised object is 32 times (6c)2/43 = 18c2 ≈ 178 times that of the background
density of the Universe at the time of virialisation.

The above description is a simplified toy model presented for the Einstein–de Sitter case
(with similar calculations for other FLRW cases, e.g. Lacey & Cole 1993, Appendix A for
the hyperbolic, Λ-free case) . A real halo is not a perfectly spherical, isolated object with a
homogeneous density distribution. Today, it is common to define a virialised object by using
an overdensity constant Δc, which most commonly is set to 200, even in models that are not
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Einstein–de Sitter. By introducing this constant, it is straightforward to define the virial radius
of a gravitationally bound structure as the radius at which the density of the object fulfils
d('vir) = Δcdc, with dc being the critical density of the background universe. This popular
definition aids comparisons among models and between models and observations. The virial
mass is then defined as the mass contained inside this radius, with "vir =

4
3c'

3
virΔcdc. In early

simulations it was shown that the density profile of a dark matter halo can be approximately
modelled by a Navarro–Frenk–White profile

d(A) = d0

A
's

(
1 + A

's

)2 , (3.40)

where d0 and the scale radius 's have to be found for each halo.
Another interesting property to study, which we just mention briefly here, is the halo mass

distribution, which roughly follows a Press–Schechter distribution (Press & Schechter, 1974),
which inspired the Schechter (1976) form, widely used to represent the observational galaxy
luminosity function.

3.4.2 Halo finders
There are several different halo finder algorithms and codes available. The identification of
haloes, though, is not trivial. An intuitively understandable problem is the identification of
substructures. Usually, in the scenario of hierarchical structure formation, we observe a central
structure that is surrounded by several smaller structures. For halo identification it can be difficult
to identify the edges of these structures precisely and to distinguish between the central object
and the smaller objects.

One popular routine to identify haloes is the friends-of-friends (FoF) algorithm,which groups
nearby particles together in a gravitationally bound structure (a bottom-up approach). Another
approach is spherical-overdensity methods, where the code first identifies local overdensities as
the centres of haloes and then grows a shell around the centres, until the density of the shell falls
below a predefined density threshold (derived from the spherical collapse formalism), binding
particles in the shell to the halo, until a certain criterion is fulfilled (a top-down approach). It is
not surprising that the choice of the halo finder influences the characteristics of the identified
structures. A comparison of different routines was done in Knebe et al. (2011).

In this work we use an FoF algorithm and thus focus on this subclass of halo identification
routines. The first FoF halo finder was proposed by Davis et al. (1985) where the authors used #-
body simulations of different cosmological models and compared the structures that they found
with theoretical predictions. Roughly speaking, an FoF finder will identify groups of particles
using a fixed linking length. An FoF algorithm that only uses the positions of the particles, a 3D
FoF algorithm, will have problems to distinguish between different structures. More advanced
routines identify haloes in 6D phase space, i.e. they additionally use the peculiar velocities of
the particles to distinguish between different structures. In general, substructures will have a
different velocity distributions to each other, making it possible to distinguish between several
substructures in the same group. However, defining a metric in phase space allows several
choices. One can either define two separate metrics in spatial and velocity space separately, or
a combined metric.
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3.4.3 Rockstar
Weuse the Rockstar halo finder (Behroozi et al., 2013a). Rockstar is published under theGNU
General Public License version 3,5 satisfying Akhlaghi et al. (2021) reproducibility criterion 8.

Rockstar initially groups the particles in FoF groups by using the spatial (three-dimensional)
information. These groups are only generated for efficiency purposes given the large amount of
data. The code next identifies hierarchical substructures by using the full phase-space data of
the particles in each FoF group. The phase-space metric used is

3 (®G1, ®G2, ®E1, ®E2) =
(
| ®G1 − ®G2 |2

f2
G

+ |®E1 − ®E2 |2

f2
E

)1/2
, (3.41)

where ®G8 are the spatial coordinates of a particle, ®E8 is the velocity and f is the dispersion for a
given FoF group. Further iterative checks are also made to improve the physical and numerical
justification of identifying groups of particles as haloes.

The linking length of the initial position-based FoF groups is chosen as a fraction of the
mean interparticle distance. For subsequent steps in a hierarchical analysis, the linking length
is refined such that an approximately constant fraction of particles are linked to at least one
other particle at each step. The input parameters for Rockstar have to be chosen carefully, since
an initial linking length that is too high will find not significant subgroups, whereas an initial
linking length that is too low will not resolve small substructures.

For each subgroup, the code recalculates the phase-space distances between particles in the
subgroup, and can continue to identifying sub-subgroups until the minimal number of particles
per group is reached. The minimal number of particles is a parameter that has to be chosen by
the user.

Each subgroup in the largest-scale level of the hierarchy will host a seed halo. If these haloes’
positions satisfy

√
(®G1 − ®G2)2(

√
=/fG)2 + (®E1 − ®E2)2(

√
=/fE)2 < 10

√
2, i.e. if they are too close

to each other, then they will be merged by rockstar into a single halo. Particles in the FoF
group are initially considered to belong to the halo to which they have the smallest phase-space
distance, where the metric 3 in eq. (3.41) is modified by replacing fG by the dynamical virial
radius

Adyn,vir =
Emax√

4/3c�dvir
, (3.42)

where Emax is the maximal circular velocity. This favours assigning particles to the correct haloes
to which they are dynamically bound.

Subhaloes are identified as smaller structures within the virial radius of the most massive
object. During merger events it is possible that particles change their membership from one halo
to another. This can lead to ambiguity when defining the masses of haloes. Rockstar takes
care of this by additionally comparing the haloes to their progenitors if several snapshots are
available. In this sense, rockstar can be described as a 7D halo finder. However, to have a
consistent mass measure for haloes, even if a major merger happens, the definition of the central
object might be changed when masses change. All particles within the dynamical virial radius
are considered to contribute to the central object, while particles that are only within the virial
radii of the subhaloes are considered to contribute to the masses of the subhaloes.

Halo properties that are interesting to study are their mass distribution, their abundance and
their spatial distribution (spatial two-point autocorrelation function). Moreover, Emax and the
radius 'max where the maximal circular velocity is reached are useful quantities, though they

5https://www.gnu.org/licenses/gpl-3.0.html

https://www.gnu.org/licenses/gpl-3.0.html
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depend on the position of the centre of the halo. The edge of a halo and its centre depend on the
method chosen, while other properties are more robust. Knebe et al. (2011) uses these quantities,
among others, to compare the haloes of several different halo finders.

Generally, spherical-overdensity halo finders perform better when identifying the spatial
centre of a halo, as they place the halo at the density peak instead of taking the average over
all particles contained in the bound structure. In particular, the particles at the boundary tend
to add noise for finding a halo centre, since (by definition) they have a high dispersion in
position. Rockstar addresses this problem by minimising fG/

√
# , which reduces the influence

of particles that statistically have a high positional dispersion in relation to the halo centre. Thus,
the code reconstructs the centres of haloes well.
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3.5 Merger-history tree – consistent-trees
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t2
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Figure 3.3: A scheme of a possible merger-tree over 4 snapshots. The different haloes merge along the time axis
into one final halo whose properties are determined by its progenitors. One halo is only drawn with a sketched
circle, indicating that this halo fell below the identification threshold of the halo finder but can be reconstructed
using halo properties of its descendant and progenitor.

To populate our haloes with galaxies it remains necessary to construct a merger-history
tree based on the haloes that are identified over several snapshots. Deriving dark matter halo
merger-history trees from #-body simulations was first presented briefly in Roukema & Yoshii
(1993), and in more depth in Roukema et al. (1997). A visualisation of a strongly simplified
merger-history tree can be seen in fig. 3.3. Fig. 2 of Roukema & Yoshii (1993) shows the first
merger-history tree derived from an #-body simulation and plotted, illustrating the much greater
merger rates at earlier epochs.

The original criterion for deciding on when a halo at an earlier time step merges into a halo
at the following time step was a 50% criterion (Roukema & Yoshii 1993, §3; Roukema et al.
1997, §2.1.3). If strictly more than 50% of the particles in a halo at one time step are present
in a halo at the following time step, then a halo relation across the two time steps is established
between the two haloes, representing either an identity (same halo, no merger) or progenitor–
successor (multiple progenitors for one successor) relation. This criterion allows mergers, and
by definition, excludes the possibility of complicated merger-trees in which a halo may split up
and re-merge later. Kauffmann, Colberg, Diaferio, & White (1999a, §3) kept the same criterion,
but added a second criterion by defining the ‘central particle’ of each halo (the most bound
particle) and requiring that the central particle of a successor halo be present in the progenitor
halo.

Several alternative sets of criteria for defining halo relations between #-body simulation time
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snapshots have been developed since the original 50% and central particle criteria. In particular,
Behroozi et al. (2013b) presented a method to construct merger-trees based on halo properties
– the halo mass, position, and maximal circular velocity Emax, and the bulk velocity, aiming
at ensuring consistent halo properties over several snapshots. The bulk velocity for FoF haloes
usually refers to an average of all particle velocities that constitute the haloes. The authors argue
that particle based merger-trees suffer from the inconsistencies when haloes (usually a subhalo
to its central halo) are too close to each other so that particles will falsely identified to belong to
the wrong object. These cases will lead to haloes that in one snapshot are falsely represented as a
single halo, but due to not being gravitationally bound reappear later as two separate successors,
in an apparent split of a halo into two if a particle-based merger criterion with a lower than 50%
is used. In the case of the original 50% criterion, at least one of the two successors would have
no progenitor and appear to be new. Accounting particles to the wrong halo will additionally
yield false halo properties and will occur regardless of how well developed a halo finder might
be.

The code presented in Behroozi et al. (2013b), consistent-trees, aims to solve this problem
by checking the consistency between halo properties over several time steps. Consistent-trees
is published under the GNU General Public License version 3,6, satisfying Akhlaghi et al.
(2021) reproducibility criterion 8. The code calculates, by using Newtonian gravity and inertia,
the properties that the haloes should have in the previous time step and can thus evaluate if there
might be an inconsistency. If a halo location does not match with the locations of estimated
potential descendants, then the code will check if this halo is a temporal artifact of this snapshot
or if the halo merges into a larger halo. To do so the code estimates the spatial derivative of
the acceleration field to check if a merger might be feasible. The authors suggest that a simple
threshold on the derivative is sufficient to distinguish between haloes that could have merged
into another halo and those that could not. The code does this for all time steps filling up missing
haloes and removing haloes that are just temporary fluctuations. If a halo has no direct progenitor
but reappears after a few time steps, then the halo is reconstructed for the time steps in which it
was missing. It is expected that halo properties only change slowly. Under the assumption that
"vir and 'vir are strongly correlated to Emax, the authors define the metric

3 (e,c) =

√√√√√
| ®Ge − ®Gc |2

2g2
G

+ |®Ee − ®Ec |2
2g2
E

+
log

(
Emax,e
Emax,c

)2

2g2
Emax

, (3.43)

where G are the halo positions and E the velocities, to quantify how reasonable the match between
an expected progenitor (subscript 4) and a candidate progenitor (subscript 2) is. The parameter
g refers to the characteristic errors in predicting the respective quantities. The code returns a
cleanedmerger-history tree with all spurious haloes removed, missing haloes added and properly
linked haloes to their progenitors. Based on this merger-history tree, we populate the haloes with
galaxies.

6https://www.gnu.org/licenses/gpl-3.0.html
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3.6 Semi-analytical galaxy formation – sage
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Figure 3.4: This scheme visualises the basic concepts of a semi-analytical model to build a galaxy in a dark matter
halo. Semi-analytical models are build upon merger-trees – either semi-analytical themselves, or derived from
#-body simulations. Thus the model starts with an empty dark matter halo. Baryonic matter proportional to a halo’s
mass will fall into the halo being heated in this process (2nd timestep). The hot gas content starts to cool and form
a rotationally supported disk with a supermassive black hole in the middle that will heat up nearby cold gas due to
feedback processes (3rd timestep). Due to these internal processes and supernovae in the galaxy cold gas can be
heated again again or hot gas can even be ejected from the halo. The figure was inspired by Baugh (2006) and is
adapted to the modification that sage (Croton et al., 2016) did to the model.

Gravitationally bound structures – dark matter haloes – are necessary, but not sufficient, for
galaxies to form. Baryonic matter, mostly hydrogen as we have seen in section 2.1.2, can only
cool down in the potential wells of a dark matter halo. In the hierarchical structure formation
model there cannot be a galaxy without a dark matter halo.

For initial work in combining semi-analytical halo merger-trees with semi-analytical formu-
lae for gas cooling and the formation of galaxy disks, see Lacey & Cole (1993); Kauffmann
et al. (1993). For the use of semi-analytical star-formation recipes (merger-induced starbursts)
and stellar evolution population synthesis applied to #-body simulation derived merger-trees,
see Roukema et al. (1993, 1997).

This chapter will generally follow Baugh (2006) with a few additions related to the software
package that we use, sage (Croton et al., 2016), and will explore some details that will eventually
lead to a representative galaxy population built upon the merger-trees. Sage is published under
the Expat License, also called the MIT 3-clause licence,7. This is a “permissive” free-software
licence, satisfying Akhlaghi et al. (2021) reproducibility criterion 8. As the licence is permissive,

7https://directory.fsf.org/wiki/License:Expat

https://directory.fsf.org/wiki/License:Expat
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redistribution of modified copies of software under non-free (proprietary) licences is allowed.
We chose to distribute our modified version of sage under the same Expat License.

Semi-analytical models need at least three pieces of information about the dark matter
haloes: their abundance, their merger-history and their internal properties such as their radial
density profile and their angular momentum. Semi-analytical models aim to generate galaxy
populations on top of #-body simulations (or semi-analytically generated merger trees, though
we don’t consider these further in this brief review) by carefully reproducing the statistically
measured trends. Free input parameters are fine-tuned to reproduce measured properties. We
visualise a simplified scheme of the semi-analytical model that will be used in this work in fig.
3.4. We explain in the following how the dark matter halo is modelled to accrete baryonic gas
and how the gas can cool down to form a galaxy. Our model starts with a pure dark matter
halo without baryonic matter (step 1 in fig. 3.4). This scheme should help support some of the
basic concepts of semi-analytical models and does not claim to model the full set of processes
contributing to galaxy formation.

A first conclusion was drawn based on a simple toy model which assumes a constant mass
to light ratio over all halo masses and will result in a wrong luminosity function of groups.
Compared to observations, e.g. Eke et al. (2004a,b), such a toy model produces too many faint
groups and too many bright groups, see fig. 6 of Baugh (2006). To match observational data,
star formation has to be suppressed for low mass haloes as well as for the highest mass haloes.
Luminous matter is best produced in haloes of roughly 1012"�/ℎ. The crucial step to form
luminous matter is that baryonic gas has to cool down. In our model, we assume that gas that
falls into the dark halo is initially hot, heated up by shocks when falling into the gravitational
well (step 2 of fig. 3.4). Only cooled-down gas will be able to collapse further into stars as hot
gas is not collapsing any further due to the pressure (kinetic energy) of the gas. The process of
cooling itself is dependent on the mass of the hot gas in the system; the initial temperature of
the hot gas will be the temperature of the virial object

)vir =
1
2
`<�

:
+2

vir, (3.44)

where ` is the mean molecular mass of the gas, <� is the mass of hydrogen and : is the
Boltzmann constant. Here, +vir =

√
�"vir/Avir can be thought of as a circular velocity at the

virial radius (thermalised velocities prevent the halo from further gravitational collapse).
As the gas cools down it will fall into the centre of the darkmatter halo and form a rotationally

supported disk (step 3 fig. 3.4). To model this process, the radius of a sphere of gas that has
had sufficient time to cool is defined, the cooling radius. The cooling radius grows with time.
The gas contained within the cooling radius sphere is assumed to form the disk and will be
compressed during its collapse. This results in a small gap between the disk and the hot gas halo,
as the mass that was initially covering the volume is now collapsed. We assume that the angular
momentum of the halo is preserved. The size of the disk can be estimated by the virial radius
of the dark matter halo and the dimensionless spin parameter, generally attributed to Peebles
(1969, eqs (35), (37)), using the definition introduced in Bullock et al. (2001)

_ =
� |� | (1/2)

�" (5/2)
, (3.45)

where � is the angular momentum of the host halo, � is the total energy of the halo, � is the
gravitational constant and " is the mass of the system. The spin parameter thus is basically a
measure for the rotation of the halo. It is straightforward to imagine that a higher spin parameter
will push matter out, enlarging the disk, along with the model proposed in Mo et al. (1998) we
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thus define the disk radius as
Adisk =

_
√

2Avir
. (3.46)

This size is an important result of semi-analytical models as it can be compared against obser-
vations while we cannot measure the size of the dark matter halo easily.

For the hot gas in dark matter haloes to cool down the most important channels are emissions
of photons and bremsstrahlung. The first is the result of collisions of partially excited atoms and
electrons. These interactions will excite the electrons of the atoms to higher levels and they will
emit this energy as photons when they fall back into the more stable lower states. This process
is important for haloes with virial temperatures of 104 < )vir < 106 . Bremsstrahlung is, as
the name suggests, emitted by electrons accelerating (or decelerating) in a magnetic field. Such
a magnetic field is generated, in the context of galaxies, by the ionised plasma. The channel is
important for massive dark matter haloes with )vir ≈ 107 . Other channels are inverse Compton
scattering, which is not efficient enough to cool down galaxies in the age of the Universe and
thus is only important at the earliest time scales; and the excitation rotational or vibrational
energy levels in molecular hydrogen due to collisions in small mass haloes.

The cooling time can be approximated by

Ccool(A) =
3
2

`<�:)vir
d6 (A)Λ()vir, /)

, (3.47)

which is the ratio of the specific thermal energy to the cooling rate per unit volume. The
gas density dg(A) depends on the radial position in the halo and Λ()vir, /) is the cooling
function, which itself depends on the temperature of the hot gas and the metallicity / of the
gas. By “metals”, we refer to elements other than hydrogen and helium. Significant quantities
of these elements are released to the baryonic gas content of a galaxy at late stages of stellar
evolution through stellar winds and supernova explosions. The authors model metal enrichment
by returning a proportional amount of metals for every solar mass of stars formed in a galaxy.
The metals are placed in the cold disk of the galaxy. Sage uses the cooling functions computed
in Sutherland & Dopita (1993).

Additionally to the processes that cause the gas to cool we can think of factors that will
heat up the gas again. For low mass haloes the background of far ultraviolet photons, emitted by
quasars or massive stars in other galaxies, heats the intergalactic medium up to roughly 4 K. This
leads to a reduced gas infall into haloes that are below )vir < 4 K as it increases the pressure of
the baryons. Feedback of stars of the host galaxy are taken into account in processes discussed
later; the feedback of far ultraviolet photons reduces matter infall and gas cooling in low mass
haloes and thus disturbs star formation in these haloes. In addition to the lower mass accretion of
small haloes, the radiation ionises the gas content of low mass haloes and dampens the channels
where atoms and ions cool down due to excitement from collisions. With this simple treatment
we are able to explain the reduced luminosity in low mass haloes. Sage models photoionisation
by defining a filtering mass "F. If a halo has a lower mass than "F, then the fraction of baryons
per unit dark matter 51 is reduced. Croton et al. (2016) show that this modelling not only reduces
the number of faint galaxies but also increases the number of bright galaxies.

High mass haloes also face several problems when cooling gas. First of all supernovae that
form in massive haloes will, once they explode, add energy to the gas content of the galaxies.
The amount of reheated gas is proportional to the rate at which new stars form. In sage, Croton
et al. (2016) furthermore compare the energy added by supernovae ¤�SN to the hot gas reservoir
to the change of the kinetic energy of the reheated gas in the halo ¤�hot. The authors conclude that
if ¤�hot > ¤�SN, then the supernovae have added enough energy into the hot halo to unbind some
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of the hot gas (suggested by the matter flow arrows in steps 3 and 4 in fig. 3.4). This modelling
has the advantage that due to the lower kinetic energy of small mass haloes this feedback process
can destroy the disk and all gas will be released into an external reservoir. More massive haloes,
on the other hand, develop a stable shell of hot gas. The ejected gas is able to fall back into the
hot gas halo in later snapshots. The authors model a +Vir dependent infall law that will boost the
infall into high mass haloes while the lowest mass haloes will never reincorporate the ejected
gas.

A second mechanism is the feedback of active galactic nuclei (AGN) which is split up into
the radio mode and the quasar mode in sage. While the central supermassive black hole is
accreting mass it will emit energy into the gas content of the galaxy. The feedback of the central
black hole is the radio mode and will have a significant effect to the gas content and it is assumed
that the shear amount of energy an AGN emits will have a lasting impact on the gas content. To
treat this phenomenon, we can assume that the inner gas, around the central black hole, is heated
up and will never cool down (see the inner hot gas sphere in steps 3 and 4 in fig. 3.4). This
effectively reduces the area in which gas can cool down. With this simple model the authors of
sage try to mimic the rather complicated processes in a galaxy, in which cooling and infall of
gas is coupled with the reheating by the energy emitted from the radio mode. The quasar mode
is triggered by disk instabilities, i.e. its rotational energy is not sufficient to preserve a disk of a
given mass, or a merger with another galaxy occurs.

Sage requires an inequality to hold true to check if a disk remains stable after an episode of
star formation, e.g. due to a merger represented in the merger-history tree. If the inequality is
not met, then the disk is assumed to be unstable. In that case, sage transfers stellar and cold gas
to the bulge of the disk to retain stability.

If the quasarmode is triggered, then the central black holewill accrete a lot of the cold gas that
is transferred to the bulge. This is the main channel for the central black hole to grow and usually
these events are also causing a burst in the star formation. The code again estimates the amount
of infalling matter and calculates an ejected energy proportional to the matter. This energy is
compared to the total thermal energy of the cold gas disk and hot gas halo. If the energy exceeds
the energy in the cold gas disk but not the total thermal energy, then an equivalent fraction of
the cold gas gets immediately blown out into the external gas reservoir. If the energy exceeds
the total thermal energy, i.e. the sum of the energy stored in the cold gas disk and hot gas halo,
then the quasar wind will eject the cold and hot gas from the halo.

Modelling star formation is a challenging task as it depends on several factors such as the
positions of the stars in the galaxy, the metallicity of the galactic gas and magnetic fields. In a
semi-analytical approach this complicated and chaotic process is only tackled statistically again.
Only gas that is cooled down can form stars. Thus, it is a fair assumption that the star formation
rate is proportional to the available cold gas. The approach used in sage is designed to model
the star formation history over a large range of redshifts. The star formation rate is modelled as

¤"★ = U
<cold − <crit

gdyn
, (3.48)

where gdyn is a dynamical timescale characteristic to the system. In the case of sage, this is
defined gdyn = Adisk/+vir. The star formation rate U is a factor that specifies how efficient the
conversion between cold gas a stellar mass is, and is an input parameter. A critical mass, <crit,
unique to each system, is used. The authors of sage assume that star formation is only possible
for matter above a critical threshold in surface density and thus too diffuse systems will not be
able to form stars in sage.

Modelling the metallicity of a galaxy in general is a complicated process as it depends on the
initialmass functionwithwhich stars are formed.Heavier stars tend to create and release different
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elements in supernovae explosions than smaller stars. The metallicity itself is important as it
influences the rate at which hot gas can cool, and the chemical composition of stars influences
the colour and luminosity of the stars. In the context of sage we assume a yield, which specifies
the fraction of matter that is transformed into heavier elements. If new stars are formed, matter
is reheated or ejected, then a fraction of the metals will be affected as well. As the investigation
of luminosities and possibly metallicities will constitute followup work beyond the scope of this
thesis itself, we leave a more detailed discussion of the model to Croton et al. (2006, 2016).



Chapter 4

The role of the elaphrocentre in void
galaxy formation

4.1 Introduction
We outlined the structure of the cosmic web with an emphasis on cosmic voids in Sect. 2.2.2.
To what degree does the void environment, and the elaphrocentre in particular, have on galaxy
formation?

In this section we will present our work published in Peper & Roukema (2021), of which a
large majority was by me, implementing the tools and methods described above to seek answers
to this question, and analysing the results. A significant part of the work was compilation of
a complete software pipeline to simulate galaxy formation, starting from initial perturbations
modelling a power spectrum and evolving these perturbations using an #-body simulation
through to extracting merger-history trees of haloes, identifying voids and use semi-analytical
galaxy formation recipes to produce synthetic galaxies. See chapter 3 for a more detailed
discussion of the tools we selected. The pipeline is built from well-established, free-licensed
cosmological software packages, and aims at highly portable long-term reproducibility.

As pointed out before, voids may influence galaxy evolution due to their underdense nature.
In this work we investigated if voids may affect galaxy formation via weakening mass infall
or increasing disk sizes, which could potentially play a role in the formation of giant low
surface brightness galaxies (LSBGs). The formationmechanisms of LSBGs (Sandage&Binggeli
1984; Bothun, Impey, Malin, & Mould 1987) with high masses and low star formation rates
remain unclear. Hoffman, Silk, & Wyse (1992) presented a peaks-in-peaks structure-formation
calculation arguing that voids are likely to play a major role in the formation of giant low surface
brightness galaxies. While the previous discussion was rather general we will now outline why
voids could have a major influence on galaxies that form inside them with special emphasis on
the elaphrocentre introduced in Sect. 3.3.

In the cosmological galaxy formation context, we denote the gravitational potential hill
corresponding to a cosmic void onmegaparsec scales as an “elaphrocentre” in order to emphasise
its gravitational role in opposition to that of a barycentre1. Whereas galaxies in clusters and the
walls of the cosmic web typically undergo a gravitationally very active evolution with many
mergers, void galaxies tend to have few mergers. Galaxy mergers usually lead to bursts of star
formation, making galaxies briefly much brighter. It is typical in modelling the formation of a
galaxy in a gravitational barycentre – a knot of the cosmic web – to approximate the surrounding
universe via the Newtonian iron-spheres theorem. Relativistically, the conditions of Birkhoff’s

1From ancient Greek: Y_Uqd>e (light) and VUdhe (heavy), respectively.
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theorem, for spherical symmetry and an asymptotically 4-Ricci flat universe (Birkhoff&Langer,
1923), are not satisfied for a flat Friedmann–Lemaître–Robertson–Walker (FLRW) model, but
nevertheless provide heuristic motivation for applying the iron-spheres theorem. However, the
situation in a void is different: the density contrast is much weaker, and there is a mass deficit
below the mean density, rather than a mass excess above the mean density. Approximating
a strong overdensity as being embedded in a surrounding empty universe that is Newtonian
is likely to be less inaccurate than approximating a modest (in terms of linear mean density)
underdensity in the same way, since gravity is attractive. What is effectively antigravity in
voids – in comparison to the surroundings – is unlikely to be well modelled by a Newtonian
approximation. Indeed, relativistically, to reach turnaround, an overdensity has to pass through
a strongly positive spatial curvature phase (Roukema & Ostrowski, 2019; Ostrowski, 2020;
Vigneron & Buchert, 2019), after which it virialises at an overdensity of a few hundred times the
mean density (e.g. Lacey & Cole, 1993). Since a void tends to have negative spatial curvature
(for a flow-orthogonal spacetime foliation), an overdensity inside a void will have difficulty
forming. If it forms nevertheless, the negative spatial curvature environment will tend to weaken
matter infall, weakening the star formation rate. A void can also be thought of as approximated
by a spatially compact domain in a relativistic Milne model – empty of matter and spatially
hyperbolic (often called “open”) – in which structure forms more slowly than in the idealised
background FLRW model.

A pseudo-Newtonian way of thinking about this is that compared to a background FLRW
model, a galaxy in the emptiest parts of a void – the “elaphrocentre” – feels a weak antigravita-
tional environmental force around it, since the void is underdense compared to idealised average
regions of space. Another toy model way of thinking about the elaphrocentric effect is as follows.
Let the core of a dark matter halo be modelled as forming via linear theory followed by the
standard pseudo-Newtonian spherical collapse approximation in a background FLRW model,
and then by slow uniform mass infall induced by the elaphrocentric environment. This would
appear as a history of mass infall that is spread out in time and gradual, rather than fast and
sudden. If slow gradual infall is interpreted as the late collapse of the outer parts of the halo,
then this corresponds to collapse at late epochs, when the FLRW critical density has dropped,
implying a greater virial radius for a fixed total halo mass.

Based on these heuristic arguments we assume that if a dark matter halo forms at or near an
elaphrocentre, then the merger rate of small haloes into that halo and the overall infall rate of
dark matter and gas into the halo should be weaker than the usual infall rates towards a halo of
similar mass at a barycentre. This effect should tend to create lower mass dark matter haloes at
elaphrocentres compared to barycentres, which is generally the case: the most massive haloes
form at the knots of the cosmic web. For a high-mass dark matter halo at the present epoch of
a fixed mass, this elaphocentric effect should tend to increase the probability of the halo having
grown in mass after its initial collapse by weak infall and a weak merger rate over a long period,
rather than by an initial short burst of mass accumulation. These effects on the host haloes could
lead, for a fixed mass and a fixed efficiency factor for converting available baryons into stars, to
galaxies closer to the elaphrocentre preferentially forming with weak star formation rates over
long time scales.

WhileHoffman et al. (1992) proposed that voids play amajor role inLSBG formation, herewe
briefly present a broader overview of LSBG formation scenarios. LSBGs were discovered more
than three decades ago (Sandage & Binggeli, 1984; Bothun et al., 1987), leading to the question
of their formation mechanisms (Schombert, Maciel, & McGaugh, 2011; Schombert, McGaugh,
& Maciel, 2013; Schombert & McGaugh, 2014b,a). Interest in LSBGs was recently reignited
by van Dokkum et al. (2015), who found a high abundance of large LSBGs in the Coma cluster,
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that they called ultra diffuse galaxies (UDGs), to distinguish them from traditional LSBGs. It is
not yet clear whether LSBGs and UDGs share the same formation scenario, especially since this
is dependent on their definitions. A common scenario is that UDGs form in high-spin haloes.
Rong et al. (2017) find from simulations that UDGs form naturally in high-spin haloes within
the ΛCDM model; Kim (2015) has started investigating this observationally. Chan et al. (2018)
show that they can reproduce the observed quantities of red UDGs by imposing quenching,
without assuming high spin haloes. Di Cintio et al. (2017) showed that UDGs can be produced
in isolated dwarf galaxy haloes with stellar feedback and episodes of gas outflow. Jiang et al.
(2019) extended this work by investigating field UDGs. Compared to other galaxies, LSBGs
tend to be more spatially isolated, i.e. they tend to be somewhat elaphrocentric. Rosenbaum
et al. (2009) quantified this on a 2–5 Mpc scale, finding that LSBGs are located in regions with
lower galaxy number densities than those in which high surface brightness galaxies are located.
LSBGs typically have low H I surface densities, below around 5"�pc−2, yielding weak star
formation, with star formation rates that are approximately constant with cosmological time,
rather than the exponentially declining star formation rates typically associated with high surface
brightness galaxies (Di Paolo & Salucci, 2020, Sect. 7.1, 7.2).

Here, we focus on the degree to which the elaphrocentric location may contribute to low
surface brightness of void galaxies for a given host halo mass, via (i) a total-matter infall rate
closer to being constant rather than being exponentially declining, and (ii) an enlarged disk size
of a galaxy due to high spin (Rong et al., 2017) and/or an increase in the typical virial radius. (iii)
We estimate the magnitude of elaphrocentric acceleration as a basis for more detailed studies.

To study this hypothesis, we present a highly reproducible (Akhlaghi et al., 2021) galaxy
formation simulation and analysis pipeline (Peper, Roukema, & Bolejko, 2019). The packages in
the pipeline are free-licensed packages, and should only require a POSIX-compatible operating
system with sufficient memory and disk space for reproducing the full calculations, tables and
figures, generating values that are statistically equivalent to those published here. We present
the software packages and the pipeline in Sect. 4.2.1.

In Sect. 4.2.2 we propose a Voronoi-cell based definition of the “elaphrocentre” and discuss
alternative definitions of the “centre” of a void from the literature. We present two different
parameters characterising void membership and propose a criterion for use in global population
comparisons between void and non-void galaxies in Sect. 4.2.3. We describe how we study the
dependence of the infall of matter into galaxies (Sect. 4.2.3) and the dependence of galaxy sizes
(Sect. 4.2.3) on these parameters and on the global void membership criterion. The elaphro-
centres themselves are the places that are the most difficult to study via particle distributions, so
in Sect. 4.2.3 we describe howwe investigate accelerations near the elaphrocentres in preparation
for future studies of elaphrocentric effects that might help form LSBGs.

We present our results in Sect. 4.3, discussion in Sect. 4.4 and conclude in Sect. 4.5. The
reproducibility package for the results presented in this chapter is available at zenodo.4699702
and in live2 and archived3 git repositories. The commit hash of the version of the source package
used to produce the results of this chapter is 027ad20. The package was configured, compiled
and run on a Little Endian x86_64 architecture.

2https://codeberg.org/boud/elaphrocentre
3swh:1:dir:54f00113661ea30c800b406eee55ea7a7ea35279

https://zenodo.org/record/4699702
https://codeberg.org/boud/elaphrocentre
https://archive.softwareheritage.org/swh:1:snp:54f00113661ea30c800b406eee55ea7a7ea35279
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4.2 Method

4.2.1 Software pipeline
We provide a highly reproducible software pipeline for generating a realisation of galaxies
with merger-history-tree based galaxy disk formation histories (and star formation histories,
though we do not analyse these in this work) starting from early universe initial conditions. This
approach not only combines existing community tools, but can also help in improving those
existing tools by embedding them in a controlled software environment. Our pipeline is intended
to be modular, so that the well established cosmological software tools currently chosen, can,
in principle, be replaced in a modular way, provided that the user manages the input and output
formats correctly. Our results are intended to be statistically reproducible. Parallelisation in
several steps of the computational pipeline currently prevents byte-for-byte reproducibility.

We follow the steps introduced in chapter 3 to build up the pipeline. In the following we
give the key parameters used in these models. URLs and SHA512 checksums for the upstream
versions of software used to produce this work are listed in the reproducibility package. (An
SHA512 checksum is a 512-bit integer computed from the bytes in a file using the SHA512
algorithm, aiming to provide a data integrity check on the file contents that is sensitive to small
changes in the file.)

The reproducibility structure is based on the Maneage template that aims for a high level of
reproducibility (Akhlaghi et al., 2021). We follow Rougier et al. (2017) for the definitions of the
“reproducibility” of a research paper – in which independent authors attempt to use the same
input data and the same source code and analysis pipeline to obtain the paper’s claimed results
– versus the paper’s “replicability” – in which independent authors attempt to use different
but similar input data and/or a different but equivalent analysis to obtain the claimed results.
Using these definitions, we believe that it should be straightforward for the reader to verify the
reproducibility of our results.We expect that our results will also be replicable. Version identities
of the software packages in the text below include git commit hashes. Modifications that we
have made to upstream versions of codes are included as patch files in the reproducibility source
package (zenodo.4699702).

Initial conditions

We use mpgrafic-0.3.19-4b78328 (Prunet et al. 2008; see Sect. 3.1) to generate a set of standard
initial conditions for a flat-space #-body simulation with the standard 3-torus topology (often
called “periodic boundary conditions”). At this step we already set the cosmological background
model for our simulation. We generate a simulation with # = 1283 particles. The comoving
fundamental domain size, often called the “box size”, is !box = 80Mpc/ℎ. These parameters give
a dark matter particle mass of 2.03× 1010 "�, which is a reasonable mass resolution for modest
RAM and CPU resources. Together with the minimum number of particles per halo (Sect. 4.2.1),
this sets a minimum halo mass and indirectly a minimum galaxy mass in the simulation. We
do not expect to detect dwarf galaxies in the results presented here. We use the ΛCDM model,
discussed in Sect. 2.1.1 as a proxy model that fits many observations. The FLRW cosmological
parameter settings include the current values of the matter density parameter Ωm0 = 0.3, the
dark energy parameter ΩΛ0 = 0.7 and the Hubble–Lemaître constant �0 = 70.0 km/s/Mpc.

https://zenodo.org/record/4699702
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Simulations

For our #-body simulation, we chose ramses-scalav-0.0-482f90f, a fork of the widely used
adaptive mesh code ramses-3.0 (Teyssier, 2002). The ramses-scalav fork has modifications
to comply with the MPI 3.0 recommended standards for inclusion of the MPI header file4 and
optional extensions related to scalar averaging (Roukema, 2018). The adaptive mesh structure
of ramses (see Sect. 3.2), is designed to allow fast calculations that can resolve detailed gravit-
ational behaviour in high density regions. The maximum ramses resolution, which effectively
corresponds to a softening length, is set at levelmax = 12. We produce snapshots starting at
Ci = 10 Myr with an equally spaced time step of ΔC = 100 Myr, and convert to scale factor values
using cosmdist-0.3.8.2.

Halo detection

For detecting dark matter haloes, we use rockstar-0.99.9-RC3+-6d16969 (Behroozi et al.
2013a; see Sect. 3.4). We run rockstar using a linking length of 0.28 and a minimum of 5
particles per halo. We set the virial radius criterion for rockstar detection to "200c", i.e., 200
times the critical density.

Merger history trees

We construct halo merger trees (see Sect. 3.5) from the simulations (Roukema et al., 1993;
Roukema, 1993; Roukema et al., 1997; Roukema & Yoshii, 1993; Kauffmann et al., 1999a;
Okamoto &Nagashima, 2001, and references thereof). In this work, instead of using the original
Fortran77 routines from 1992, we use a more modern package, ctrees-1.01-e49cbf0 (Behroozi
et al., 2013b), which was designed to perform on outputs from rockstar. In order to use
these merger history trees for simulating galaxy evolution using sage, which was developed for
following up simulations such as the Millenium simulation, we need to convert the trees to the
LHaloTree format. We do the conversion with convertctrees-0.0-522dac5.

Galaxy formation and matter infall

To form galaxies within our dark matter haloes, we use semi-analytical galaxy formation recipes
(Roukema et al., 1993; Kauffmann et al., 1993; Roukema et al., 1997; Kauffmann et al., 1999a,b).
Again, rather than using the original code from 1992, we use sage (Croton et al., 2016), see
Sect. 3.6. We use the built-in functions of sage for estimating the “size” and the infall rate
history of each galaxy at the final output time. Under the hypothesis that voids are a favourable
environment for large, diffuse galaxies we investigate the disk size (3.46), which is dependent
on two other key variables of interest: the virial radius 'vir set in rockstar at "200c" and the
dimensionless spin parameter (3.45).

The infalling mass is defined at a given time step by

Δ"infall(C8) := 5reion 5b "vir − "tot, (4.1)

where 5reion is the reionisation factor, which estimates the effect of ionisation of the intergalactic
medium from early stars; the baryon fraction 5b = 0.20 determines what fraction of total matter
is baryonic (assumed to be the same for any dark matter halo/galaxy pair); "vir is the virial
(total matter) mass of the halo; and "tot is the sum of all reservoirs of baryonic matter from

4https://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

https://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
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the previous timestep (except at the initial timestep, when it is zero). Cases where "infall < 0
are interpreted to mean that baryonic mass is ejected from the galaxy. We extended sage in
order to estimate infall rate, star formation rate (SFR) and outflow rate histories. The history of
any of these parameters for a given galaxy at a given time, traced backwards in cosmological
time, is assumed to be the sum of the histories of all the separate pre-merger progenitors of
the galaxy, appropriately matched by cosmological time. At each merger event, this physically
corresponds to the components (dark matter, hot gas, cold gas, stars) of the progenitors being
conserved in the merger. The summed star formation rate traced back for a given galaxy is
what was originally used together with evolutionary stellar population synthesis to calculate
galaxy spectral energy distributions and absolute magnitudes (Roukema et al., 1993, 1997);
we do not carry out evolutionary stellar population synthesis in this work. To evaluate these
sums, we identify all galaxies present at the present epoch, 0(C) = 1, and trace their progenitors’
history back in time along the merger tree. For example, if a progenitor is itself the result of
a merger at an earlier timestep, then its own history is the sum of its own progenitors. This
procedure is continued recursively back in time in the merger tree for a given present-epoch
galaxy. As in the original implementation (Roukema et al., 1993), other effects from mergers
than conservation of mass, such as merger-induced starbursts, are also assumed in sage, but with
a power law dependence on the satellite mass rather than direct proportionality (Croton et al.,
2016, eq. (27)).

Voids

We identify the void environment of galaxies using the revolver watershed void finder based
on zobov (Neyrinck, 2008; Nadathur et al., 2019), which provides a nearly parameter-free void
finder that does not require assumptions about void shapes (see Sect. 3.3). In contrast to other
works, we use the full dark matter (DM) particle distribution as tracers. Nadathur & Hotchkiss
(2015b) showed that the voids identified using the galaxy distribution as tracers differ from those
traced using a randomly subsampled particle distribution. The authors recommend using the
galaxy distribution as tracers in order to match observations. However, since our priority here
is gravitational effects, we use the DM particle distribution rather than the galaxy distribution.
It is likely that we will detect voids that are smaller and more numerous than those observed in
the galaxy distribution (e.g. Mao et al., 2017), since the full DM particle distribution will show
positive fluctuations in the density field that may be too weak to form DM haloes and galaxies,
but will be detected by the watershed void finder and interpreted as boundaries of voids.

We introduce several small changes into revolver. In addition to Nadathur & Hotchkiss
(2015a)’s definition of the circumcentre, we calculate the position of the elaphrocentre, as
defined below in Sect. 4.2.2. We add a routine to read in simulation data in Gadget-2 format
(Springel, 2005), the default output format that we chose for the ramses #-body simulation. We
output lists of particle identities of the DM particles that constitute each void. This information
is needed to decide the extent to which a galaxy’s host halo is located in a void.

We adopt the revolver definition of the effective radius of a void, 'eff , which is not directly
related to the choice of a definition of the void centre. The effective radius 'eff is defined by
revolver as the radius of a hypothetical sphere that has the same volume as the total volume of
all the Voronoi cells that constitute the void, i.e. 'eff := 3

4c (
∑
8 +8)1/3 where +8 are the volumes

of the Voronoi cells that determine the void.
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4.2.2 Elaphrocentre and other definitions of void centres
To investigate if a galaxy’s position in a void – its elaphrocentric location – has a significant
effect on the formation and evolution of the galaxy, we first need to clarify earlier terminology
regarding void centres from the literature, and we need to define the elaphrocentre.

Nadathur & Hotchkiss (2015a, Sect. 2.3) define the “circumcentre” for a given void using
the Voronoi cell with the lowest density and the three lowest density adjacent Voronoi cells.
The intersection of these four Voronoi cells determines the circumcentre. By construction, the
circumcentre is the centre of the largest sphere that can be inscribed in the tetrahedron determined
by the particles in these four (neighbouring) Voronoi cells, and the centre of the largest empty
sphere that can be inscribed in the void. Nadathur et al. (2017, Sect. 2.3 (ii)) rename this the
“void centre” and show that it correlates strongly with the local maxima of the gravitational
potential with respect to the background FLRW model.

We define the elaphrocentre similarly. In a void identified by the watershed algorithm, we
identify the particle at which the potential is highest, using the potentials estimated by ramses
(Sect. 4.2.1). We then identify the three adjacent Voronoi cells whose particles have the highest
potentials. Together with the cell of the highest potential particle, we again form a tetrahedron
between the four particles that respectively define the four cells. The centre of this tetrahedron
is the elaphrocentre. While we expect a strong spatial correlation between elaphrocentres and
circumcentres, they will differ in general, in particular for small, highly non-spherical voids. By
definition, elaphrocentres are appropriate for studying elaphrocentric effects on galaxy formation.
A group of test particles at an elaphrocentre will, in the Newtonian sense, be accelerated away
from the elaphrocentre, and disperse rather than cluster together. Thus, the elaphrocentre would
seem to be a good environment to form a large, diffuse galaxy, provided that the mass that forms
the future galaxy is low compared to the mass deficit determining the gravitational properties of
the void as a whole.

A third centre commonly defined in void studies is the “macrocentre” or “volume-weighted
barycentre”. This is defined (Sutter et al. 2015, Sect. 3, eq. (4); Nadathur & Hotchkiss 2015a,
Sect. 2.3, eq. (2)) as the volume-weighted mean of the position vectors ®G8 of all DM particles
identified as being in the void, i.e., ®2vwb := (∑8 +8®G8) /

∑
8 +8, where +8 is the Voronoi cell volume

associated with the 8-th particle. Since the position is not mass-weighted, it is unrelated to the
normal Newtonian definition of a barycentre for a particle distribution, ®2m := (∑8 <8®G8) /

∑
8 <8,

where <8 is the mass of the 8-th particle. In the continuous limit to arbitrarily high particle
resolution (assuming a continuous fluid), the volume-weighted barycentre approaches ®2vwb =∫
D ®G d+/

∫
D d+ over a spatial domainD. Clearly, in the continuous limit, ®2vwb is the geometrical

centroid of the domain D, which in geometry is often termed the “barycentre”. In general, this
corresponds to the astronomical barycentre only if the density distribution in the domain D
is uniform. In other words, the volume-weighted barycentre contains no information about the
density distribution within D apart from numerical noise.

By definition, apart from discretisation and numerical effects, ®2vwb only determines the
geometrical mean position (the centroid) of the overall shape of the void, as defined by the
outermost particles of the void. Adding a few particles with big Voronoi cells adjacent to a
single side of a void would significantly modify the global shape (union of Voronoi cells)
of the void. This would shift the volume-weighted barycentre – the centroid – significantly.
Thus, Nadathur & Hotchkiss (2015a) are correct that ®2vwb depends on the presence rather than
the absence of tracers. However, the fundamental problem with using ®2vwb in the context of
cosmological voids is that it indicates a void centre that (apart from numerical effects) has no
dependence on the density variations in the interior of the polyhedron (union of all Voronoi
cells) that defines the void; only the void boundary affects ®2vwb. Since there is no reason for
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the centroid of the polyhedron bounding a void to have any tight relation with the position of
minimal density if the void is even mildly asymmetrical, it is unsurprising that Nadathur &
Hotchkiss (2015a) found the density at ®2vwb to be higher than at the circumcentre. Thus, in
the context of cosmological voids, the physical relevance of ®2vwb is unclear, and if used, we
recommend that it be described by the term “geometrical centroid” (or “boundary centroid”)
rather than “macrocentre” or “volume-weighted barycentre”.

4.2.3 Analysis
To study our hypothesis that the elaphrocentric location of galaxies in voids plays a significant
role in their evolution, we analyse the simulated haloes, galaxies and voids produced by our
pipeline in relation to the voids’ elaphrocentres as follows.

Void membership and elaphrocentric distance

Identifying which galaxies are located in a void is non-trivial. For a given galaxy, we could
find the void that gives the shortest elaphrocentric or circumcentric distance, and consider the
galaxy to be a member of the void if the circumcentric or elaphrocentric distance is below a
given fraction of the void effective radius. A distance between two positions in this work is
calculated using the shortest of the multiple 3-torus (R3/Z × Z × Z ≡ S1 × S1 × S1) spatial
geodesic comoving distances. This is often described more loosely as “the comoving distance
with periodic boundary conditions”.

However, identifying galaxy membership in a void by the elaphrocentric or circumcentric
distance would only be accurate for voids that are spherically symmetric. Although voids tend to
evolve to become more spherical, as shown analytically by Icke (1984) by reverting a simple toy
model for collapsing density perturbations and numerically by Sheth & van de Weygaert (2004)
in #-body simulations, a void will in general be non-spherical. Moreover, the elaphrocentre will
not, in general, coincide exactly with the circumcentre. Thus, a more accurate way of deciding on
void membership should, in principle, be possible by using knowledge of the particle positions.

The void membership criterion proposed here, as with the > 50% merging identity criterion
initially published in 1993 for merger history trees (Roukema & Yoshii 1993, Sect. 3; Roukema
et al. 1997, Sect. 2.2.1), is a simple proposal that we expect to be improved upon later. Our
voids are detected as a union of Voronoi cells – each containing a DM particle – by revolver.
Thus, for any given void, we have a list of particles that approximately define the void. Since we
know from rockstar which particles are members of a halo in which a given galaxy forms, we
can check which of these halo particles are present in the list of void member particles for any
given void. We restrict the list of void particles to those that are within A ≤ 2.4?B 'eff from the
elaphrocentre, where 'eff is the void effective radius calculated by revolver (the radius of the
hypothetical sphere having the same volume as the void’s Voronoi cells; see Sect. 4.2.1). The
A ≤ 2.4?B 'eff restriction should remove some of the sharpest regions adjacent to the knots of
the cosmic web and exclude the outermost regions of voids of high ellipticity. In this sense, it
will counteract the space-filling nature inherent to any watershed voidfinder to some degree.

Our void membership criterion is that we require that a fraction 5H∩V strictly greater than
5 min
H∩V = 0.50 of the particles in a haloH be members of a voidV for a galaxy in that halo to be

considered a member of the void. As in the case of the > 50% merging identity criterion, which
prevents a halo from having multiple descendants, this void membership criterion is strong
enough to prevent a galaxy in a halo that lies on a wall, filament or knot from being allocated to
more than one void. This criterion could be strengthened to force a selection of galaxies that are
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placed further in the interior of the voids, at the cost of reducing the total number of galaxies
recognised as being members of voids. A galaxy that does not satisfy this criterion is considered
to be a non-void galaxy.

Infall dependence on environment

We wish to see if infall rates – of dark and baryonic matter in general – are affected by the host
halo’s location in a void. The infall history should affect the star formation rate, which requires
baryonic matter to first collapse into the centre of its host dark matter halo’s potential well. We
consider the infall rate traced backwards in time for any halo at the final output time. This infall
rate is the sum of the mass accumulation histories of the component haloes of the final halo’s
merger tree. We can write this backtraced history, over predecessor haloes destined to merge
together, as the mass evolution assigned to the final halo, " (C), so that d"/dC ≈ Δ"/ΔC (C) is
the infall rate – of small haloes and diffuse matter together.

The hypothesis that the elaphrocentre of a void (corresponding to a spatially compact part
of a hyperbolic, super-Friedmannian expanding region) would weaken the infall rate can now
be formalised. For a given mass " , the average (mean) infall rate is, by definition, independent
of location. To distinguish the archetypal case of a typical disk galaxy, with an initial burst of
star formation followed by an exponential decay, from that of an archetypal LSBG, with an
approximately flat star formation rate, we attempt to fit d"/dC by an exponential, of the form

d"
dC
(C) = � exp(−C/g) , (4.2)

where � is the infall amplitude and g is a decay time scale.
Typical disk galaxies should have low time scales g, while we hypothesise that void galaxies

should on average have higher g, corresponding to approximately flat infall rates.
The exponential form of the fit for the matter infall rate is a heuristic choice inspired by

the traditionally used declining exponential for modelling the star formation rate (Bruzual A.,
1983). In reality, merger histories are more complex than these simplified extremes, so we expect
a fair fraction of automated fits to fail, especially since we apply this to all timesteps defined
in Sect. 4.2.1, starting from the first time step in which a galaxy is modelled to form in a dark
matter halo. Nevertheless, this automated fit procedure should be able to distinguish whether
the infall of matter is closer to a brief, quickly weakening series of early events or rather a more
steady infall extended over a long period. We expect that a flat infall rate would correspond to
a roughly constant star formation rate over time. The early, brief, burst scenario of the infall of
matter would allow a high star formation rate immediately after the infall, whereas a constant
rate of matter infall should yield an approximately constant star formation rate. Long cooling
times would modify this relation, especially for galaxies in high-mass haloes in voids (Hoffman
et al., 1992, Einstein–de Sitter case).

We first compare � and g for galaxies depending on their classification as void or non-void
galaxies. The infall histories are calculated using our modification of sage. The prediction for
creating LSBGs is that void galaxies should tend to have low amplitude � and a high (slow)
decay rate g, and vice versa for non-void galaxies.

Galaxy size dependence on environment

The other parameter that may indicate an elaphrocentric contribution to a disk galaxy becoming
an LSBG is the disk scale length Adisk (for a density profile d ∝ exp(−A/Adisk)). This can
be converted to a disk half-mass radius using the relation A1/2 = aAdisk, where a solves (a +
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Figure 4.1: Histogram of void effective radii 'eff (Sect. 4.2.1), using the full dark matter particle distribution, which
leads to voids much smaller than typically observed or found in simulations when traced by galaxies.

1) exp(−a) = 1/2 (e.g. Kravtsov, 2013, a = 1.678). As stated above (Sect. 4.2.1; Eq. (3.46)),
sage calculates Adisk. Since voids are underdensities, dark matter haloes forming in voids will
tend to collapse somewhat later than in overdensities (e.g. Lacey & Cole, 1993, App. A). In
an expanding FLRW universe, the critical density dcrit decreases, so for a fixed virialisation
overdensity threshold and fixed mass, 'vir increases with time. Thus, modelling galaxy disk
scale lengths as being proportional to the halo virial radius (Eq. (3.46)), it would be reasonable
to expect void galaxies to have greater Adisk than non-void galaxies, for a fixed value of the
spin parameter _. Elaphrocentric galaxies will typically undergo a more isolated evolution
than barycentric galaxies, with fewer merger events. D’Onghia (2008) found, based on #-body
simulations, that the spin parameter of haloes in equilibrium is not influenced by merger events.
If the role of the spin parameter is indeed weak, then void galaxies should be marginally larger
than non-void galaxies. We consider both Adisk directly, and 'vir and _ individually.

Elaphro-acceleration

As a complement to the direct analyses of simulated galaxies via sage, we also investigate
accelerations near the elaphrocentres, as preparation for future studies of elaphrocentric effects
that might have an effect on galaxy formation in voids and might help form giant LSBGs. We
estimate the acceleration (compared to the FLRW reference model) of test particles directed
away from the elaphrocentre, in the direction of the boundaries of the void. This acceleration
can be thought of as counteracting the self-gravity of an overdensity that is destined to collapse
into a dark matter halo and allow the formation of a galaxy within the halo. This acceleration is
the effective antigravity that we have assumed could enlarge the size of a galaxy and decrease
its infall rate, provided that the simulation has a detectable galaxy near the elaphrocentre.
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Figure 4.2: Histogram of elaphrocentric distance of galaxies identified as being located in voids. The distribution
at A/'eff < 1 is typical of observational and simulated void profiles, with most galaxies located near the effective
radius. The distribution at A/'eff ≥ 1 can be interpreted as showing galaxies in the outer parts of voids that are
generally quite asymmetrical. A perfectly symmetrical void would have all its member galaxies at A/'eff < 1.
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Here, we describe how we estimate this “elaphro-acceleration” without requiring the pres-
ence of a halo or galaxy. We will compare our results with the Newtownian estimate for the
gravitational pull towards the centre of a halo of a Malin-1–like galaxy (Bothun et al., 1987). In
this simplified model, we assume a high-mass test halo at the elaphrocentre of a void identified
in the simulation, without modifying the underlying DM distribution. In the real Universe and in
simulations, it is rather unlikely for a galaxy to form exactly at an elaphrocentre. Nevertheless, we
feel that this calculation will be a useful guide, since the elaphro-acceleration should be maximal
in amplitude at the elaphrocentre. For our canonical high-mass test halo we adopt parameters
that are motivated by observations of Malin 1 (Seigar, 2008; Junais et al., 2020). For an order
of magnitude estimate, we adopt " test = 1012M� for the mass of the halo and A test = 1.20 Mpc
for the region from which dark matter originated.

For any given void, we interpolate the potential q linearly, and calculate the acceleration
as the gradient of the potential, ¤E ∝ −∇q. We use the full dark matter particle distribution,
since gravitationally this should be more accurate than that of collapsed haloes (or galaxies)
alone. We use the gravitational potential estimates calculated by ramses (Sect. 4.2.1). Since
ramses only provides potential estimates at particle positions, the resolution limit implied by
using these is determined by the particle number density. By definition, the number density is
very low inside a void, so there are very few particle positions available for interpolating the
potential. We sample the elaphro-acceleration at six positions which lie on the sphere with radius
A test, i.e. at ((±A test,0,0),(0, ± A test,0),(0,0, ± A test), where the elaphrocentre is the origin of the
coordinate system. For a given void, we calculate the radial (signed) and tangential (amplitude)
components of the velocity vector ®E for each of the six positions, and find the mean values ¤E‖
and ¤E⊥, respectively. As stated in Sect. 4.2.1, some of the six positions may fall outside of a void
when the void is too small; we ignore the void in such cases.

4.2.4 Reproducibility versus cosmic variance
We present results below (Sect. 4.3) with a preference for reproducibility over cosmic variance.
Our pipeline, using theManeage template (Akhlaghi et al., 2021), includes a step for verification,
in the sense of verifying that when the reader recalculates our complete pipeline, s/he should
obtain statistically equivalent results to our original results, within some tolerances. Estimation
of these tolerances effectively requires an approximate estimate of cosmic variance in the
parameters of interest. In principle, we could use these repeated full runs of the pipeline to
obtain mean or median estimates of our main parameters of interest, rather than presenting the
values from a single simulation, and the random uncertainties derived from that simulation.
However, that would reduce the reproducibility of our results, in the sense that readers wishing
to run our pipeline would also have to perform multiple full runs.

Thus, here we favour reproducibility over cosmic variance, using the latter only for reprodu-
cibility purposes, not for obtaining results of the work. We first run a fixed version of our full
package 10 times, for different random seeds and with physical randomisation induced by paral-
lel computation. We obtain a full set of the results presented in this work from each run. For any
given parameter, we calculate the standard deviation fcv of the values of the parameter, where
the subscript “CV” refers to “cosmic variance”. The particular version of the source package
used for these verification runs has the string e93569c as its git commit identity (commit hash).
We use these repeat runs only for verification in the reproducibility sense, not for results. A
given parameter in a fresh realisation that aims to reproduce our results can then be verified for
consistency by requiring that it agree with our published value to within 5.0

√
2 times the stated

random error fran, where the
√

2 factor represents the assumption that both have independent
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Figure 4.3: Differential halo number counts "2/d d=/d" versus halo mass " for the haloes that host galaxies in
the simulation, where = is the number density of haloes in a given mass interval and d is the mean mass density
of the simulation. The solid, black (top) curve represents all haloes; the dashed, red (middle) curve is for haloes
that are not in a void; and the dash-dotted, blue (bottom) curve is for haloes that are identified as being located in
a void. The gradual decline in the numbers of haloes towards the lower mass scales and the sharp cut at the lowest
mass scale are artefacts of the limited resolution of our simulation.

Gaussian errors drawn from the same distribution. For parameters with high fcv (i.e., those
known to fail this verification), we require agreement between the fresh value and the mean
from the ensemble of runs within 5.0 times fcv, and we state fcv as an additional uncertainty,
using the notation “±cv”. We use this formalised verification procedure for the parameters that
we judge to be the more physically relevant.

The simulation presented below was chosen randomly.

4.3 Results

4.3.1 Simulation pipeline
In the final time step of our # = 1283-particle simulation, we detected 5329 haloes, with 4817
galaxies evolved along the merger history trees for these haloes. Among these galaxies, 3848
have virial mass " in the range 1011–1013M�/ℎ, which we study with the aim of seeking
a factor in the formation of high-mass galaxies. Applying the 5H∩V > 0.50% definition in
Sect. 4.2.3, we identify 1998 galaxies in voids, among which 1588 of these galaxies have a mass
in the selected range. This fraction of galaxies identified as void galaxies is larger than the 7%
estimated by Pan et al. (2012). A more detailed analysis of the galaxies that are identified to be in
voids is given below. We investigate key quantities dependent on the fraction of their host haloes
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Figure 4.4: Amplitude of infall rate � versus fraction 5H∩V of a galaxy’s host halo composed of void particles.
A Theil–Sen robust linear fit to the relation gives � = [(1.25 ± 0.30) + (1.24 ± 0.51 ±cv 0.40) 5H∩V] "�/yr.
Galaxies towards the left ( 5H∩V = 1) are those best identified as being in voids. Fits are made for this figure
through to Fig. 4.16. These are robust best fits for studying statistical relations; they are not predictive models. We
display the fits in almost all these scatter plots, quantifying them and their uncertainties in the captions (fits are not
displayed in this figure, nor in Figs. 4.6, 4.8, 4.15 and 4.16). See the text for discussion of which relations have
significantly non-zero slopes. Plain text table for this figure through to Fig. 4.7: zenodo.4699702/voidgals_infall.dat.

particles in a void 5H∩V and dependent on their relative distance to the voids centre A/'eff . We
use Theil–Sen robust linear fits (Theil, 1950; Sen, 1968) on each key quantity to see if it has
a statistically significant dependence on either of the two void location parameters. There are
2198 voids in the final time step. The void size distribution is shown in Fig. 4.1. Since we detect
voids physically, following the dark matter particular distribution, as described in Sect. 4.2.1,
it is unsurprising that the void population is dominated by voids a few Mpc/ℎ in size, with a
correspondingly higher number density than that typically seen in void catalogues calculated
using galaxies as tracers. The distribution of void galaxy elaphrocentric distances is shown in
Fig. 4.2.

4.3.2 Infall rate
As described in Sect. 4.2.3, we first compared infall rates for galaxies as separate void and
non-void populations. For each galaxy mass infall history d"/dC (C), we first find a linear least-
squares best fit to log10(d"/dC) versus C for time steps where d"/dC (C) > 0. The optimal
parameters of this fit are used to find a non-linear least-squares best fit of d"/dC (C) to a decaying
exponential (Eq. (4.2)), starting from the first time step with d"/dC (C) > 0 and no longer
excluding time steps with d"/dC = 0. As stated above, merger histories are complex, and many

https://zenodo.org/record/4699702/files/voidgals_infall.dat
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Figure 4.5: Infall decay rate g versus fraction 5H∩V of a galaxy’s host halo composed of void particles, as in
Fig. 4.4, with a Theil–Sen robust linear fit g = [(8.91 ± 1.05) + (−2.94 ± 1.63 ±cv 1.15) 5H∩V] Gyr, is shown.

Table 4.1: Exponential decaying fit parameters (medians and standard error in the median) for infall rates for void
and non-void galaxies. A large standard error in the time scale, of the order of the age of the Universe, indicates
that many fits represent nearly constant infall rates.

in voids not in voids
log10(�) ("�/yr) 0.31 ± 0.02 0.29 ± 0.02
g (Gyr) 3.67 ± 25.40 3.35 ± 5.18

galaxies’ infall histories are poorly fit by this procedure. This applies both to void and non-void
galaxies, andwe do not attempt to analyse these cases. The limitations of this simplified approach
should similarly affect both populations and should not affect our comparison of the successfully
fit subsets of the two populations.

We find <v = 1263 valid fits for the void galaxies, and <−v = 325 fits that are rejected
either as failed fits (<−vf = 1) or as having an unreasonably high amplitude, � > 1000 "�/yr,
indicating a physically unrealistic fit (<−vu = 324 cases). For non-void galaxies we find<v = 1877
valid fits and <−v = 525 fits rejected either as failed fits (<−vf = 1) or as having unphysically
high amplitudes (<−vu = 524 cases). For galaxies in host haloes with virial masses in the range
1011–1013M�/ℎ, we find the medians listed in Table 4.1, where the uncertainties are standard
errors in the median. Throughout this work, uncertainties in the median are given as the standard
error in the median, unless otherwise stated. The median host halo mass for the void galaxies is
(4.1±0.4) ×1011"�, lower than that of the non-void galaxies, (5.7±2.6) ×1011"�. Figure 4.3
shows the differential mass function of the haloes in the form of the halomultiplicity function.We
show the differential halo masses for all haloes, for haloes that are classified as being associated
with a void and for haloes that not associated with any void. As stated in Sect. 4.2.1, we cannot
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Figure 4.6: Amplitude of infall rate � versus elaphrocentric location A/'eff of a galaxy’s host halo. The fit is
� = [(1.47 ± 0.21) + (0.54 ± 0.15 ±cv 0.30) A/'eff] "�/yr. As in Fig. 4.4, galaxies towards the left are those best
identified as being in voids, but voidness is characterised in this plot by a lower elaphrocentric distance A/'eff ,
instead of by a higher void fraction 5H∩V .
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Figure 4.7: Infall decay rate g versus versus elaphrocentric location A/'eff of a galaxy’s host halo, as in Fig. 4.6,
with robust fit g = [(7.86 ± 1.33) + (−0.82 ± 1.14) A/'eff] Gyr.

resolve dwarf galaxies; this is seen in the sharp cut at the lowest masses. The gradual decline in
low-mass haloes and the sharp cut are both consistent with the use of the rockstar halo finder
(Sect. 4.2.1). The void and non-void halo mass functions clearly differ in the higher mass ranges.
The most massive haloes form in voids very rarely, while among the lowest mass haloes, the
probabilities of forming in a void or not are of similar magnitude.

We find (Table 4.1) no significant difference in either the amplitude � or the time scale g
of infall between the void and non-void galaxy populations. The dispersion in infall patterns
within each population is as great as both � and g themselves. We found that, to very high
significance, void galaxies typically form later than non-void galaxies, as expected, since they
form in underdensities. We find median collapse epochs (in standard FLRW cosmological time)
of Cfv = 4.1±0.1 Gyr and Cfnv = 3.3±0.1 Gyr for the void and non-void galaxies, respectively. By
the collapse epoch of a galaxy, we mean the first epoch at which the mass infall rate calculated
by sage for the galaxy is non-zero.

We investigate the results for � and g more closely by checking if either � or g has a
dependence on either the fraction of a host halo’s particles that are identified as void particles,
5H∩V , or on the host halo’s elaphrocentric distance A/'eff . Figures 4.4–4.7 show the dependence
of � and g on 5H∩V and A/'eff for all void galaxies. The 5H∩V axis is shown with 5H∩V
decreasing from left to right, so that the galaxies that are best qualified as void galaxies are
shown towards the left in all four figures. There is no visually obvious dependence of the infall
parameters on 5H∩V . However, Fig. 4.4 does show a modestly significant non-zero slope, i.e.,
the median of the infall amplitudes � is somewhat higher for galaxies better identified as void
galaxies (having a higher value of 5H∩V). This would tend to oppose the hypothesis of a general
tendency to form LSBGs in voids. The other slopes of the best fit linear relations, using robust
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Table 4.2: Median disk galaxy scale length, spin parameter and virial radius for void and non-void galaxies in the
mass interval 1011–1013M�/ℎ and on all mass scales. Two parameters are known to have high cosmic variance, as
given in the table (see Sect. 4.2.4).

in voids not in voids
restricted mass interval

Adisk(kpc/ℎ) 3.77 ± 0.08 4.21 ± 0.07
_ 0.0421 ± 0.0008 0.0413 ± 0.0007
'vir(kpc/ℎ) 134.8 ± 1.3 150.5 ± 1.4

all mass scales
Adisk(kpc/ℎ) 3.37 ± 0.08 ±cv 0.05 4.19 ± 0.09
_ 0.0420 ± 0.0009 0.0414 ± 0.0008
'vir(kpc/ℎ) 120.5 ± 1.4 ±cv 1.73 145.2 ± 2.2

statistics as above, indicated numerically in the figure captions, are not significantly non-zero.

4.3.3 Galaxy Sizes
While we do not detect significant elaphrocentric effects on infall rates, effects on galaxy sizes
could play an important role in forming large diffuse galaxies. As stated above (Sect. 4.2.3),
to check the size of a galaxy at the final output time step, we use the disk scale length Adisk
provided by sage. The results for the galaxies divided into void and non-void populations are
shown in Table 4.2, where we list the disk exponential scale length Adisk, the spin parameter _
and the virial radius 'vir. Table 4.2 shows a significant difference for the overall scale length
Adisk. Our results show that, as a population, void galaxies form significantly smaller disks, both
for our selected mass interval and for the full sample. Although this might seem to support van
de Weygaert et al. (2011, fig. 2, left)’s finding that, for a given absolute magnitude, void galaxies
tend to be smaller than the general galaxy population, we do not (yet) model stellar populations
and estimate absolute magnitudes, so this qualitative agreement is promising but not conclusive.

A likely explanation for the smaller sizes of void galaxies is shown by the other rows in
Table 4.2: the void galaxy population has a much smaller median virial radius 'vir than the
non-void population, but an insignificantly higher spin parameter _. The slightly greater spin
parameter appears insufficient to compensate or override the lower 'vir of the void galaxies. The
values of the spin parameter are reasonable in relation to standard values in the literature. Our
non-void host halo values of _ listed in Table 4.2 are consistent with the friends-of-friends halo
estimate of Zjupa & Springel (2017, Sect. 2.4, para. 8), _B,FOF = 0.0414, while our void host
halo values of _ are slightly higher.

As stated above, the void galaxy host haloes are typically somewhat less massive than the
non-void haloes and the collapse epochs of void galaxies are significantly later. These two
parameters should have opposite effects on the halo virial radii. In Table 4.2, we see that 'vir
is significantly larger for non-void galaxies, showing that the higher mass of non-void galaxies
plays the dominant role.

To see if a general trend of Adisk also exists as a function of a galaxy’s void location,
Figs 4.8 and 4.9 examine the dependence of Adisk on 5H∩V and elaphrocentric distance for void
galaxies. The slope of the best fit in Fig. 4.8, dAdisk/d 5H∩V = −1.44 ± 0.46 ±cv 0.42 kpc/ℎ,
is not significantly non-zero when we take into account cosmic variance (the distribution of
dAdisk/d 5H∩V over repeated runs includes a strong tail of values that are not significantly
non-zero). The dependence on elaphrocentric position (Fig. 4.9) is not significant either.



CHAPTER 4. THE ROLE OF THE ELAPHROCENTRE 76

0.50.60.70.80.91.0
fraction in void f∩

0

5

10

15

20

25

30

di
sk

 s
ca

le
 r

di
sk

 (k
pc

/h
)

Figure 4.8: Galaxy disk scale length Adisk versus fraction 5H∩V of a galaxy’s host halo composed of void particles.
The fit is Adisk = [(4.72 ± 0.33) + (−1.44 ± 0.46 ±cv 0.42) 5H∩V] kpc/ℎ. Plain text table for this figure through to
Fig. 4.13: zenodo.4699702/voidgals_infall.dat.

https://zenodo.org/record/4699702/files/voidgals_infall.dat
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Figure 4.9: Disk scale length Adisk versus elaphrocentric location A/'eff , as in Fig. 4.8. The fit is Adisk =

[(3.65 ± 0.26) + (0.11 ± 0.22) A/'eff] kpc/ℎ.
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Figure 4.10: Dimensionless spin parameter _ (Eq. (3.45)) versus 5H∩V . The fit is _ = (0.028 ± 0.003) + (0.021 ±
0.004 ±cv 0.005) 5H∩V .
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Figure 4.11: Dimensionless spin parameter _ (Eq. (3.45)) versus elaphrocentric location A/'eff , as in Fig. 4.10. The
fit is _ = (0.034 ± 0.003) + (0.007 ± 0.002 ±cv 0.002) A/'eff .
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Figure 4.12: Virial radius 'vir (Eq. (3.45)) versus 5H∩V . The fit is 'vir = [(201 ± 6) + (−100 ± 9) 5H∩V] kpc/ℎ.
The sharp lower limit in 'vir follows from the minimum detectable halo mass in the #-body simulation.
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Figure 4.13: Virial radius 'vir versus elaphrocentric location A/'eff , as in Fig. 4.12. The fit is 'vir =

[(152 ± 7) + (−15.8 ± 5.9 ±cv 6.7) A/'eff] kpc/ℎ.

In Figs 4.10–4.13, we investigate whether the spin parameter _ or the virial radius 'vir is
more responsible for the modest reduction in the disk scale length of void galaxies as indicated
in Table 4.2. The sharp lower limit in Figs 4.12 and 4.13 is an artefact of the detection threshold
of dark matter haloes in the #-body simulation. The virial radius is calculated by sage from the
halo mass. Out of the four figures (Figs 4.10–4.13), two show highly significant slopes: Figs 4.10
and 4.12. The slopes in Figs 4.11 and 4.13 are not significantly different from zero.

The slopes in Figs 4.10 and 4.12, d_/d 5H∩V = 0.021±0.004±cv 0.005 and d'vir/d 5H∩V =
−100 ± 9 kpc/ℎ, respectively, are both very strong, but opposed. Galaxies better identified as
void galaxies have higher spins, but also lower virial radii and lower masses. The overall effect,
as shown in Fig. 4.8, is that the two effects more or less cancel, in contrast to the full-population
results shown in Table 4.2.

Figure 4.9 and its fit show that overall, the elaphrocentric distance A/'eff has only a weak
effect on galaxy disk scale lengths Adisk. The halo size and spin parameter both have weak, though
apparently again opposite, dependences on Adisk, with d_/d (A/'eff) = 0.007 ± 0.002 ±cv 0.002
in Fig. 4.11 and d'vir/d (A/'eff) = −15.8 ± 5.9 ±cv 6.7 kpc/ℎ in Fig. 4.13.

In summary, the trends for Adisk, _, and 'vir found in Table 4.2 are similar, but strengthened,
when void location of a galaxy is quantified by 5H∩V , and insignificant when void location is
quantified by A/'eff . The lack of a significant dependence of these parameters on the elaphro-
centric distance, A/'eff , is somewhat surprising, since one might expect 5H∩V and A/'eff to be
proxies for one another, equally valid for defining how high a galaxy is on the potential hill of a
void. We discuss this counterintuitive result further in Sect. 4.4.2.

Since 'vir is obtained from "vir by sage on the assumption of a detection threshold of 200
times the critical density, Fig. 4.12 can be qualitatively compared with observational estimates
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Table 4.3: Median radial ¤E ‖ and tangential ¤E⊥ accelerations at A test = 1.20 Mpc/ℎ from the elaphrocentre.

median acceleration
¤E‖ 0.09 ± 0.01 km/s/Gyr
¤E⊥ 1.90 ± 0.04 ±cv 0.29 km/s/Gyr
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Figure 4.14: Dependence of the radial elaphro-acceleration ¤E ‖ as a function of effective void radius 'eff , together
with a robust linear fit. The fit is ¤E ‖ = [(0.191 ± 0.040) + (−0.029 ± 0.010 ±cv 0.006) ℎ/Mpc 'eff] km/s/Gyr.

of the masses of void galaxies. Keeping in mind the fixed lower limit in mass resolution, the
robust best fit relation can be used to describe the galaxies best located in a void ( 5H∩V = 1)
as having host haloes with 'vir ∼ 100 kpc/ℎ, and those best located in walls ( 5H∩V = 0) as
having higher mass host haloes, with 'vir ∼ 200 kpc/ℎ. Thus, the masses of galaxies’ host
haloes located in the walls should be typically eight times those of galaxies located in voids.
Weistrop et al. (1995) found that 12 HU-emitting galaxies in the Boötes void were mostly quite
luminous, and Szomoru et al. (1996) found that a sample of 16 targetted Boötes void galaxies
(along with 21 companion galaxies) appeared to be similar to corresponding late-type, gas-rich
field galaxies and of similar masses. These Boötes void surveys would appear to be inconsistent
with the mass difference found here. However, the more recent and bigger survey of 60 void
galaxies in the Sloan Digital Sky Survey (SDSS) by Kreckel et al. (2012) found that these have
moderately low stellar masses, mostly around 109–1010"�. The SDSS void galaxy survey would
appear more likely to be consistent with our results. Future work, in which the remaining steps
in galaxy formation and evolution modelling are added to the pipeline presented here, should
enable quantitative comparisons to see if the Boötes and SDSS void galaxies (see also Pan et al.,
2012; Nadathur & Hotchkiss, 2015a; Sutter et al., 2015) are consistent with those modelled here.
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Figure 4.15: Dependence of the tangential elaphro-acceleration ¤E ‖ as a function of 'eff . The best robust linear fit is
¤E⊥ = [(1.841 ± 0.122) + (0.012 ± 0.031 ±cv 0.036) ℎ/Mpc 'eff] km/s/Gyr.

4.3.4 Elaphro-acceleration
Elaphro-accelerations were calculated as described in Sect. 4.2.3, at elaphrocentric distances
of A test = 1.20 Mpc. We found 1570 voids that allowed valid estimates. The median radial
acceleration for a test particle at these positions is given in Table 4.3. The amplitudes of these
two values are not directly comparable, because ¤E‖ is the median of signed values, while ¤E⊥ is
non-negative by construction. TheNewtonian estimate for the gravitational pull at A test away from
the centre of the canonical high-mass test halo of mass " test, a barycentre, is an inward-pointing
acceleration, i.e. ¤Etest-halo‖ = −3.05 km/s/Gyr.

The median estimate of ¤E‖ given in Table 4.3 is an outward-pointing elaphro-acceleration to
high statistical significance. This is consistent with what could be expected of the elaphrocentre,
defined as the location of the global maximum in the potential of a void, with mass typically
moving away from the elaphrocentre. The amplitude is more than an order of magnitude weaker
than that of the barycentric acceleration towards our canonical high-mass halo. Figure 4.14 shows
that the full spread of radial elaphro-accelerations is wide, including many negative values, and
that dependence on the void effective radius 'eff is weak. Together, these properties imply that, at
least with the numerical techniques and simulation parameters adopted in this work, a systematic
antigravitational effect at the elaphrocentre helping to oppose infall is likely to be modest. This
is consistent with our infall results above.

The median tangential acceleration ¤E⊥ is given in Table 4.3 and the individual estimates and
fit are shown in Fig. 4.15. These values are about an order of magnitude higher in amplitude than
those of ¤E‖ , and similar to that for our canonical high-mass halo. This supports the argument
that rotational properties of the fluid flow such as shear and vorticity are likely to be significant
in understanding voids. Figures 4.14 and 4.15 do not show significant dependence of ¤E‖ and ¤E⊥
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on the size of a void.

4.4 Discussion

4.4.1 Infall rates
We generally found a lack of statistically significant trends in the two infall parameters on 5H∩V
and A/'eff (Table 4.1, Figs 4.4–4.7), for those galaxies whose host haloes’ infall rates could
be fit with an exponential best fit. A moderately significant non-zero dependence is that of �
on 5H∩V , shown in Figure 4.4, opposite to that expected: void galaxies have slightly higher
amplitudes of their best fit infall rate histories. The simplest interpretation is that in a halo
destined to collapse with a given final mass, the infall history of matter into that halo is nearly
independent of the environment. The modest amplitude of the median acceleration outwards
from the elaphrocentre – the elaphro-acceleration ¤E‖ (Table 4.3) – is probably the main reason
for this. This is something like a Newtonian numerical equivalent of Birkhoff-like (Birkhoff &
Langer, 1923) or “finite infinity” (Ellis, 1984;Wiltshire, 2007) arguments for modelling galaxies
in isolation from their environment. Our hypothesis that the void environment helps to form giant
LSBGs by providing slow, weak infall is not supported by our numerical results.

Although the parameters of our simplified infall fit are not affected by the position of a
galaxy, we found a significant difference in the median galaxy collapse epoch (the first time step
with a non-zero, non-negative infall rate) between void galaxies and non-void galaxies. While
we did not expect this to play a major role in galaxy formation, it should. The median collapse
epochs (in standard FLRW cosmological time) that we found were Cfv = 4.1 ± 0.1 Gyr and
Cfnv = 3.3 ± 0.1 Gyr for the void and non-void galaxies, respectively (Sect. 4.3.2). Thus, to very
high significance, void galaxies typically form later than non-void galaxies. We interpret this as
a result of their formation in underdensities. Haloes that collapse later should, according to the
standard spherical collapse model, have a lower matter density. Galaxies should thus form with
lower dark matter and baryonic matter densities (M�/kpc3), which may lead to lower surface
densities (M�/kpc2) of galaxy disks and lower surface brightnesses (L�/kpc2) induced by star
formation.

This characteristic of void galaxies agrees with Rong et al. (2017), in the sense that these
authors found that UDGs have a later formation time than typical dwarfs, and assuming that we
associate UDGs as being located in voids. Rong et al. (2017) found that UDGs at the current
epoch have a median age of 7.1 Gyr compared to typical dwarfs with a median age of 9.6 Gyr.
For the current epoch estimated at C0 ∼ 13.8 Gyr, these correspond to median UDG and ordinary
dwarf formation epochs of 6.7 Gyr and 4.2 Gyr, respectively. Since (i) we consider high-mass
host haloes and correspondly high-mass galaxies, rather than the more typical UDGs and dwarfs,
and (ii) we separate populations by their location in voids rather than by continuing through to
stellar population synthesis, more precise correspondencewith Rong et al. (2017)’s results would
be unlikely with our current pipeline. The qualitative agreement that void galaxies typically form
later than non-void galaxies by about a Gigayear (our result) and that UDGs form about three
Gigayears later than ordinary dwarf galaxies (Rong et al., 2017) is a promising sign of progress
towards a cohesive theory of LSBG formation.

4.4.2 Galaxy sizes
The most massive galaxies and their host haloes (with the largest virial radii 'vir) form in the
tight knots of the cosmic web. Although we found that galaxies in voids tend to be smaller when
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Figure 4.16: Relation between fraction in void 5H∩V and elaphrocentric position A/'eff . The best robust linear
(Theil–Sen) fit is _ = (0.667 ± 0.015) + (−0.041 ± 0.011 ±cv 0.012) A/'eff . Plain text table for this figure:
zenodo.4699702/voidgals_infall.dat.

https://zenodo.org/record/4699702/files/voidgals_infall.dat
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comparing the overall void to non-void populations (Table 4.2), this was not detected in the
dependence of the galaxy disk scale length Adisk on 5H∩V , nor on on A/'eff . In contrast, we did
find significant dependences of the two contributing parameters to Adisk, the spin parameter _ and
the virial radius 'vir, on 5H∩V , but insigificant dependence on A/'eff . While the dependence on
'vir is clearly the dominant effect, we find that the spin parameter considered alone, which tends
to form large galaxy disks, is higher for void galaxies. This is seen most significantly in Fig. 4.10,
via the dependence of _ on 5H∩V . The higher spin parameter effect could be interpreted as the
result of either fewer merger events weakening the spin parameter, or of gravitational effects
inside the void. A likely candidate for the latter is the tangential acceleration ¤E⊥ (Table 4.3).
This is typically of the same order of magnitude as the gravitational pull of the source region of
the high-mass test halo that is, in its properties, inspired by Malin 1. However, in this work we
have focussed on overall population properties and reproducibility of the pipeline. Continuation
through to disk surface densities, for comparison with Di Paolo & Salucci (2020, Sect. 7.1, 7.2),
and to stellar population evolution, remains a task for future work. Moreover, the rare high-mass
galaxies that are well identified as void galaxies may require high numbers of simulations,
if realised randomly, since, by definition, they are rare. Alternatively, a small number of big
simulations may provide qualitative clues, as in the Malin 1 analogue found in the IllustrisTNG
simulation by Zhu et al. (2018).

Itmay seem somewhat surprising that these significant dependences on 5H∩V do not translate
into significant dependences on A/'eff . The explanation most likely lies in the fact that revolver
traces voids using Voronoi tessellation and the watershed algorithm, and voids are in general
aspherical. Galaxies can lie in fairly empty parts of a void, with high 5H∩V , while lying, for
example, in the far ends of a prolate void, where A/'eff > 1. It would be useful to quantify the
relation between 5H∩V and A/'eff .

Figure 4.16 shows visually that there is no obvious relation between 5H∩V and A/'eff . As
indicated in the caption, the best robust fit indicates no statistically significant non-zero linear
slope relating the two parameters. The fact that most of the void galaxies lie at A/'eff >∼ 1 is
consistent with the explanation suggested above. This can also be thought of as follows. Voids
are defined by the absence of particles. Galaxies are generally not found in the interior of voids,
because then the void shapes would be defined differently, shifting those galaxies’ host haloes
from void status to near-boundary status in the redefined voids. A halo located at approximately
A/'eff >∼ 1 in a highly aspherical void is not necessarily located in a locally low density region,
so it is not constrained to contain a high number of particles identified as void particles.

Thus, 5H∩V and A/'eff appear to be statistically independent parameters. The significant
trend of Adisk on 5H∩V , and the fact that 5H∩V has a more local physical meaning than
A/'eff , suggest that 5H∩V is the more physically useful parameter to choose. Numerical and
observational studies that measure the local number density around a given density will tend to
correspond to the use of 5H∩V as a parameter for characterising the void nature of a galaxy.

To see if earlier definitions of void centres, as discussed in Sect. 4.2.2, could have more sig-
nificant effects on galaxy sizes, we repeated our calculations for distances from the circumcentre
and from the geometrical centroid instead of the elaphrocentre. Table 4.4 shows the robust best
fits to the dependence of Adisk, 'vir and _ on void-centric distance for the three definitions. The
full scatter plots (not shown) are visually indistinguishable from Figs 4.9, 4.11 and 4.13. The dif-
ferences between the three cases are statistically negligible. Given that the geometrical centroid
(macrocentre or volume-weighted barycentre) only encodes information about the void’s peri-
phery, with no information from its interior, it may seem surprising that this gives similar results
to the other two centres. However, this is probably explained by the near-total absence of galaxies
located within the central half-radius of the void; the detected galaxies’ radial distances from



CHAPTER 4. THE ROLE OF THE ELAPHROCENTRE 85

Table 4.4: Robust best fit parameters for Adisk, 'vir and _ with respect to the void-centric distance for the three
different centre definitions discussed in Sect. 4.2.2.

elaphrocentre
Adisk (3.65 ± 0.26) + (0.11 ± 0.22) A/'eff
'vir (152 ± 7) + (−15.8 ± 5.9) A/'eff
_ (0.034 ± 0.003) + (0.007 ± 0.002) A/'eff

circumcentre
Adisk (3.65 ± 0.31) + (0.12 ± 0.28) A/'eff
'vir (152 ± 6) + (−15.6 ± 5.7) A/'eff
_ (0.034 ± 0.003) + (0.007 ± 0.002) A/'eff

geometrical centroid
Adisk (3.66 ± 0.30) + (0.11 ± 0.27) A/'eff
'vir (152 ± 6) + (−15.6 ± 6.1) A/'eff
_ (0.034 ± 0.003) + (0.007 ± 0.002) A/'eff

the centre only vary mildly with different definitions of the centre.

4.4.3 Elaphro-acceleration
We found a significantly non-zero positive median acceleration towards the edges of a void.
However, this median outwards acceleration, ¤E‖ (Table 4.3), is of the order of only a few percent
of the inward gravitational pull at A test = 1.20 Mpc that the source mass excess for our canonical
high-mass host halo would create, ¤Etest

‖ = −3.05 km/s/Gyr. Moreover, Fig. 4.14 shows a wide
scatter between outward and inward accelerations from the elaphrocentre. Thus, while a modest
average effect in opposing infall could be expected for galaxies that are close to the elaphrocentre
of a void, the effect would be sensitive to the wide distribution in values and to relations between
the elaphrocentric acceleration and other dynamical parameters.

Future work in placing a test halo near an elaphrocentre, with the assumption that the test
halo has no dynamical effect on the underlying void properties, may use these results as a guide
to judging the likely strength of the effect. For example, the probability that a test halo of a
given mass placed at the elaphrocentre of a random void has its infall rate weakened sufficiently
to make it a candidate LSBG could be estimated. This could be compared with the infall rate
behaviour from haloes from the #-body realisation itself, as we presented in Sect. 4.3.2, at
elaphrocentric positions far from the elaphrocentre.

The median tangential acceleration ¤E⊥ is much higher than the radial acceleration, and might
be used to study the higher spin parameter _ found for void galaxies when identified by 5H∩V ,
as shown in Fig. 4.10. Since this is of the same order of magnitude as our canonical radial
acceleration, ¤Etest

‖ , it is likely that ¤E⊥ could play an important role for galaxies forming in voids.

4.4.4 Future extensions
Anobvious further development, not yet included in the present work, would be to analyse the star
formation rate histories and to extend the pipeline with evolutionary stellar population synthesis
methods. This would allow us to identify LSBGs in our galaxy population in a way more closely
comparable to observational results, while continuing to benefit from the reproducibility and
modularity of the pipeline presented in this work. The inclusion of metallicity evolution, in
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particular that of O/H, would allow comparison with the populations of extremely metal-poor
gas-rich, dwarf galaxies that seem to characterise a difference between void and non-void galaxy
formation (Pustilnik et al., 2020).

Another extension would be to extend or replace the gravitational simulation. Using a
relativistic simulation, rather than a standard (Newtonian) simulation, would provide a major
theoretical improvement towardsmore realistic results. The scalar averaging extensions provided
by inhomog through the ramses/ramses-scalav front end to check background-independent
dynamical properties (Roukema, 2018), using the relativistic Zel’dovich approximation Buchert
& Ostermann (2012); Buchert, Nayet, & Wiegand (2013), could easily be added. Other options
could include using either gevolution (Adamek et al., 2016) or the fully relativistic Einstein
Toolkit (Bentivegna & Bruni, 2016; Macpherson, Lasky, & Price, 2017). Hydrodynamical
simulations would also be useful for comparison. Given the aims of this project in providing
a reproducible pipeline with modular, free-licensed components, it should, in principle, be
straightforward to replace any of the pipeline steps or to start the pipeline at an intermediate
step, such as analysing pre-calculated #-body simulation outputs. The present form of the
pipeline assumes gadget2 format for the #-body simulation output snapshots.

Alternatives in the statistical analysis of infall rate histories would also be useful to explore.
Here, we chose to fit the infall rate history with decaying exponentials, which include nearly
constant rates as a special case with very long time scales g, but the reality of the mass infall rate
history, and the corresponding star formation rate history, is in generally much more complex,
depending especially on merger events. A more general quantitative way of characterising the
global population of mass infall or star formation rate histories would bring this pipeline closer
to physical reality.

4.5 Conclusion
We have presented a complete, ab initio, reproducible galaxy formation pipeline starting from
a standard post–recombination-epoch spectrum of initial perturbations, aiming to identify key
factors in void galaxy formation that might contribute to the formation of giant low surface
brightness galaxies in voids (Sect. 4.2.1). We introduced the term elaphrocentre to clarify its
opposite physical nature to the barycentre and we clarified the confusing use of the latter term
in void studies (Sect. 4.2.2).

We did not find statistically significant numerical evidence that the elaphrocentre, or the
void location of a galaxy more generally, plays a key role in forming major populations of large
diffuse galaxies – LSBGs – via the parameters that we considered as the most likely to play a
strong role – � and g (Figs 4.4–4.7). Since gravity is attractive, there is an asymmetry between
the sharp nature of barycentres (potential wells) and the wide spread of elaphrocentres (potential
hills), which could explain the lack of a strong effect.

We found that the fractional elaphrocentric distance of a void galaxy A/'eff is, statistically, a
less useful independent variable than 5H∩V , the fraction of a galaxy’s host halo particles that are
identified as being in a single void. This is important for observational studies of void galaxies.
The characterisation of galaxies as void galaxies by 5H∩V , which should roughly correspond
to a low local dark matter density, or by relative elaphrocentric radius A/'eff , which would
require identification of voids in a catalogue, will in general give uncorrelated results; the two
parameters show no significant linear correlation (Fig. 4.16).

A serendipitous result is that void galaxies were found to be significantly smaller in virial
radius (host halo mass) than non-void galaxies (Table 4.2, Figs 4.8–4.13). This complicates the
question of giant LSBG formation, because the disk scale length Adisk, as calculated in Eq. (3.45),
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is dominated by the virial radius. We did find that galaxies better identified in voids have a higher
spin parameter. This finding of a higher spin parameter for high 5H∩V is qualitatively consistent
with Rong et al. (2017)’s result that a higher spin is a key feature of UDGs and thus indirectly
supports the hypothesis of void location constituting a significant factor in LSBG formation.
Higher resolution simulations, extending to lower mass galaxies, would be needed to see if the
higher spin of UDGs is quantitatively explained as a consequence of void location.

We also found that the median galaxy collapse epoch differs to very high statistical signi-
ficance between void and non-void populations (Cfv = 4.1 ± 0.1 Gyr and Cfnv = 3.3 ± 0.1 Gyr for
void and non-void galaxies, respectively; Sect. 4.3.2). For a standard spherical collapse model,
the later collapse of void galaxies should lead to these galaxies being less dense, quite likely
resulting in lower surface densities and star formation rates.

In summary, despite not finding direct numerical evidence for LSBG formation in our overall
populations, the higher spin parameter _ for the overall population of void galaxies, especially
when characterised by 5H∩V , and the later formation epoch of void galaxies, are qualitatively
consistent with Rong et al. (2017)’s findings for UDGs, assuming that the extension to lower
masses remains valid. Together with these two key features that contribute to the formation of
diffuse galaxies, the smaller size of void galaxies suggests that, in contrary to our hypothesis
of giant LSBG formation in voids, the role of voids is to preferentially form diffuse, somewhat
smaller galaxies. Moreover, we hope that by providing our complete software pipeline5 using the
Maneage template that aims at full reproducibility (Rougier et al., 2017; Akhlaghi et al., 2021),
rather than only giving the names and URLs of cosmological softwage packages, our work will
encourage the community to avoid unnecessary effort spent in guessing the precise details of
the computational software used in this and other extragalactic research.

5DOI-stamped record: zenodo.4699702; live git repository: https://codeberg.org/boud/elaphrocentre

https://zenodo.org/record/4699702
https://codeberg.org/boud/elaphrocentre


Chapter 5

Hierarchical structure of the cosmic web
and galaxy properties

The previous chapter investigates what role voids play in galaxy formation yielding higher spin
parameter, smaller halo sizes and significantly later formation epochs. This chapter is based on
Jaber, Peper, Hellwing, Aragon-Calvo, & Valenzuela (2023), describing my main contributions
to the paper, and their relation to the rest of this thesis. Jaber et al. (2023) aims to investigate
the influence that the cosmic web environment of a galaxy has on the galaxy’s properties, with
special emphasis on the effects of the internal filamentary structure of voids, and continues
the work of (Aragon-Calvo & Szalay, 2013). To analyse the filamentary structure in cosmic
voids we need a high-resolution simulation, to provide sufficient detail in examining the inner
composition of cosmic voids, a way of selecting such internal structures of voids and a method
to calculate the density field that is accurate in the under-dense regions.

We use the Bolshoi simulation (Klypin et al., 2011), which provides a significantly improved
mass resolution that not only allows analysing the internal structure of a void, it also extends
the mass resolution of resolved galaxies presented in chapter 4. We use the same tools to model
galaxies as presented in Peper & Roukema (2021) and point out key differences between our
previously established pipeline and the work done within this project. We do not make this
chapter computationally reproducible in the sense of chapters 4 or 6.

5.1 Method

5.1.1 Simulation
As stated this work is based on the Bolshoi simulation (Klypin et al., 2011) that uses 20483 dark
matter particles and a fundamental domain size of !box = 250Mpc/ℎ. The resolved galaxies
cover a significant larger range of scales than presented in chapter 4. The Bolshoi simulation
assumes the ΛCDM model with the values for the cosmological parameters Ωm0 = 0.27,
ΩΛ0 = 0.73 and a Hubble parameter of � = 70 km

Mpc s . This choice of parameters yields a particle
mass of 1.35 × 108"�/ℎ and is thus able to resolve dwarf galaxies. Similarly to our software
pipeline presented in Peper & Roukema (2021), the tree data was generated by the Bolshoi
collaboration using the rockstar halo finder Behroozi et al. (2013a) and ctrees Behroozi et al.
(2013b) and is available online.1.

The core of the hierarchical analysis includes three 5123 particle runswhose initial conditions

1https://www.slac.stanford.edu/~behroozi/Bolshoi_Trees/
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Figure 5.1: A slice of the three simulations at I = 100Mpc/ℎ. The effect of the filter (VB = 1, 2, 4Mpc/ℎ) is visible
as we go from top to bottom, showing successively less small-scale structure.
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were the Bolshoi initial conditions re-sampled on the 5123 grid. The three realisations will thus
have the same structure as the Bolshoi simulation. We employ a sharp :-filter (: being the
wavevector) to remove specific modes from the power spectrum and thus prevent them from
evolving. This filter is applied in the linear regime, at the start of the simulation, where the Fourier
modes are independent. Thus, the filter does not introduce artifacts (Sheth & van de Weygaert,
2004; van de Weygaert & Sheth, 2004; Einasto et al., 2011a,b). To dissect the hierarchical
nature of voids we set a filter on the lowest wavelength of perturbations for the simulations of
Vs = 4, 2, 1Mpc/ℎ. Excluding smaller wavelengths in the power spectrum will prevent these
modes from growing, allowing the unfiltered modes of the matter distribution to evolve through
to the full non-linear regime, without interference from the filtered modes.

We visualise the three resulting density distributions in fig. 5.1. We clearly see that the
large-scale features are present in all three panels, while lower order structures are respectively
less present from the top to bottom panels. In contrast to chapter 4, densities are not calculated
with the VTFE, but instead use the Lagrangian Sheet Density Estimator (LSDE) method2,
which recovers the density field extremely well in the underdense regions, originally proposed
in Shandarin (2011); Abel et al. (2012).

Structure Identification

The structures in the cosmic web, especially voids, are identified using the SpineWeb method
(Aragón-Calvo et al., 2010a). In general, this void finder uses the watershed method introduced
in section 3.3, starting to find local minima in the density field, assigning every voxel (volume
pixel) to one of the minima and using a flooding algorithm to detect voids. The SpineWeb
method has been designed to capture and analyse the complex, interconnected structure of the
cosmic web. It requires that the density field is provided on a regular three-dimensional grid;
the uniform cells around each of these grid points are the voxels.

A key feature lies in the assignment of morphological labels to each voxel. By identifying all
the voxels lying on the void’s boundaries, identified during the watershed step, a morphological
label can be attached to discriminate between voxels belonging to a void, a wall, a filament, or
a cluster (node) in the cosmic web. This is done by taking advantage of the fact that every voxel
is assigned an index numbering the different watershed regions. By counting the number of
neighbouring voids #v, i.e. the number of neighbouring voxels with a differing void identifier,
we classify to what component of the cosmic web a voxel is assigned. If there are no other voids
than the current one (i.e. #v = 1), then the current voxel is classified as being inside a void.
A voxel with #v = 2, meaning that the voxel’s adjacent voxels belong to two different voids,
is classified as belonging to a wall. Voxels with #v = 3 are classified as being in the filaments
of the cosmic web and those with #v ≥ 4 are classified as clusters. We assign every voxel to a
watershed region, so the case #v = 0 (no voids found) is excluded.

We use the SpineWeb method on all three hierarchical scales, giving us the density fields
segmented into voxels, which are accordingly labelled as voids, walls, filaments and clusters. We
use the three hierarchical levels to extract information on the cosmic web, following fig. 5.1 and
calling them the top, middle and bottom levels, as in the figure. We use the term “spine-in-void”
to refer to voxels that are classified as being part of a void (#v = 1) in the bottom hierarchical
realisation, V4 = 4Mpc/ℎ, while being part of a dense structure (#v > 1) in the top hierarchy,
V1 = 1Mpc/ℎ.

We populate the haloes in the merger trees as before, using sage (Croton et al., 2016). The
sage code was originally tested using the Bolshoi simulation. Thus we adopt the parameters

2https://github.com/miguel-aragon/Lagrangian-Sheet-Density-Estimator

https://github.com/miguel-aragon/Lagrangian-Sheet-Density-Estimator
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Table 5.1: The volume filling fraction for the different environments as well as the galaxy fractions found in these
environments. We present the fractions in all three hierarchical levels. We find, as expected, that filtering all modes
below V4 = 4Mpc/ℎ yields the largest fraction of the volume being allocated to voids and consequently having the
highest fraction of galaxies in voids.

Filter V1 = 1Mpc/ℎ V2 = 2Mpc/ℎ V4 = 4Mpc/ℎ
Voids

Vol. frac. 77.03% 81.71% 86.97%
Frac. gal. (44.5%) (48.7%) (58.6%)
Walls

Vol. frac. 20.31% 16.62% 12.23%
Frac. gal. (43.4%) (42.0% ) (35.9% )
Filaments
Vol. frac. 2.19% 1.37% 0.61%
Frac. gal. (10.0% ) (7.7%) (4.5%)
Nodes
Vol. frac. 0.46% 0.31% 0.21%
Frac. gal. (2.01%) (1.52%) (0.89%)

advised by the authors for sage for the Bolshoi simulation. We then classify the galaxies as
belonging to the different environments by using the information from the voxels in the highest
resolution simulation (the top level), which uses the wavelength filter V1 = 1Mpc/ℎ and thus
contains the most modes. Additionally, to study the internal structures of voids, we analyse
galaxies that are in the spine-in-void voxels, meaning the galaxies that are in the web-like dense
substructures within voids.

For this thesis, we present the parts of the project that relate to the previously discussed
questions on the role of voids on galaxy formation. We again investigate the dimensionless spin
parameter _, the disk scale length and the formation epoch of these galaxies. Additionally, we
investigate the stellar mass of the galaxies at redshift I = 0.

5.2 Results
We show dependence of the characteristics of the galaxies and their host haloes on their en-
vironment in the large-scale structure. At I = 0 we detect a total of 7909721 galaxies over all
environments; how they distribute themselves into the different environments for the different
levels of hierarchy can be seen in Table 5.1. We also show the occupied volume, as a fraction
of the total volume, and confirm that the watershed void finder SpineWeb is volume filling
(the total volume fraction is 100% to within numerical uncertainty in each case). Following our
classification we find that spine-in-void galaxies constitute 22.8% of the galaxies. The spine-
in-void galaxies are found in the walls, filaments and clusters in the top hierarchy level with
V1 = 1Mpc/ℎ.

We bin our data for the galaxies as a function of the virial mass of their host halo, in 20
bins for masses between 109"�/ℎ and 1015"�/ℎ. Errors are estimated using the bootstrap
method with 200 randomly generated test sets. The errors show the 95% central percentile of
the distribution of the medians. Consistently with the result we reported in Peper & Roukema
(2021), we find in fig. 5.2 a higher spin parameter _ (see eq. (3.45)) for void galaxies compared
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Figure 5.2: The dimensionless spin parameter of galaxies identified in the Bolshoi simulation characterised by their
environment in the large scale structure. The upper panel shows the mean of the full population divided in several
bins in the virial mass while errors are estimated using the bootstrap method. The lower panel shows the quotient
compared to all galaxies in the simulation.

to galaxies in dense environments, namely filaments and clusters, for "vir >∼ 1010"�/ℎ, where
the error bars are small enough to suggest significant differences. For the lowest masses, with
"vir <∼ 1010"�/ℎ, below the halo mass range in our own simulation, the trend of _ is inverted
and _ is statistically lower for void galaxies than for the full set of galaxies, while galaxies in
dense environments have a higher spin parameter.

A possible interpretation of the inversion at low masses is the fact that halo properties can
vary strongly for haloes with too few particles, as Behroozi et al. (2013a) state; they recommend
20 particles as a minimum for consistent halo properties. The high mass end of galaxies has no
statistically significant difference in the trend of the spin parameter for the galaxies as a function
of environment. Galaxies in the spine-in-voids environment seem to have spin parameters in
between those found for void galaxies and those for galaxies in dense environments.

Figure 5.3 does not show any significant trend in Adisk as a function of galaxy environment.
Deviations from the trend of all galaxies at the low and high mass end are not significant due to
the fewer numbers of galaxies that populate these mass bins.

The stellar to halo mass ratio will yield information in how efficient galaxies of different
masses are in producing stars. As explained in Sect. 3.6, sage assigns baryonic mass to a dark
matter halo, and forms stars in proportion to the available cooled gas (see eq. (3.48)). Figure 5.4
shows that for low and intermediate mass haloes, "vir <∼ 1011"�/ℎ, there are significant differ-
ences in stellar masses as a function of environment. The stellar mass in galaxies identified in
high density environments yield roughly twice the stellar mass as the global median, while the
production of stellar mass in low density environments is slightly suppressed.

Finally, we analyse the formation epoch of the galaxies. In contrast to our smaller simulation
of 1283 dark matter particles, we cannot trace back the full tree of all galaxies in the Bolshoi
simulation. Tracing back the history of a galaxy as described in chapter 4 for 8 million galaxies,
each one having many progenitors and merger events in the available 180 snapshots, is a
computationally unreasonable task. Sage handles all haloes of linked merger-trees at once,
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Figure 5.3: The disk scale length of galaxies identified in the Bolshoi simulation characterised by their environment
in the large scale structure. The upper panel shows the mean of the full population divided in several bins in the
virial mass while errors are estimated using the bootstrap method. The lower panel shows the quotient compared to
all galaxies in the simulation.

meaning that it starts with the highest redshift and evolves each halo at this redshift along its
descendancy path indicated in the merger-tree. The code does not distinguish between a halo that
will host a (satellite) galaxy at I = 0 from haloes that will merge. It evolves all the galaxies in one
time snapshot to the next snapshot, and mergers are handled when reported in the merger-tree.

We therefore only consider the information for the first halo in each halo group, and assume
that this redshift belongs to the central halo. In the theory of hierarchical structure formation, the
most massive structures existing today have typically formed first. This makes the assumption
that the central structure formed first (or the oldest structure merged into the central structure) a
fair approximation.

The results can be seen in fig. 5.5. Significant differences are found for "vir <∼ 1010"�/ℎ,
the low mass end of the halo distribution, indicating that void galaxies have a slightly lower
formation redshifts by a few percent, while galaxies in dense environments have a slightly higher
formation redshift by a few percent. This is qualitatively consistent with what we found with our
full merger tree in chapter 4, though for a lower mass range.

5.3 Discussion and Conclusion
In this chapter we presented a brief excerpt of the analysis of Jaber et al. (2023) of the hierarchical
structures in the cosmic web and how they might influence galaxy properties. The analysis
was carried out using similar tools as presented in chapter 3 and used in chapter 4. A major
improvement was achieved by using the Bolshoi simulation, which yields several orders of
magnitude better resolution, enabling us to make predictions for dwarf galaxies, at the cost of
losing well-controlled computational reproducibility. As voids are dominated by dwarf galaxies,
this analysis gives useful insights if the trends presented in chapter 4 andPeper&Roukema (2021)
also hold true in the low halo mass range. The analysis also probes the different environments
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Figure 5.4: The stellar mass of galaxies identified in the Bolshoi simulation characterised by their environment in
the large scale structure. The upper panel shows the mean of the full population divided in several bins in the virial
mass while errors are estimated using the bootstrap method. The lower panel shows the quotient compared to all
galaxies in the simulation.

of the cosmic web in more detail, giving more nuanced insight on the role that the environment
plays in galaxy formation.

In this work we found that the differences in galaxy properties only occur in the low mass
regime. Despite using different tools, we find similar results to Hellwing et al. (2021), with a
threshold below which galaxy properties appear to depend on the environment. The threshold
in this work is "th ∼ 1010"�/ℎ–1011"�/ℎ. As in chapter 4, we report a higher spin parameter
for void galaxies. While we found a mildly significant dependence in 4, see fig. 4.10, the plot in
fig. 5.2 suggests a more significant detection of this trend in the range " >∼ 1010"�/ℎ. A direct
comparison is difficult, since themethods of analyses differ. The lowest end,with" <∼ 1010"�/ℎ,
in which void galaxies have lower spin parameters, is only measurable in the Bolshoi simulation.

We also find consistency with chapter 4 in seeing a trend for void galaxies to form later,
in fig. 5.5. This analysis for the Bolshoi simulation is unfortunately only restricted to a small
fraction of the simulated galaxies, the central galaxies per halo, in contrast to the chapter 4
analysis, which is for all galaxies. A followup analysis, estimating the formation epoch of all
galaxies based on the data of the merger-trees, might turn out to be feasible and would then yield
a more robust result.

We cannot identify any trend in the disk scale length on the environment, in contrast to our
earlier work. A credible hypothesis to explain the lower disk scale length found earlier for void
galaxies is that this is a consequence of finding lower mass haloes in voids.

As a final result, we report a significantly increased amount of star formation for galaxies
in denser environments for " <∼ 1011"�/ℎ. For the galaxies identified in underdense regions
we have a decreased stellar mass ratio below the threshold mass, which is in agreement with
previous works, e.g. see (Hoyle et al., 2005; Croton et al., 2005; Moorman et al., 2015). A
likely explanation is merger events that trigger bursts in star formation in galaxies in denser
environments. While haloes, and galaxies therein, in dense environments should have a rich
history of merger events in their past, a galaxy in the low density environments, the most
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Figure 5.5: The formation redshift of central haloes identified in the Bolshoi simulation characterised by their
environment in the large scale structure. The upper panel shows the mean of the full population divided in several
bins in the virial mass while errors are estimated using the bootstrap method. The lower panel shows the quotient
compared to all galaxies in the simulation.

extreme being a cosmic void, should, in general, pass through fewer merger events. Merger
events are tracked in the merger-history tree and thus a follow-up analysis will enable us to
verify this interpretation.

The results presented here complement the trends reported in chapter 4 and Peper&Roukema
(2021) and underline that the environment should have a measurable effect on galaxy formation.
As suggested before, the later formation epoch and the higher spin parameter might be hints
that voids are a favourable environment for ultra-diffuse galaxies (UDGs) to form. Moreover,
the lower stellar masses for galaxies in lower density environments also favours lower surface
brightnesses for void galaxies.



Chapter 6

Detecting cosmic voids via maps of
geometric optics parameters

6.1 Introduction
We discussed the effect of the environment in which a galaxy forms with specific emphasis on
the environment of a cosmic void. A complementary aspect of the significance of voids is how
they affect light propagation. The work in this chapter aims to investigate the geometric-optics
effects on light propagation in a realisation of a matter distribution of a small volume of the
Universe, using a higher particle resolution than that of chapter 4. This chapter largely follows
the presentation in Peper, Roukema, & Bolejko (2023). The majority of the coding, the running
of the code and much of the analysis were done by me.

Curved-spacetime geometric-optics maps derived from a deep photometric survey should
contain information about the three-dimensional matter distribution and thus about cosmic voids
in the survey, despite projection effects. We use the concepts derived in Sect. 2.3 to investigate
four chosen quantities, namely the surface overdensity Σ, the averaged weak-lensing tangential
shear W⊥, the Sachs expansion \, and the Sachs shear modulus |f | to explore to what degree
sky-plane geometric-optics maps can reveal the presence of intrinsic three-dimensional voids.

Spectroscopic redshifts to determine the (comoving) three-dimensional structures of cosmic
voids require muchmore telescope resources than photometric surveys alone.While the simplest
interpretation of a (single-filter) photometric survey is that it shows only the projected galaxy
positions and shapes on the sky, the fact that the Universe is inhomogeneous implies that the
photometric map contains information on the three-dimensional distribution of inhomogeneit-
ies, with effects that are generically referred to as gravitational lensing. Gravitational lensing
theory was developed many decades ago in its generic form of geometric optics (Sachs, 1961;
Sasaki, 1993), and gravitational lensing by overdensities was detected with the twin quasar QSO
0957+561A/B in 1979 (Walsh et al., 1979; Young et al., 1980; Gorenstein et al., 1984, 1988), and
with giant luminous arcs (Paczynski, 1987) and an Einstein cross (Adam et al., 1989), providing
visually striking evidence favouring general relativity. For an in-depth review, see Bartelmann
& Schneider (2001). Here, we argue that geometric-optics parameters that are derived from a
deep photometric extragalactic map should contain information that can be used to detect some
of the physical, three-dimensional cosmic voids in the map, despite the fact that the voids are
projected on the sky plane together with foreground and background voids. By carrying out a full
#-body simulation and analysing it, using an a priori reproducible software method, we aim to
explore to what degree maps of photometrically derived geometric-optics parameters can reveal
intrinsic three-dimensional voids. We consider both the conventional approximation of weak-

96
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lensing parameters and Sachs optical scalars derived directly from the evolving gravitational
potential.

We discussed cosmic voids, how to detect them using the watershed mechanism and the
cosmic web in Sections 2.2.2 & 3.3. Watershed void finders, such as Zobov and Spine that
were used above (e.g. Neyrinck, 2008; Aragón-Calvo et al., 2010b), make no assumptions on the
shape of a void and are close to being parameter-free. Watershed finders have become a de facto
standard for determining the shapes of cosmic voids. Multiple other strategies for detecting voids
in either observations or simulations exist. Since voids consist of the absence of luminous matter
rather than its presence, this is a challenging task. Void finders trace the underdense regions
of the cosmic web. Early routines used the assumption of spherical structures (e.g. Kauffmann
& Fairall, 1991b) to detect voids. This was justified from the theoretical description of a void
evolving out of a tophat-filtered density fluctuation; ellipsoidal initial density profiles were found
to generally evolve to become more spherical (Gunn & Gott, 1972; Lilje & Lahav, 1991; Sheth
& van de Weygaert, 2004) (we briefly discuss this toy model in Sect. 3.3).

Watershed mechanisms detect local minima in the density distribution of the cosmic web and
identify underdense structures by searching for successively higher density contours, effectively
finding the overdense edges of voids. The properties of the resulting voids depend on the spatial
number density of the tracer particles used to represent the matter distribution. Nadathur &
Hotchkiss (2015a) show that randomly subsampling the density of dark matter particles will
tend to bias the void statistics, and suggest the use of halo occupation distribution models
instead. To apply a watershed void finder to observational galaxy data, spectroscopic redshifts
are needed.

Sánchez et al. (2017) introduce a method of detecting voids from a multi-filter photometric
survey by analysing redshift slices whose thickness is based on the photometric redshift uncer-
tainties. The first detector variable that we analyse here results in a roughly comparable method.
We detect structures in the surface overdensity, which, under the approximation of a constant
mass-to-luminosity ratio, can be inferred from the observed photometric survey.

However, we are primarily interested in other sky-plane variables that can yield information
on the large-scale structure of the Universe: the gravitional lensing signal. Due to the nature
of dark matter having very weak interactions apart from gravity, we cannot measure the dark
matter distribution of the Universe directly from electromagnetic surveys. Photometric galaxy
surveys are generally thought to provide a fair proxy for the real projected matter distribution,
but with many caveats. In contrast, the gravitational interaction of the dark matter distribution
with photons can be measured via lensing effects. A light bundle that transverses a cosmological
structure will experience shear and expansion and in particular, cosmic voids should leave an
imprint on the shear and expansion. This should make it possible to reconstruct the underdensity
field of voids based on the lensing signal, without no dependence on assumptions about baryon
cooling or star formation. Large-scale maps of the gravitational lensing signal could thus, in
principle, be used to detect cosmic voids. This would provide a method independent of using the
projected spatial distribution of galaxies, since the lensing signal depends on the full underlying
mass density, no matter whether it is luminous or not.

While in this work we consider lensing parameters that are measurable from source galaxies
far beyond the voids that we aim to detect, other observational methods of constructing the
lensing signal have been proposed. Lewis & Challinor (2006) argue that since the cosmic
microwave background (CMB) is lensed, the lensing potential can be reconstructed based on
the observed CMB power spectrum. Another method was proposed by Croft et al. (2018) to use
Lyman U forest observations to obtain lensing signals in the foreground of redshift slices of the
forest.
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In this work we consider the optimal scenario in which we calculate the detector variables
without taking any detector errors into account. In reality, the derivation of the surface over-
density Σ, the averaged weak-lensing tangential shear W⊥, the Sachs expansion \, and the Sachs
shear modulus |f | from observations involves many sources of random and systematic error, so
the approach presented here will need further work to take those into account.

In this chapter, we present the software pipeline that was used to create Peper et al. (2023)
(which aims to be fully reproducible on any unix-like operating system with sufficient RAM
and disk space; Akhlaghi et al. 2021) to generate a cosmological #-body simulation, to detect
galaxies and voids in it, and to ray-trace geometrics-optics parameters. The source package is
provided as a frozen record at zenodo.77929101 and in live2 and archived3 git repositories.

In Sect. 6.2.1 we briefly describe our overall pipeline, extending that used in Peper &
Roukema (2021). We describe our simulation geometry in Sect. 6.2.2. We first detect intrinsic
three-dimensional voids using the watershed algorithm (Sect. 6.2.3). We independently try to
detect voids in projection, “photometrically” (in the absence of spectroscopic and photometric
redshift information), from either the surface overdensity, conventional weak-lensing or other
geometric-optics signals. Our generic void profile search algorithm is defined in Sect. 6.2.3.
We compare the sky-plane positions and radii of the photometric voids to those of the intrinsic
three-dimensional voids, using Monte Carlo simulations to check if this association is better
than random (Sect. 6.2.4). In Sect. 6.2.5 we present our four detector variables, including a
modification of our default void profile search algorithm specific to the weak-lensing shear,
in Sect. 6.2.5). We present our results in Sect. 6.3, discuss these in Sect. 6.4 and conclude in
Sect. 6.5. The version of the source package that can be used to reproduce the results of this
chapter is git commit e4f7af0, allowing downloading, configuring, compiling and running the
full computational sequence. The specific realisation in this chapter was run on a computer with
a Little Endian x86_64 architecture.

6.2 Method

6.2.1 Software pipeline
We use a highly reproducible software pipeline, following the Maneage template for reproducib-
ility (Akhlaghi et al., 2021), that generates a realistic distribution of galaxies using a succession
of several different cosmological tools. The software pipeline extends the galaxy formation
pipeline presented in chapter 4 presented Peper & Roukema (2021). The pipeline includes a full
simulation chain, starting with the generation of initial conditions with mpgrafic and running an
#-body simulation with RAMSES (Prunet et al., 2008; Teyssier, 2002). This simulation is pro-
cessed as in Roukema et al. (1993, 1997), but using more recent software packages: dark matter
haloes are detected and their merger-history tree is built with Rockstar and consistent-trees
(Behroozi et al., 2013a,b) and semi-analytical galaxy formation recipes are applied with SAGE
(Croton et al., 2016).We detect voids traced by the resulting spatial distribution of galaxies using
a watershed void finder with revolver (Nadathur et al., 2019). The coding of our sky-plane
void-profile search algorithm (Sections 6.2.3 and Sect. 6.2.5) is original, as described in the
paper in which this work is published (Peper et al., 2023). The full details of the analysis are
provided in a live git repository2 and a frozen Zenodo record1. We used fixed pseudo-random

1https://zenodo.org/record/7792910
2https://codeberg.org/mpeper/lensing
3swh:1:rev:b5dff23ab8ba8c758112d5fd3f737fb6f44cd6fe

https://zenodo.org/record/7792910
https://codeberg.org/mpeper/lensing
https://archive.softwareheritage.org/swh:1:rev:b5dff23ab8ba8c758112d5fd3f737fb6f44cd6fe%3Borigin=https://codeberg.org/mpeper/lensing
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seeds in most steps in the pipeline, as indicated in the configuration files. We now primarily
focus on new steps that are added to the analysis presented in chapter 4.

6.2.2 Simulation geometry
Again, we use a simulation for a standard ΛCDM model (cold dark matter cosmological model
with a cosmological constantΛ) with Hubble constant �0 = 70.0, current dark energy parameter
ΩΛ0 = 0.7 and current matter density Ωm0 = 0.3, #part = 2563 particles and a comoving box
size !box = 120 Mpc/ℎ, where ℎ := �0/(100km/s/Mpc). This yields a dark matter particle
mass of <DM = 0.86 × 1010 "�/ℎ. We require at least 10 particles to detect a halo. Since our
simulated volume is a standard 3-torus ()3) simulation, we detect dark matter haloes, generate a
merger-history tree and detect intrinsic voids by interpreting the simulation’s spatial section as
)3.

For computational convenience, for the “observational” steps in which we detect voids in
a sky-plane map of a detector variable, we interpret the (projected or ray-traced) simulated
volume as the fundamental domain of a 2-torus ()2 := (1 × (1 × R), where the two multiply
connected directions lie in the sky plane. We informally refer to the fundamental domain as the
“box”. The foreground and background of the box, at lower and higher redshifts, respectively, are
implicitly assumed to be a homogeneous (structure-free), simply connectedΛCDM background,
i.e., they are assumed to be transparent and flat, with no effect on gravitational lensing. This
simplification helps focus on the primary questions of our analysis; future analyses should
include the effects of the full past time cone. We assume that this box is observed at high
redshift, I′ = 0.5, corresponding to a large distance from the observer compared to the box size,
jO := 1322.0 Mpc/ℎ in comoving units. We use both an observer-centred Euclidean comoving
coordinate system, with the observer at (G,H,I) = (0,0,0) and the centre of the simulated volume
on the H axis of the ΛCDM simply connected space at (0,jO,0), and a simulation-centred
system shifted by jO. To model light rays detected by the observer we convert (G,H,I) to
(G = j sin \′ cos i′, H = j sin \′ sin i′, I = j cos \′), where j, the comoving radial distance,
together with \′ ∈ [0,c] and i′ are spherical coordinates of the spatial part of a flat ΛCDM
model, and the simulation’s centre is at (j = jO, \

′ = c/2, i′ = c/2). We compute each of our
detector variables on a grid with #grid = 1202 “pixels” that we place on the middle plane of the
box (H = 1322.0 Mpc/ℎ), at (G,I) positions in the grid. We model light rays emitted from an
observer-centred spherical surface near the back face of the simulated box ()2 slice), through to
a second observer-centred spherical surface close to the front face of the box. The light rays’s
spatial paths are assumed to be straight in the non-perturbed space, i.e. with constant \′ and i′.
We avoid approximately 5% of the front and back parts of the box to minimise edge effects.
Projected variables for a given pixel are computed along the line of sight of a light ray passing
from the back spherical surface, through the pixel, to the front spherical surface. In other words,
the grid approximately corresponds to what is often referred to as “the sky plane” for small solid
angles, although it is (in this construction) a genuinely flat plane in comoving space. For brevity,
we will use the term “sky plane” as equivalent to this grid.

For the optical scalar calculations (Sect. 6.2.5), we trace our light rays geometrically under
the assumption of a flat ΛCDM model, but calculate the optical scalars with a longitudinal
Newtonian gauge approximation of an inhomogeneous model, with the line element

dB2 = 02
[
−(1 + 2Φ)dg2 + (1 − 2Φ)

(
dj2 + j2dΩ2

)]
, (6.1)

where g is conformal time, Φ is a potential, and dΩ is the solid spherical angle element
(d\′)2 + (cos \′dq′)2.



CHAPTER 6. COSMIC VOIDS IN LENSING MAPS 100

Table 6.1: Parameters used in our two-dimensional void detection algorithm in Eqs (6.6) and (6.7).

5std 5mean

Σ 0.50 1.50
\ 0.30 1.30
f 0.30 1.10

6.2.3 Void detection
Intrinsic three-dimensional voids

We detect intrinsic voids traced by the galaxy population using the void finder revolver, which
is based on the watershed void finder zobov (Neyrinck, 2008; Nadathur et al., 2019) discussed
in Sect. 3.3. The watershed mechanism in zobov uses a Voronoi tessellation to estimate the
densities at the particles’ positions, is nearly parameter-free and makes no assumptions on the
shape of the void. To characterise the size of a void, we use the effective radius 'eff , which
is based on the sum over the volumes +8 of all the Voronoi cells that constitute a void, i.e.
'eff := 3

4c (
∑
8 +8)1/3. We adopt the geometric centroid of the set of cells that constitute an

intrinsic void as the centre of that void. This is called the “barycentre” in the revolver code, but
is mathematically the barycentre only if the void is assumed to be filled with a uniform density
fluid (Peper & Roukema, 2021, Sect. 1).

Photometric void detection

We detect voids from variables in the sky plane that are, in principle, observationally measurable
in photometric surveys: the surface overdensityΣ, and three geometric-optics related parameters.
We propose the following heuristically derived algorithm for detecting a projected void in a map
of the surface overdensity Σ (defined below in Sect. 6.2.5) or the Sachs (1961) expansion \ or
shear f (optical scalars, defined below in Sect. 6.2.5). Our algorithm for detecting voids from
maps of the weak-lensing shear W is similar, but differs in the ways that are described below in
Sect. 6.2.5.

In contrast to the case for overdense extragalactic objects, we expect the (azimuthally
averaged) radial density profile of a void in the sky plane, where the radius is A :=√
(G − G0)2 + (I − I0)2 in our (G,I) grid for an object centre (G0,I0), to have its lowest val-

ues in the centre of the void and a sharp maximum at the void’s edge. The Sachs expansion \
and shear f should also have a minimum at the centre of a void and a maximum at the edge.
While projection effects for overdense structures are a perennial problem in astronomy (e.g. for
determining whether a galaxy group is dynamically real or a chance projection), the projection
effects can be expected to be much worse for voids, since voids dominate the volume of the
Universe, implying stronger overlaps. In contrast to overdense objects, spectroscopic redshift
determination for the rare galaxies in voids is unlikely to be effective in separating a chance
projection of voids from a void that is real in three spatial dimensions, and is likely to be a
statistically unstable way of dynamically characterising a void. Moreover, voids, in general, are
not perfectly spherical objects, making detection via templates unlikely to be easy. Nevertheless,
projection along the line of sight should provide a modest effect of symmetrisation, and by
appropriately averaging, we hypothesize that detection is feasible.

We define an isotropised (azimuthally averaged) variable - , i.e. the average on a circle in
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the (G,H ≡ jO,I) grid plane, at radius A and centred on a pixel 9 , i.e.

- 9 (A) = (2c)−1
∫ 2i

0
- (A, i) di , (6.2)

where i is the angle around the circle centred on position 9 in the grid and - is either the surface
overdensity Σ, or one of the optical scalars \ or f (for the weak lensing shear W, see Eq. (6.15)
below). To estimate - 9 (A), we sample the grid values at even intervals around a circle of radius
A, with intervals that give at least one value per Mpc/ℎ, we smooth the values with a third-order
Savitzky–Golay filter (Savitzky & Golay, 1964), and integrate.

We also define a disc-averaged profile - on the disc internal to a given radius (not weighted
by the radius) by integrating Eq. (6.2) and appropriately normalising, i.e.

- (A) =
∫ A

0

∫ 2c
0 - (A′, i) d idA′

(2c)−1
∫ A

0

∫ 2c
0 di dA′

=

∫ A

0 - (A′) dA′

A
, (6.3)

and a disc-averaged absolute slope,

���-′���(A8) = ∑
8′<8

���d-/dA ��� (A8′)
8 − 1

, (6.4)

where the index 8 indicates radial discretisation in estimating - and -′ := d-/dA.
Apart from the case of the weak-lensing shear W (Sect. 6.2.5), we expect - (and thus -) to

increase monotonically from the centre at A = 0 outwards as A increases, though the projection
against other voids, voids’ asphericity, and noise will make this monotonicity difficult to detect.
For each pixel 9 in our sky plane, we define a heuristic selection criterion [- motivated by the
expected monotonicity as follows.

(i) Ignore each pixel 9 with - (A = 0) > -median, where -median is the median over all pixels
in the sky plane. The motivation is that for any - , pixels with - (A = 0) > -median are
unlikely to correspond to the centre of a void. The projected or ray-traced variables -
should have their minima at voids’ centres. This step should remove many pixels unlikely
to be void centres.

(ii) For a given pixel 9 , for each radial distance A8 from the pixel, calculate the circular average
- as in Eq. (6.2), where for simplicity we omit the subscript 9 . We set the interval in A8 to
be smaller than 1 Mpc/ℎ in order to be sensitive to small-scale structure.

(iii) A persistently positive strong positive slope in - is detected as follows. Find 81, the first
radial position 8, with respect to pixel 9 , where all three of the conditions

-
′(A8) >

���-′���(A8) (6.5)

- (A8) − - (A8−1) > 5std

〈(
- (A8′) − - (A8′)

)2〉1/2

8′<8

(6.6)

- (A8) > 5mean - (A8) (6.7)

are satisfied over four successive steps 8 − 3, 8 − 2, 8 − 1, 8, where 〈·〉 is the mean and 5std
and 5mean are heuristically chosen fractions. The aim of criteria (6.5) and (6.6) is to find a
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range of radii where the slope -′ has a stable and significant increase, i.e. where positive
second derivatives -′′ > 0 are numerically persistent. Criterion (6.7) aims to also require
the slope -′ to be sufficiently positive. The values adopted for 5std and 5mean are given in
Table 6.1.

(iv) Find 82, the first local maximum in - for 8 > 81, i.e., the first local maximum after the
persistently strong positive slope condition that determines 81.

(v) Define an initial void selection criterion [0
-
( 9) := 1/A82 . The radius A82 is the estimated

radius of the candidate void.

(vi) Steps 2–5 are carried out for all pixels 9 accepted in step 1 (with 3, 4 modified in the case
of W; see Sect. 6.2.5). In order to cope with the very noisy data, we define a smoothed
selection criterion for further use, [- ( 9), as a low-pass triangular filter (weighted mean)
of the 25 [0

-
( 9) values in a 5 × 5 grid of pixels centred on pixel 9 4.

We then find all local minima of the selection criterion [- ( 9) over the pixels 9 as follows.

(vii) We select a void centred at pixel 9 if it dominates its local region in the sense that
[- ( 9) < [- (:) where : indexes pixels in a square grid centred on pixel 9 and extending
5 pixels in each of the ±G and ±I directions. As an extra credibility criterion, selection of
a void is only accepted if [- ( 9) < 0.90

∑
: [- (:)/

∑
: 1, where : indexes all pixels in the

map.

This algorithm results in a list of projected voids with centres 9 and radii A82 ( 9) that represent
the largest locally credible voids.

(viii) To avoid cases where a single genuine void is misidentified as two slightly offset voids,
we check if two or more centres are closer to one another than

min {'( 91)/4, '( 92)/4, 10.0 Mpc/ℎ} . (6.8)

In these cases, we merge these voids into a single void. The new centre and radius of the
merged void are defined as the mean of the centres and radii of the unmerged voids.

6.2.4 Matches to intrinsic voids
To quantify whether the photometric detection of voids – two-dimensional voids – successfully
finds the intrinsic three-dimensional voids, we first define a heuristically motivated matching
criterion to find the best matches, and then compare the set of best matches to an equivalent set of
best matches when the list of two-dimensional void parameters is generated randomly (positions)
or randomly shuffled (radii). This aims at answering two different questions: (i) given a detected
set of two-dimensional voids, are these better than a random set of two-dimensional voids at
revealing true three-dimensional voids? (ii) given a set of intrinsic three-dimensional voids,
do the detected two-dimensional voids better match these (numerically) real voids better than a
random set of two-dimensional voids would? The former question is interesting for observational
detection of three-dimensional voids from photometric or other geometric-optics data; the latter
is interesting for using spectroscopically defined three-dimensional voids to motivate searches
for gravitational lensing by voids.

4This step interprets the box as an isolated box, not )2, and sets [- ( 9) near the borders of the box to a high
value to prevent finding minima there.
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Best matches and median sky-plane separaration `G,I

We define the probability of the 8th two-dimensional void being a match to the 9 th three-
dimensional (watershed) void by first defining the probabilities that the G and I positions are
close in the )2 sense and that the radii are logarithmically close. We set a cumulative Gaussian
probability that the G or I positions for variable - ∈ {Σ, W, \, f} are closer to each other than
the estimated values,

%-G8, 9 = 1 − erf
3

(
G-
8
, G-

9

)
√

2fG

%-I8, 9 = 1 − erf
3

(
I-
8
, I-
9

)
√

2fI
, (6.9)

where erf is the error function, 3 (.,.) is the )2 minimum G or I distance, and fG = fI =

5.0 Mpc/ℎ. Similarly, we set

%-'8, 9 = 1 − erf

���log10

(
'-
8
/'-

9

)���
√

2flog10 '

, (6.10)

where flog10 ' = 0.30 dex (Allen, 1951). These are assumed, for simplicity, to be independent
probabilities, giving a heuristic overall probability that the 8th two-dimensional void matches
the 9 th three-dimensional void

%-8, 9 = %
-
G8, 9
%-I8, 9 %

-
'8, 9

. (6.11)

For question (i) (Sect. 6.2.4), given a two-dimensional void 8, we find the three-dimensional
void 9 with the highest matching probability %-

8, 9
, for detector variable - . This does not exclude

the possibility that two different two-dimensional voids best identify with the same three-
dimensional void. For a set of #2� detected two-dimensional voids, this gives us a matched set
of #2� objects, which have both two-dimensional and three-dimensional sky position and radius
information, presumed to match.

For each object in this set, we calculate the )2 distance between the two-dimensional
and three-dimensional (G,I) positions and from the distribution of these values, calculate
`G,I (3� |2�), the median distance for a three-dimensional match given a two-dimensional
match. In calculating this median, in cases where a single three-dimensional void is the best
match for two or more two-dimensional voids, we only consider the match in which %-

8, 9
is

maximised.
For question (ii), given a three-dimensional void 8, we find the two-dimensional void 9

with the highest matching probability %8, 9 . Again, this does not exclude the possibility that two
different three-dimensional voids best identify with the same two-dimensional void. In practice,
since we find fewer two-dimensional voids to three-dimensional voids, there are necessarily
cases where multiple three-dimensional voids identify with a single two-dimensional void. For
a set of #3� detected three-dimensional voids, this gives us a matched set of #3� objects,
which have both two-dimensional and three-dimensional sky position and radius information,
presumed to match.

For each object in this set, we calculate the )2 distance between the two-dimensional
and three-dimensional (G,I) positions and infer `G,I (2� |3�), the median distance for a two-
dimensional match given a three-dimensional match, again using the highest %-

8, 9
to reduce

non–one-to-one matches.
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Comparison to matches for random two-dimensional voids

We generate a Monte Carlo simulation of two-dimensional voids by choosing #2� pairs (G,I)
from a uniform random distribution within the G and I ranges of the two-dimensional grid. For
both questions (i) and (ii) (separately), for each Monte Carlo simulation, we find matched sets
using the same algorithm as above.

To answer question (i) we estimate `G,I (3� |2�) for a given detector - , for both the original
matched set and for each of the simulated matched sets. This yields %-G,I (3� |2�), the frequentist
probability that the original `G,I (3� |2�) is less than `G,I (3� |2�) from the Monte Carlo
simulations. In other words, %-G,I (3� |2�) is the probability that, given the two-dimensional
voids, the matches with three-dimensional voids in the sky plane are no better than those drawn
from a Monte Carlo simulation.

Similarly, for question (ii), the frequency with which the original `G,I (2� |3�) is less than
the values of `G,I (2� |3�) from the simulations yields %-G,I (3� |2�), the probability that, given
the three-dimensional voids, the matches with two-dimensional voids in the sky plane are no
better than those drawn from a Monte Carlo simulation of sky positions.

Cases where three-dimensional voids are concentric or approximately overlap in projection
will yield only a single two-dimensional void using our algorithm, and are likely to make
estimation of the radii difficult. The range of values of the radii are not as conveniently constrained
as the (G,I) centres of the voids. Rather than choosing an arbitrary range for a Monte Carlo
simulation, we use a non-parametricmethod.We define %-

'
(3� |2�) as the two-sided probability

that the Spearman d rank correlation coefficient (Spearman, 1904) of the matched set of #2�
values '-

8
and '-

9 (8) is stronger (positive or negative) than what it would be for a set of paired
values where one set is randomly permuted.

Similarly, we define %-
'
(2� |3�) as the two-sided probability that the Spearman d ranking

coefficient of the matched set of #3� values '-
8
and '-

9 (8) is stronger (positive or negative) than
it would be under random permutations.

6.2.5 Detector variables Σ, W, \, f
Here we define and describe our detector variables - ∈ {Σ, W, \, f}, where here we write the
generic forms of these variables for simplicity; the more specific forms are given below. These
detector variables can, in principle, be derived from a photometric map, given some minimal
assumptions, such as a mass-to-light ratio in the case of the surface overdensity Σ, or statistically
isotropic distributions of galaxy shape parameters in the case of the other three parameters. We
derive each of these from the particle distribution, not from the galaxy distribution. We include
Σ since apart from requiring a mass-to-light ratio assumption, it is the simplest to derive from a
photometric map.

Surface overdensity Σ

We calculate the surface overdensity by integrating the overdensity d − d̄ along the line of sight,
neglecting temporal evolution. (Temporal evolution is taken into account with the optical scalar
modelling; see Sect. 6.2.5 below.) Densities are constructed for each particle using a Voronoi
tessellation followed by linear interpolation. For a flat model, the surface overdensity in direction
=̂, analog to eq.(2.80), is

Σ(=̂) =
∫ jmax

jmin

(d( ĵ,Ω) − d̄)dj, (6.12)
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where jmin = j(IO) − 0.95!box/2 and jmax = j(IO) + 0.95!box/2. The 0.95 factor neglects the
5% front and back parts of the box to minimise edge effects (Sect. 6.2.2). Since we expect the
surface overdensity Σ to be negative in a void, we aim to detect it in places where it is physically
a surface underdensity, i.e., a projected mass deficit.

Detection strategy with Σ Voids typically have strong underdensities in their interior, so the
two-dimensional projection of a void should still show a strong underdensity in the interior after
projection. Thus, we search for local minima in Σ.

The projection of foreground and background voids and their walls (in reality, clusters,
filaments and walls) will, to some degree, obscure this search. To the extent that the obscuration
can be statistically neglected or removed, the azimuthally averaged radial profile Σ (Eq. (6.2))
should show a slow increase in Σ from the centre of a projected void outwards until it nears the
(projected) wall, when a rapid increase should occur, followed by a drop as Σ asymptotes to the
mean of the environment surrounding the void. Thus, a local maximum in Σ at the wall that
surrounds the void should be sought. We expect that larger voids should yield clearer signals.

Some pixels, likely containing galaxy clusters or projections of galaxy filaments, were found
to be highly overdense, misleading our algorithm’s search for void walls because of these
overdense pixels’ strong influence on Σ. To reduce the influence of these extreme pixels, prior
to step 1, we truncate Σ values at the 90th percentile of their distribution.

Substructures of overdensities exist inside of voids, similar to the larger scale overdensities
of the cosmic web, but traced by dark matter haloes of much lower mass (Gottlöber et al.,
2003). These substructures contribute another obscuring factor that should weaken our proposed
detection algorithm (Sect. 6.2.3) using Σ.

Weak-lensing tangential shear W⊥

Weak gravitational lensing information is typically extracted from observations by using the
distortion of observed images that is induced by cosmological inhomogeneity, with the aim
of tracing the spatial distribution of dark matter. We follow the mathematical descriptions of
Bartelmann & Schneider (2001); Krause et al. (2013) and Kilbinger (2015), broadly discussed
in Sect. 6. For completeness and clarity we give the main equations here again. We derive the
parameters of this idealised model from the surface overdensity calculated in our cosmological
simulation.

We represent the lens plane, see Fig.2.5 adapted from (Bartelmann & Schneider, 2001,
fig. 11), with two orthogonal spatial directions with indices 0 and 1; the direction of propagation
of the light bundle as it would arrive at the observer from the source if unlensed, represented as a
vector in the lens plane,Θ(; and the direction at which the light bundle reaches the observer after
lensing, again a vector in the lens plane, Θ$ . A matrix to convert from the observed directions
to the original source directions, the “deformation matrix” (Hossen et al., 2022), � is defined as
the Jacobian as in eq.(2.86). The deformation matrix can be decomposed into the shear W and
the convergence ^, see eq.(2.88) (Bartelmann & Schneider, 2001, eq. (3.11)). In this work we
assume that the rotation of the image vanishes and rewrite the deformation matrix as

� =

(
1 − ^ − W1 W2

W2 1 − ^ + W1

)
. (6.13)

The convergence ^ at a generic position in the sky plane can be evaluated, similar to eq.(2.83),
as ^(=̂) = Σ(=̂)

Σcrit
, where Σcrit =

22

4c�
�OS

�OL�LS
(Bartelmann & Schneider, 2001, eq. (3.7)). The values
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�XX are the angular diameter distances between the observer (O), the lens (L) and the source
(S). We do not attempt void detection with ^, as the result would be equivalent to using Σ.

For our detection strategy, we useΣ(A,=̂), the isotropised (ring averaged) form ofΣ (Eq. (6.2))
with respect to a given centre =̂ of a possible void, and subtract it from the surface overdensity
averaged within a disc centred on =̂, yielding

ΔΣ(A,=̂) := Σ̃(A,=̂) − Σ(A,=̂) , (6.14)

where Σ̃(A,=̂) is defined in Eq. (6.16). As in Krause et al. (2013, eqs (4), (5)) and starting from
eq.(2.91) also derived in Kilbinger (2015, eqs (40)–(47)), the mean of the tangential component
of the shear internal to a ring at A can then be evaluated as

W⊥(A,=̂) =
ΔΣ(A,=̂)
Σcrit

, (6.15)

where we leave the weak dependence of Σcrit on A and =̂ implicit. The disc average Σ̃ calculated
by integrating (6.2) over the radius, using the usual weighting and now leaving the centre =̂
implicit, is

Σ̃(A) =
∫ A

0

∫ 2c
0 Σ(A′, i)A′didA′∫ A

0

∫ 2c
0 A′didA′

=
2c

∫ A

0 Σ(A
′)A′ dA′

cA2 . (6.16)

Detection strategy with W⊥ By definition, W⊥(A) should be close to zero at A = 0, the centre of
a void, and should decrease to a sharp minimum where A is the radius of the void’s (statistical)
wall. At greater radii, both the azimuthally averaged surface overdensity Σ and the disc-averaged
Σ̃ should approach zero, so W⊥(A) should also increase up to zero. The minimum in W⊥(A) should
reveal the edge of the void.

Since this qualitative behaviour of W⊥(A) differs from the other detector variables considered,
we modify steps 3 and 4 of the algorithm of Sect. 6.2.3 as follows.

Since W⊥ and W⊥′ calculated according to (6.2) are noisy, we apply extra smoothing, replacing
W⊥(A8) and W⊥′(A8) by 〈W⊥(A8)〉{max(0,8−3),...,8+3} and 〈W⊥′(A8)〉{max(0,8−3),...,8+3}, respectively. This
smoothing reduces the role of local fluctuations in the dark matter distribution.

(iii’) After this smoothing, we search for the radial distance where W⊥ starts dropping sharply,
i.e. the index 81 is the first value 8 where W⊥(A8) < W⊥(A8).

(iv’) The radial distance just past the wall is sought as the radial distance where W⊥ increases
sharply, i.e. the index 82 is the first value 8 > 81 where W⊥(A8) > W⊥(A8).

(iv’.1) In addition, to remove choices of a void centre where the best “wall” found this way has
a weak density contrast, we dismiss the candidate detection if

���W⊥��� /max ( |W⊥ |) < 0.1. For
patterns in W⊥ that have almost no significant features, this criterion avoids interpreting a
nearly flat curve W⊥(A8) as a candidate void.

If both A81 and A82 are detected, then we continue to step 5 as above (Sect. 6.2.3). Even
if pixel 9 is correctly centred on a void’s centre, this algorithm for W⊥ can fail to detect A82
if the (projected) environment just outside the void’s wall includes strong fluctuations. In the
case of failure to detect A82 , the pixel is considered invalid at step 5 and dropped from further
consideration.
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Optical scalars \ and |f |

Similar to the general derivation in Sect. 6 we calculate optical scalars in this work following
Sasaki (1993). In principle, these should model the real Universe more accurately than the
weak-lensing approach described above, since fewer assumptions are required. In the Newtonian
approximation, the Ricci tensor can be written as

'00 ≈ 8c�dl2 (6.17)

and the Weyl tensor components of interest are

��0�0 ≈ (2Φ;�� − X��Φ;�
;�)l

2 (6.18)

= (2Φ;`a4
`

�
4a� − X��X

��Φ;`a4
`

�
4a�)l

2 , (6.19)

(Sasaki, 1993, eqs (3.22), (3.21)) where � is the gravitational constant; space and time units
are related by 2 = 1; d is density; Φ is the gravitational potential; l = −:`D` = 1 + Iredsh,
for an observer four-velocity D`, light propagation one-form :`, and redshift Iredsh; {4�, 4�} or
{4� , 4�} are a pair of dyad basis vectors; and X�� is the Kronecker delta (X�� = 1 if � = �,
X�� = 0 if � ≠ �). The dyad basis vectors 4�, 4� span the spacelike 2-plane that is orthogonal
to the spatial path of the light ray that points from the observer towards the direction of a cell of
the grid. We use the Gram–Schmidt method to construct 4� and 4�.

As derived in derived in eq.(2.106) the optical scalars – the expansion \ (real) and the shear
f (complex) – are related to each other and the Weyl tensor (Eq. (6.19)) via the coupled pair of
differential equations. For clarity we give the expressions used in this work here again

d
d3
\ = −'00 − 2|f |2 − 1

2
\2 (6.20)

and
d
d3
f = −(�1010 + i�1020) − f\ . (6.21)

For a visualisation of the effect of \ and f on a light bundle we refer to Sasaki (1993, Fig. 4),
where f = f+ + if×. The dependence of the optical scalars \ and f to the usual weak-lensing
parameters is given in eqs (41)–(43) of Clarkson et al. (2012).

Detection strategy with \ and |f | Both the expansion \ and the modulus of the shear,

|f | =
√

Re(f)2 + Im(f)2 (6.22)

should be closely related to the surface overdensity, since integrations along paths approximately
(spatially) orthogonal to the lens plane are performed in all three cases. However, these are not
exactly analogous. Not only are these distinct physical quantities, but the overdensity integral
is performed parallel to the H axis, while for each pixel in our two-dimensional grid plane, we
estimate \ and |f | along a spatially straight path from the observer through the pixel, i.e. only
approximately parallel to the H axis.

In practice, initial numerical exploration shows that \ and |f | behave qualitatively like Σ, in
that they start from a low value at the centre of a void and increase to a sharp maximum at a
void boundary. Thus, we use the same search algorithm for finding voids in maps of \ and |f | as
indicated above in Sect. 6.2.3, with slightly adjusted parameters (Table 6.1). While qualitatively
similar in numerical terms, the physical meanings of these parameters differ. The optical scalars
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Table 6.2: Numbers of intrinsic three-dimensional voids detected with revolver, #3� , and in the two-dimensional
grid, #Σ2� , #

W

2� , #
\
2� , and #

f
2� , using the surface overdensity Σ, the weak-lensing shear W⊥, the Sachs expansion

\, and the modulus of the Sachs shear |f |, respectively.

#3� #Σ2� #
W

2� #\2� #f2�
46 28 29 34 39

Table 6.3: Probability that the matches between three-dimensional and two-dimensional voids for detector variable
- are no better than those of randomly generated two-dimensional voids, %-GI (3� |2�) when given two-dimensional
voids; or %-GI (2� |3�) when given three-dimensional voids; and probability that the Spearman rank correlation
coefficient for the radii ofmatched three-dimensional and two-dimensional voids for detector variable - could be that
of a set of randomly paired values, %-

'
(3� |2�) when given a two-dimensional void; and %-

'
(2� |3�) when given

a three-dimensional void. See Sect. 6.2.4. Plain-text version available at zenodo.7792910/void_match_analysis.dat.

- %G,I (3� |2�) %G,I (2� |3�) %' (3� |2�) %' (2� |3�)
Σ 0.017 0.00051 0.94 0.94
W⊥ 0.00053 1.0 × 10−5 0.77 0.93
\ 0.00027 1.0 × 10−5 0.48 0.16
|f | 9.0 × 10−5 1.0 × 10−5 0.43 0.37

\ and |f |, if derived from observations, represent the underlying matter distribution with no
dependence on observed luminosity andwithout the simplifying assumptions of theweak-lensing
approximation. In particular, the weak-lensing shear W⊥ (Eq. (6.15)) is an average defined with
respect to a hypothesized void centre, while \ and |f | provide maps prior to assumptions about
void centres.

6.3 Results

6.3.1 Simulation
We performed an ab initio simulation and detected voids as described above. As indicated in
Table 6.2, we detected #3� = 46 voids in the galaxy population with the watershed mechanism,
and smaller numbers of two-dimensional voids usingΣ, W⊥, \, and |f | from the projected density
distribution and by ray-tracing through the evolving gravitational potential Φ.

Table 6.3 shows the probabilities, defined in Sect. 6.2.4, that quantify the significance of:
(i) a detected two-dimensional void revealing the existence of an intrinsic three-dimensional
void via its sky plane position or radius, %-G,I (3� |2�) or %-' (3� |2�), respectively, and (ii)
an intrinsic three-dimensional void implying that its two-dimensional projection is detectable,
%-G,I (2� |3�) or %-' (2� |3�). In each case, these represent the probability that the estimated
correspondence between the populations could occur by chance, given prior information on the
number of two-dimensional voids (for positions) or non-parametrically (for radii).

Since voids in #-body simulations are characterised by small numbers of particles, the
detection of individual voids, whether in the three-dimensional galaxy distribution or by a two-
dimensional detector in variables derived from the particle distribution, is in general numerically
sensitive to small changes in machine arithmetic. We performed a small number of independent
full-pipeline simulations, retaining the same pseudo-random number seed, to investigate this
qualitatively. The re-simulated equivalent of the values listed in Table 6.3 shows moderate vari-

https://zenodo.org/record/7792910/files/void_match_analysis.dat
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Figure 6.1: Upper panel: surface overdensity Σ projected along the line of sight. White + symbols represent the G,I
centres of three-dimensional voids found with revolver. Red × symbols represent the centres of two-dimensional
voids found in the surface overdensity (Sect. 6.2.5); red circles represent the walls of these (circular, by definition)
voids. Some of the three-dimensional void centres are projected close to one another in the sky plane; our algorithm
is not designed to distinguish these as independent voids. Lower panel: radial void profiles of the surface overdensity
Σ (Eq. (6.2)), normalised to the estimated void radius and then averaged, using the set of all (projected) three-
dimensional void centres and radii (mean: blue curve; standard deviation: green “\\” hatching; “Revolver centre”) or
using the set of all two-dimensional void centres and radii (mean: red curve; standard deviation: red “//” hatching).
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Figure 6.2: Top to bottom, respectively: Given the a set of intrinsic three-dimensional voids in the galaxy dis-
tribution, sky-plane positions G and I and radii ' of the voids, and corresponding positions and radii of the
two-dimensional voids detected with the surface overdensity Σ that best match these three-dimensional voids.
The median (G,I) )2 distance for the best-matched voids, given a three-dimensional void (Sect. 6.2.4), for de-
tections with Σ is 7.8 Mpc/ℎ. Equality is shown by a straight line in all three panels. The radii match poorly,
with two-dimensional radii mostly being less than the intrinsic three-dimensional radii. Plain-text data available at
zenodo.7792910/void_matches_mass_def_given_3D.dat.

https://zenodo.org/record/7792910/files/void_matches_mass_def_given_3D.dat
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ation with re-simulation on a given machine, and stronger variation between different machines.
We describe our results taking into account our small-scale estimates of their reproducibility,
and use the word “robust(ly)” to indicate cross-machine reproducibility.

We find %-G,I (2� |3�) values (robustly) indicating significant match distributions in all four
cases, with %ΣG,I (2� |3�) < 0.001, and %-G,I (2� |3�) < 0.0001 for - ∈ {W⊥, \, |f |}. Thus, we
find that given the three-dimensional voids found with the watershed algorithm in the galaxy
distribution, the sky plane positions of the two-dimensional voids found using the surface
overdensity Σ are significantly closer to the former than they would be if the same number of
two-dimensional void positions were chosen randomly. In other words, we have a significant
response to question (ii) for Σ. This is reassuring, because it shows that despite the projection
effects ofmultiple voids and their aspherical shapes, the centres of the intrinsic three-dimensional
voids can be recovered in the two-dimensional Σ distribution.

Moreover, we find that for the weak-lensing tangential shear W⊥, and for both the Sachs
optical scalar expansion \ and shear |f |, the centres of the two-dimensional voids represent the
three-dimensional void centres to high significance. Thus, any of the four parameters should be
usable to re-detect the void centres known from the three-dimensional voids.

In contrast, if we start with the two-dimensional photometric map and predict the centres
of the three-dimensional voids, we only find (Table 6.3) the weak-lensing tangential shear W⊥,
the Sachs expansion \ and the Sachs absolute shear |f | to significantly and robustly reveal
underlying three-dimensional voids, with %-G,I (3� |2�) � 0.01 in all three cases. Comparison
with %ΣG,I (3� |2�) in Table 6.3, for the surface overdensity, shows that discovering a three-
dimensional void thanks to its two-dimensional signature is less likely with Σ. In other words, in
answering question (i), use of our algorithm with any of the three geometrical optics parameters
is more likely to reveal the sky-plane position of the three-dimensional void than using Σ.

These results show that the intrinsic three-dimensional void signal yields detectable void
centres with our algorithm in not only the projected (two-dimensional) surface overdensity Σ,
inferrable from photometric maps with only a mass-to-light ratio assumption, but also in the two-
dimensional maps of weak-lensing and Sachs optical shear parameters. If additional information,
such as spectroscopic or photometric redshift information, is available, then combining that
information with lensing analyses of the data should lead to tighter constraints on the (partly
invisible) underdensity distributions, as opposed to using galaxies’ sky positions and redshifts
alone.

Moreover, in the absence of galaxy redshift information, two-dimensional maps should
yield constraints on the mass distribution, at least in the case of W⊥ and \. However, while
the void centres are detected, the radii are poorly constrained from either three-dimensional or
two-dimensional maps.

We examine these results and caveats more closely in the following sections.

6.3.2 Surface overdensity Σ
The upper panel of Fig. 6.1 shows the map of the surface overdensity Σ, together with sky-
plane centres of the intrinsic three-dimensional voids of the galaxy distribution and the two-
dimensional voids detected via Σ as described in Sect. 6.2.5. The correspondence between these,
formalised in Table 6.3, can be inspected qualitatively by judging if a three-dimensional void
centre (white +) has a two-dimensional void centre (red ×) more close to it than a randomly
placed point. Of the #3� = 46 intrinsic galaxy voids, only #Σ2� = 28 two-dimensional voids are
detected (Table 6.2). The fact that #Σ2� < #3� is expected, since we did not design our algorithm
to distinguish voids that are nearly concentric when projected to the sky plane.
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Figure 6.3: Radial void profiles of the weak-lensing shear W⊥, as in the lower panel of Fig. 6.1, for three-dimensional
(projected) and two-dimensional (W⊥) sets of void centres. “1e–6” indicates a factor of 10−6 in the vertical scale
(and similarly in Figs 6.5 and 6.7 below). A map for W⊥ is not shown, since the map of weak-lensing mean tangential
shear W⊥ (A,=̂) is redetermined for each possible void centre =̂.
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Figure 6.4: Top to bottom, respectively: For each intrinsic three-dimensional void, sky-plane positions G and I and
radii ' of the best-matched two-dimensional void detected with the weak-lensing shear W⊥, as in Fig. 6.2. The
median (G,I) )2 distance for the best-matched voids, given a three-dimensional void (Sect. 6.2.4), for detections
with W⊥ is 6.5 Mpc/ℎ. All two-dimensional radii are lower than those of the three-dimensional voids that they
correspond to. Plain-text data available at zenodo.7792910/void_matches_gamma_given_3D.dat.

https://zenodo.org/record/7792910/files/void_matches_gamma_given_3D.dat
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The lower panel of Fig. 6.1 shows theΣ profiles averaged over all the two-dimensional centres,
and, independently, averaged over all the three-dimensional centres (projected by ignoring the H
coordinate). Comparison of these two curves (and their standard deviations, hatched) shows how
well we might expect our algorithm to perform. The profiles for the three-dimensional centres
are those that would be detected if the algorithm were perfect in recovering the intrinsic voids,
leaving aside the difference that the two-dimensional detection uses the full dark matter particle
distribution, while the three-dimensional detection is galaxy based. It is clear that projection
effects are significant: the mean profile (blue curve) does not show the sharp wall typical of
voids. It is also clear that we have found profiles in Σ (red curve) that are stronger in contrast
from minimum density to highest wall density than those of the intrinsic voids. This suggests
that improving the algorithm further based on the motivation of optimising a typical void-like
profile, under the assumption of spherical shapes, would be unlikely to help further: strongly
void-like profiles are already well detected.

The top two panels of Fig. 6.2 show the G and I coordinates (spanning the sky plane) of
corresponding void centres, where the two-dimensional void centres are those found to best
match a given three-dimensional void, as described in Sect. 6.2.4. The existence of multiple
three-dimensional voids whose best match is a single two-dimensional void is clear in the
diagram. We interpret this as illustrating cases where three-dimensional voids are nearly aligned
in projection, and thus detected as a single two-dimensional void.

The bottom panel of Fig. 6.2 shows that void radii are very poorly recovered, and gen-
erally underestimated. One factor is clearly the difficulty in distinguishing nearly concentric
voids. However, it is also likely that substructure is misidentified as void walls, leading to the
underestimates. Overall, the bottom panel of Fig. 6.2 shows that the radii of our intrinsic popu-
lation of three-dimensional voids detected with revolver are reduced by about 5 Mpc/ℎ, in an
uncorrelated way with a big scatter, when redetected with Σ as two-dimensional voids.

6.3.3 Weak-lensing shear W⊥
Using W⊥, we find #W2� = 29 two-dimensional voids, i.e., roughly two thirds of the number of
intrinsic galaxy voids, #3� = 46 (Table 6.2). Figure 6.3 shows that the mean behaviour of a
lensing profile in W⊥ using the centres of the intrinsic three-dimensional voids is that W⊥ starts
near zero, decreases to negative values in the void and appears to (in the mean) reach a minimum
at the wall radius found by revolver, before increasing to a maximum at a somewhat greater
radius. This is reasonable, given the definition fo W⊥. Figure 6.3 shows that the two-dimensional
voids also have a (mean) W⊥ profile that decreases and then increases to zero, but the increase to
zero occurs at lower fractions of the void radius.

Together, these profiles could be interpreted to suggest that applying a systematic correction
factor to increase the void radius found when Σ̃(A,=̂) = Σ(A,=̂) (see Eq. (6.14)) might yield radii
that bettermatch those of the three-dimensional voids. The lowest panel of Fig. 6.4 is qualitatively
consistent with this suggestion, as it shows that the two-dimensional voids that are best matched
to the three-dimensional voids have radii that are all smaller than the three-dimensional void
radii. However, Table 6.3 shows that correspondence between the radii is insignificant. As in
the case of Σ, the projection of nearly concentric intrinsic voids, as well as obscuring effects
from more distant overlapping voids, make the use of a single scaling correction for radii poorly
motivated, except as a crude statistical correction.

The two upper panels of Fig. 6.4 showwhat is quantified in Table 6.3: the sky-plane positions
are recovered non-randomly to high statistical significance. Moreover, for the reverse question
(Table 6.3), %WG,I (3� |2�) <∼ 0.001 appears to be robust against re-calculation and machine error,
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so the use of weak-lensing shear – on its own – to infer the presence of intrinsic three-dimensional
galaxy-traced voids appears to be promising.

6.3.4 Optical scalars \ and |f |
Expansion \

Figure 6.5 shows a map of the Sachs expansion \ and sky-plane centres of both the intrinsic
voids and those detected via \. As indicated in Table 6.3, given the three-dimensional voids, the
best-matched two-dimensional (\) voids are recovered to high significance via their sky-plane
centres. The top two panels of Fig. 6.6 show the sky-plane matches.

However, we only find #\2� = 34 voids using \, many less than the intrinsic voids. As with
Σ and W⊥, a likely interpretation is projected concentricity of several voids and obscuration by
other cosmic web structure. The lower panel of Fig. 6.5 can be interpreted consistently with
this hypothesis: the mean \ profile of the full set of intrinsic voids detected with revolver is
very weak, which would be consistent with both effects. The profile for two-dimensional voids
detected with \ is very strong, qualitatively resembling a typical void density profile, with a
sharp (mean) wall.

The lowest panel of Fig. 6.6 shows that the radii are again poorly correlated. Again, this is
consistent with the detections using Σ and W⊥, with the difference that the radii estimated with
\ expand greatly from the instrinic voids’ range of around 15–25 Mpc/ℎ to around 5–30 Mpc/ℎ.
While to some degree these disagreements are likely to be induced by the problems of projection,
it might also be possible that radii that are gravitationally realistic in terms of the potential Φ
differ significantly from those traced by the three-dimensional galaxy distribution. This is a
question open for further study.

Sachs shear |f |

The upper panel of Fig. 6.7 shows a map of the modulus of the Sachs shear, |f |. Again, Table 6.3
shows that given an intrinsic void, the Sachs shear detects the voids’ positions to high significance
using our algorithm. The lower panel of Fig. 6.7 shows a qualitatively similar result to the use
of the expansion \, in the sense that shear profiles for the full set of three-dimensional voids
have a weak mean profile, while those for the voids detected in the two-dimensional map of |f |
show a strong void-like profile. Taking into account the good sky-plane matches and poor radial
matches shown in Fig. 6.8, a consistent interpretation is again that the two-dimensional detected
profiles are those that bypass both general obscuration and the confusion induced by voids that
are nearly concentric in projection.

6.4 Discussion

6.4.1 Void lensing studies when intrinsic voids are known
With the simulation presented here, we have shown that if intrinsic three-dimensional voids are
known, then the effects of geometric-optics parameters should be detectable in the sky plane,
enabling the study of the role that gravitational lensing plays in the voids. In other words, we
have shown a relation between voids in three-dimensional comoving space with their imprints
left on maps of the projected and ray-traced variables. Moreover, the lensing patterns induced
by a void should provide feedback to better constrain the model of the void itself. As argued by
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Figure 6.5: Upper panel: Sachs expansion \, as for Fig. 6.1, computed using Eqs (6.20) and (6.21), with white
+ symbols for the G,I centres of three-dimensional intrinsic galaxy voids and red × symbols for the centres of
two-dimensional voids detected with \. Lower panel: Radial void profiles of \, as in the lower panel of Fig. 6.1, for
three-dimensional (revolver) and two-dimensional (\) sets of void centres.
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Figure 6.6: Top to bottom, respectively: For each intrinsic three-dimensional void, sky-plane positions G and I and
radii ' of the best-matched two-dimensional void detected with the Sachs expansion \, as in Fig. 6.2. The median
(G,I) )2 distance for the best-matched voids, given a three-dimensional void (Sect. 6.2.4), for detections with \ is
5.8Mpc/ℎ. The two-dimensional radii have amuch broader distribution than those of the intrinsic three-dimensional
voids, with no obvious correlation. Plain-text data available at zenodo.7792910/void_matches_exp_given_3D.dat.

https://zenodo.org/record/7792910/files/void_matches_exp_given_3D.dat
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Figure 6.8: Top to bottom, respectively: For each intrinsic three-dimensional void, sky-plane positions G and I and
radii ' of the best-matched two-dimensional void detected with the Sachs shear modulus |f |, as in Fig. 6.2. The
median (G,I) )2 distance for the best-matched voids, given a three-dimensional void (Sect. 6.2.4), for detections
with |f | is 4.5 Mpc/ℎ. The two-dimensional radii again have a broad distribution, as in Fig. 6.6. Plain-text data:
zenodo.7792910/void_matches_sig_given_3D.dat.

https://zenodo.org/record/7792910/files/void_matches_sig_given_3D.dat
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Sánchez et al. (2017) using Σ (and photometric redshifts to statistically limit the radial depth
of the projection), this would confirm that a galaxy-traced void is a genuine underdensity of
the dark matter density field. Other weak gravitational lensing detectors, such as the Lyman U
forest (Croft et al., 2018), could also be compared to foreground galaxy-traced voids to check
for consistency.

6.4.2 Blind (redshift-free) searches for voids
Without knowledge of spectroscopic or photometric galaxy redshifts, we currently can justify
use of the azimuthally averaged tangential weak-lensing shear W⊥ and of the Sachs expansion \
or shear |f | for analysis of a photometric survey with the intention of inferring the presence of
three-dimensional voids, since all three of these robustly yield %-G,I (3� |2�) � 0.01 (Table 6.3).
Our calculation would appear to be the first time that the use of Sachs expansion maps has been
shown to have the ability to reveal underlying voids. Jeffrey et al. (2021) studied the combined
use of the usual weak-lensing convergence and shear in Dark Energy Survey (DES) photometry
over 4143 deg2, which appears to be equivalent to using Σ and W⊥, to reveal underlying voids,
but did not appear to study the Sachs expansion.

Our algorithms can very likely be improved further. For example, combining all four para-
meters, Σ, W⊥, \ and |f |, could lead to complementary constraints on whether or not a putative
void is real or correctly identified. These would only be partially independent from one another,
since the four parameters are related to one another, with \ and |f | taking into account the
evolution of the gravitational potential. Deriving the weak-lensing parameters for an initial ap-
proximation, and then using the Sachs optical scalars for an analysis to higher accuracy could be
one viable strategy. Another extension would be to examine individual pairs of the best-matching
three-dimensional and two-dimensional voids from the current algorithm presented here to un-
derstand how their match could be improved; or alternatively, examine the worst-matching pairs
to understand what obstructs the match and search for ways of avoiding the obstruction.

There are several advantages in detecting voids via their sky-plane effects. Some of the
fainter galaxies defining the walls of a void may be too faint to be detected in a given survey.
The tracing of dark matter by luminous matter is by a long chain of physical effects: baryonic
matter has to be associated with the dark matter, and star formation history and feedback effects
need to be modelled. Geometric optics bypasses this causal chain, and should lead to inferences
made with fewer assumptions.

6.4.3 Projected void concentricity and obscuring cosmic web structures
Projection of voids to be nearly concentric is expected in our simulation, since we integrate over
the full box size of !box = 120Mpc/ℎ and the largest intrinsic voids detected with the watershed
algorithm have radii 'eff ∼ 30Mpc/ℎ. Our algorithm’s only strategy that relates to the problem
of projected void concentricity is to prefer larger to smaller radii (step 7 in Sect. 6.2.3). Figures
6.2, 6.4, 6.6, and 6.8 show that despite this, the two-dimensional void radii tend to be lower than
the intrinsic radii. This empirical result would tend to favour keeping this step unchanged.

Our algorithm already has many parameters. Extending it to allow successive multiple
detections ofwalls could, in principle, lead to a higher rate of detecting the intrinsic voids. Ideally,
this should lead to a statistically significant correlation between the intrinsic and photometric
void radii; in this work, our correlations in radii are insignificant (Table 6.3). However, detecting
multiple concentric walls would quite likely also lead to false detections.
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Strategies for solving the problem of obscuring structures (in the absence of redshift in-
formation) are not obvious. Gravitationally dense objects occupy little volume and still suffer
from projection effects; voids dominate the volume and thus are strongly affected by projection
effects. A Bayesian approach as in Jeffrey et al. (2021) would be worth exploring.

Since our simulation homogenises the foreground and background of the simulated volume,
a real observational survey will include stronger levels of both projected void concentricity and
obscuring cosmic web structures.

6.5 Conclusion
In this work we have studied the two questions of whether voids in the cosmic web yield
detectable information in projected variables, the surface overdensity Σ, the azimuthal averaged
weak lensing shear W⊥, the Sachs expansion \, and the Sachs shear |f |, and vice versa,whether the
sky-plane information can be used to infer the existence of the intrinsic three-dimensional voids.
We performed this using a cosmological #-body simulation starting from initial perturbations
generated according to a standard initial power spectrum. We carried out the analysis in a fully
controlled software environment with full information about the dark matter distribution as
well as the luminous matter distribution, which we modelled using galaxies built from a halo
merger tree using semi-analytical tools. We detected the intrinsic voids in the three-dimensional
comoving spatial distribution of galaxies using a watershed void finder (Sect. 6.2.3). The void
detection in the projected plane (Sect. 6.2.3) is based on the assumption that the azimuthally
averaged profiles of the four detector variables for the voids have shapes with predictable
qualitative behaviour. In the case of the surface overdensity Σ and the two Sachs optical scalars
\ and |f |, this expected shape is to start from a minimum at the centre of a void, gradually
increase radially outwards, and increase sharply at the void’s wall. The weak-lensing shear W⊥
is expected to start from zero, decrease, and increase to zero just past the void’s wall. Using a
heuristically parametrised algorithm for detecting these profiles, adjusted individually for the
four detector variables, we found positions and radii of two-dimensional voids traced by these
detectors.

We find roughly similar numbers of two-dimensional voids traced by each of the four
different detector variables, and in all cases, fewer voids than in the three-dimensional galaxy-
traced distribution, as can be seen in Table 6.2. There are two likely explanations. First, when
several intrinsic voids are nearly concentric in projection on the sky, our algorithm only detects
one of these, since it is not designed to detect multiple walls. Second, the foreground and
background structures of the cosmic web, i.e. walls, filaments, clusters and other voids, obscure
the signals associated with any single intrinsic void, making detection difficult. The lower panels
of Figs 6.1, 6.3, 6.5, and 6.7 show that the voids detected by us in the projected plane follow
the assumed qualitative shapes well, giving confidence that our algorithm works as expected.
However, the same panels show that the corresponding mean profiles, using the centres and
radial sizes of the three-dimensional intrinsic voids, but the detector variables in the projected
plane, are weak.

We interpret these two effects – the detection of fewer two-dimensional voids than those
known to exist in the three-dimensional spatial distribution, together with the weakmean profiles
of the projected-plane detector variables centred at the intrinsic voids’ locations – as consistent
with the undetected voids being (statistically) those that are either the most obscured or are
concentric with the detected voids.

Given knowledge of the three-dimensional voids’ centres, we find (Table 6.3, third column)
that the detected two-dimensional voids are signicantly closer than random to the three-
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dimensional voids’ centres in the sky plane, for all four detector variables. In other words,
a survey with sufficient spectroscopic or photometric redshift information to detect voids should
be usable to infer patterns of gravitational lensing through the voids that should be measurable
using either weak-lensing shear or the Sachs optical scalars (answering question (ii) of Sect. 6.2.4
positively).

Conversely, if we only have a photometric survey that is blind, in the sense of having neither
spectroscopic nor photometric redshift information, then we have established (Table 6.3, second
column) that the two-dimensional voids detected via weak-lensing tangential shear W⊥, Sachs
expansion \ or Sachs absolute shear |f | significantly reveal the true underlying three-dimensional
void population (question (i) in Sect. 6.2.4). Use of the surface overdensity Σ provides weaker
evidence for revealing the sky-plane positions of the underlying void population.

While these results follow from significant correlations of voids’ locations in the sky plane,
we find no significant correlation for the radii. The bottom panels of Figs 6.2, 6.4, 6.6, and
6.8, show that the two-dimensional void radii tend to be lower than the intrinsic radii. The lack
of correlation and the generally lower radii are consistent with the problem of near concentric
projection of multiple voids into the sky plane.

While our current results are exploratory, with several caveats as stated above, it does ap-
pear that gravitational lensing through individual voids should be observationally detectable.
Moreover, weak-lensing tangential shear and Sachs expansion and shear in future blind pho-
tometric surveys – such as those provided by the Rubin C. Observatory’s Legacy Survey of
Space and Time (LSST; Sheldon et al. 2023) – should reveal the existence of intrinsic three-
dimensional voids, yielding predictions that will be falsifiable by spectroscopic followup surveys
such as those of the 4-metre Multi-Object Spectroscopy Telescope (4MOST; de Jong et al. 2012,
2019; Richard et al. 2019) or the Dark Energy Spectroscopic Instrument (DESI; Levi et al. 2013;
Hahn et al. 2022).



Chapter 7

Conclusion

In this work we have explored cosmic voids in cosmological dark matter simulations. To do
so we introduced and explored the main ingredients of the cosmological standard model, the
ΛCDM paradigm, in chapter 2. We studied how the background model evolves over cosmic time
and howmatter perturbations grow in this model. These perturbations will grow in size and form
the walls, filaments and clusters that are seen in the cosmic web, see e.g. figs. 2.4 and 5.1. Matter
will clump together and eventually collapse into virialised dark matter haloes; these structures
will yield the gravitational wells in which baryonic matter can cool down and form galaxies. We
describe the basics of the numerical tools that are used to model these processes in this work in
chapter 3, i.e. starting from generating initial velocity perturbations and position displacements
from a regular grid and evolving a dark-matter–only simulation, identifying halo structures
and building a merger-history tree to finally populating these merger-trees with galaxies using
semi-analytical recipes and detecting voids in the density distribution.

7.1 Galaxy formation in voids
The contents of chapter 4 present our publication investigating galaxy formation in voids with
special emphasis on the position of a galaxy inside a void. We hypothesise that a void, due to
its repulsive net gravitational force should hinder halo virialisation. A relativistic treatment of
a void, and the negative spatial curvature that it locally induces, should similarly show to an
effective net repulsive force, making it even more unlikely for a halo to virialise, though the
#-body simulation code we use does not account for curvature effects. We establish the term
“elaphrocentre” to denote the hill of the gravitational potential in a cosmic void. The expect
effect of the repulsive nature of the void should be strongest in the elaphrocentre. We present a
fully reproducible pipeline to model galaxy formation in a pure dark matter distribution together
with the generation of a void catalogue from the same dark matter distribution and analyse these.
Moreover, we ask if the unique environment of the elaphrocentre might favour the formation of
large, diffuse galaxies with low surface brightness. With this goal, we investigate key quantities
including the spin parameter and the virial radius of the dark matter halo. We also investigate
the disk scale length of the galaxy and the formation epoch of the galaxy, which we define as
the first time snapshot at which the galaxy has a stellar mass above zero. In addition, we use the
data provided by sage to estimate the matter infall into each galaxy, assuming that the matter
infall into void galaxies is a more extended process over time.

We do not find statistically significant differences in the infall rates of galaxies found in a
void compared to the non-void population. A possible reason is that the assumed exponential
decay rate, see eq. (4.2), is an overstrong simplification for galaxies experiencing merger events
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and does not take into account the possibility of almost instantaneous episodes of matter infall.
The halo and galaxy properties yield more promising results, hinting that the position of

a galaxy in the cosmic web might have measurable effects on the galaxies. Considering the
full population of galaxies (“all mass scales” in Table 4.2), we find that void galaxies have
significantly smaller disk scale lengths than non-void galaxies and an (insignificant) hint of a
higher spin parameter (which is not detectable via these global median values). As seen in upper
part of the same table, these trends also hold for galaxies in the mass interval "vir = 1011"�/ℎ–
1013"�/ℎ, which should be amore robust result due to the exclusion of haloes with low numbers
of particles. Statistical properties of haloes detected with low particle numbers in an #-body
simulation will tend to be sensitive to the uncertainties in accurate dynamical characterisation
of the haloes.

We investigate these trends further for void galaxies based on their position in the void
(see figs 4.8–4.13) by evaluating their position with respect to the proportional distance from
the elaphrocentre and 5H∩V . The fraction-in-void, 5H∩V , that we introduce here measures the
fraction of dark matter particles that are in the host halo of a galaxy and that are also identified
as lying in a void: 5H∩V is unity for a halo fully located in a void, decreasing to zero for a halo
closer to the densest nodes of the cosmic web. In general, we find more significant trends for
galaxy properties as a function of 5H∩V in comparison to their dependence on the elaphrocentric
distance. One likely contributing fact is that since voids are not perfectly spherical (in particular,
the small voids that we identify in the dark matter distribution tend to have more irregular
shapes), a single void-centric distance is likely to be inaccurate in terms of characterising the
degree to which a galaxy lies in a void. We conclude that 5H∩V is a better measure for the
“voidness” of a galaxy than the galaxy’s radial position with respect to the elaphrocentre.

The slopes indicated in the captions of figs 4.8 and 4.10, for the disk scale length and spin
parameter as a function of 5H∩V , show qualitatively equivalent results to those in Table 4.2,
but with reversed statistical significance. The spin parameter is significantly higher for galaxies
with higher fraction-in-void values 5H∩V , but the disk size is only marginally smaller.

As seen in Table 4.4, we do not measure any significant difference between the three different
centres discussed in the work, the elaphrocentre, the geometric centroid, and the circumcentre,
which are native outputs of revolver. As the void boundaries are set by the density distribution
and thus are independent of the centre, this comparison only makes sense with respect to the
relative radial distance to the void’s centre. We find nearly no galaxies with A/'eff <∼ 0.5, where
differences should show up most strongly, which we suspect is the explanation for the absence
of any significant dependence on the choice of void centre.

Among the many possible extensions to this study of galaxy properties in voids, one possible
improvement would be the replacement of our simulation by a relativistic #-body simulation
(Macpherson et al., 2017; Adamek et al., 2016; Barrera-Hinojosa & Li, 2020), which should, in
principle, better account for the negative curvature inside a void.

The results of chapter 5 are broadly consistent with the finding that void galaxies are
significantly different to galaxies in denser environments. The methods of the two approaches
are similar enough for approximate comparison of the results, although there are differences,
including a significant improvement in the resolution of masses in the Bolshoi simulation,
differing methods of characterising a galaxy as being located in a void, differing statistical
approaches, and better computational reproducibility in the case of our own #-body simulation.

We confirm the higher spin parameter for void galaxies of host halo mass "vir >∼ 1010"�/ℎ,
although void galaxieswith lowermass haloes have lower spin parameters than non-void galaxies.
We also confirm later formation epochs of void galaxies. We do not confirm the smaller disk
scale lengths; a possible explanation is that in the chapter 4 analysis, smaller void disks are a
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proportional effect in relation to lower host halo masses. Interestingly, in the Bolshoi simulation
analysis, we see that the void and non-void galaxy populations in high mass haloes behave
similarly; the differences only occur below "vir ∼ 1010"�/ℎ–1011"�/ℎ.

These results strongly invite observational testing of the statistical properties of void galaxies,
although that is difficult for many reasons. Their number density is low; they themselves are
typically less luminous than non-void galaxies; the numbers of galaxies that are fully located in
voids are much fewer than those near overdense structures; and quantifying galaxies’ identities as
void galaxies is difficult. Large samples of void galaxies will be needed to statistically analyse the
effects of voids on the galaxies forming inside them observationally, and observational surveys
such as that of Beygu et al. (2016) should be strongly encouraged.

The difficulty in characterisation of galaxy voidness is highlighted by the fact that watershed
void finders are space filling, which holds true for both Zobov and SpineWeb. This behaviour
is seen in Table 5.1, where large fractions of the simulated volume are allocated to the voids.
The assumption that walls and filaments are only of side length of one voxel (0.488Mpc/ℎ) in
the Bolshoi simulation analysis is an oversimplification that can be improved in future work.
Some galaxies at the edges of a void are likely to be misclassified. The high fractions of void
galaxies in chapters 4 and 5 suggest that we identify too many galaxies as belonging to voids.
An analysis of the properties in relation to their position in a void, similarly to figs. 4.8–4.13,
would be useful followup for understanding the galaxies studied in chapter 5.

The lower stellar masses found for low-mass galaxies in void environments (see fig. 5.4)
hints that luminosities and colours of low mass void galaxies should differ from those galaxies
found in denser environments. The observations of Hoyle et al. (2005); Patiri et al. (2006) and
Kreckel et al. (2011), who find that void galaxies are bluer, could potentially offer a falsification
of our models, since lower stellar masses would tend to indicate less star formation, and redder
colours. However, this inference is highly qualitative. The results we present in this thesis are
not sufficient to infer the colours of galaxies, as modelling these requires several further steps
that are planned for followup work, but not yet completed.

A straightforward approach will be to add a stellar population synthesis code, e.g. Fioc &
Rocca-Volmerange (2019), that will build upon the mass infall, mass outflow and star formation
history modelled by sage to calculate the spectral energy distribution of each synthetic galaxy.
This approach is only suitable for a small simulation, as presented in chapter 4, as we firstly need
to produce the full matter infall and star formation history for each galaxy and its progenitors,
and secondly need to generate the spectral energy distributions for all the galaxies in the sample.
This is a computationally heavy process in terms of computing time.

Given that we find the several consistent trends between our simulation and the Bolshoi
simulation, it is justified to aim at seeing if void versus non-void galaxy differences in colour
and surface density can be detected in a smaller simulation in a fully controlled and portable
software environment. Combing colour and an estimate of the surface density, we also will be
able to answer the question of whether voids are a favourable environment for LSBG formation.
As argued in Sect. 4.5, the later formation epoch and the higher spin parameter of void galaxies
support the hypothesis that void galaxies are more likely to be LSBGs.

7.2 Geometric optics through voids
In chapter 6 we have described a novel approach to detect structures, namely voids, in the
projected signal of geometric-optics measurements. We establish a heuristic algorithm to detect
voids in the surface overdensity Σ, the averaged weak lensing shear W⊥ and the two Sachs
optical scalars \ and f. We again use a cosmological simulation to generate the lensing signal
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for these four detector variables and compare the detected voids to the intrinsic population of
voids found in the galaxy distribution using the watershed method of revolver. Unsurprisingly,
we find fewer voids in the projected quantities (Table 6.2), most likely due to the difficulty in
distinguishing voids that are nearly concentric in projection on the sky plane. Our proposed
algorithm does not detect multiple void walls.

Firstly, we find that given a three-dimensional void, we can expect to see a void-like structure
also in the projected detector variables. Secondly, we find that given the sky-plane geometric-
optics information alone, the centres of voids estimated in W⊥, \ and |f | using our algorithm
each significantly reveal the existence of the intrinsic three-dimensional void centres (Table 6.3).
Figures 6.1, 6.3, 6.5, and 6.7 illustrate the correspondence in voids centres and show the radial
profiles of voids for our detector variables.

However, the estimates of void radii are very poorlymatched, for all four detector variables.As
for the difficulty in detecting all the three-dimensional voids, we attribute the radius misestimates
to similar causes. One problem is that our method cannot distinguish void walls that are nearly
aligned in projection. A second problem is that the cosmic web is very complex, with many
filaments, walls and clusters, which in projection will tend to obscure the signal that an isolated
void should generate.

These preliminary results appear to be promising. Further development of the algorithm
to check for its use on more realistic observational models to detect voids in the sky plane
would justify its application to observational data, such as the reconstructed surface overdensity
(Jeffrey et al., 2021). A void finder of this sort is only sensitive to the underlying dark matter
distribution and, in principle, only needs two-dimensional a photometric survey. In contrast, the
watershed void finders used in this work are used observationally to detect voids defined by
luminous galaxies in three-dimensional (real or redshift) space.

Here we see the bridge between the different components of this thesis. We show that cosmic
voids should have significant effects on galaxy formation. These effects depend, to some degree,
on the position in a void. Detecting voids in the dark matter distribution directly thus might yield
physically more accurate characterisation of cosmic voids, only dependent on the gravitational
signal found in the geometric optics quantities. This in turn will enable better observational
analysis of characterising which galaxies should be identified as void galaxies.
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