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SUMMARY OF THE WORK 

The goal of this thesis project is to characterize neural correlates of positive and 

negative prediction errors in reward-seeking and punishment-avoidance contexts using 

functional magnetic resonance imaging (fMRI). The first chapters cover the theoretical 

background of reinforcement learning, magnetic resonance imaging, and network 

neuroscience. This is followed by a chapter reporting the methods and results of 

experimental work that characterizes the effects of positive and negative prediction 

errors on behavior, brain activity, and whole brain network connectivity. This was done 

using a probabilistic reversal learning task that was framed in either a reward-seeking or 

a punishment-avoidance context. The behavioral results showed that the learning rate 

differed significantly between negative and positive prediction errors, but not between 

reward-seeking and a punishment-avoidance context. Analysis of the fMRI data 

revealed brain areas in which prediction errors were positively and negatively 

associated with prediction errors. Moreover, network analyses revealed that integration 

among large-scale networks was increased during negative compared to positive 

prediction errors. The findings and limitations of the work are discussed.  

 

STRENGTHS  

• The summary of the theoretical background relevant to this work in chapter 1 is 

excellent. It includes a clear and concise description of classical learning theory 

and an introduction to reinforcement learning models.  

• The commonalities and differences of the Rescorla–Wagner and Temporal 

Difference learning model are well highlighted.  

• The relevant literature on the neurophysiological mechanisms of reward learning, 

including the dopamine prediction error hypothesis is well summarized.  

• The discussion of theoretical problems with punishment-avoidance learning is 

succinct and adequate.  

• The description of the relevant background on the basics of MRI and fMRI in 

chapter 2 is well compiled and includes an adequate discussion of its 

shortcomings and limitations.  



• The review of the previous literature on fMRI-based investigations into neural 

correlates of prediction errors is excellent and displays a thorough understanding 

of the relevant literature. 

• One of the key innovative aspects of this work is the emphasis on prediction 

error-related brain connectivity. Different connectivity methods and previous 

findings using fMRI connectivity analysis to study prediction error signaling are 

well presented.  

• The introduction to network neuroscience in chapter 3 is well conceived. 

Specifically, the introduction to graph theory is excellent and covers the key 

terms and measures to characterize networks. This and the review of the 

literature on large-scale brain networks during rest and task execution 

demonstrates a thorough understanding of the relevant literature. 

• Chapter 4 covers the experimental part of the thesis: a neuroimaging experiment 

using a probabilistic reversal learning task. The hypotheses are clearly stated 

and the experimental design and fMRI data analysis is described in sufficient 

detail.  

• The behavioral probabilistic reversal learning task is well-design and allows for 

an investigation of neural correlates of positive and negative prediction errors in 

both reward-seeking and punishment-avoidance contexts. While previous work 

has addressed similar questions, this provides a sufficiently novel examination 

into the neural correlates of prediction error signaling.  

• A very strong part of the work is the behavioral modeling approach. The 

comparison of four different models is well justified and implemented, including 

the methods for model selection and parameter recovery. A particular strength is 

the Bayesian hierarchical latent-mixture (HLM) parameter estimation procedure.  

• The fMRI data are analyzed to identify brain areas in which activity correlates 

positively or negatively with model-derived prediction errors, and to compare 

these correlates between reward-seeking and punishment-avoidance contexts.  

• The main findings that separate brain systems correlate positively and negatively 

with prediction errors, and that these correlates are similar in rewarding and 

punishing contexts provides an important advance to the literature. 



• The network analysis constitutes a substantial part of the empirical work. It is 

also the most novel contribution.  

• A methodological strength is that the implementation of beta series connectivity 

analysis deviates from its original form by estimating trial-specific responses 

using trial-specific GLMs, as proposed by Mumford et al. (Mumford et al., 2012).  

• The key finding from the network analysis is that the configuration of the whole 

brain network differs between positive and negative prediction errors but not so 

much between reward-seeking and punishment-avoiding contexts. 

• The discussion section provides a mostly appropriate interpretation of the 

findings in the light of dual system, reference point, and Global Workspace 

hypotheses.  

 

WEAKNESSES 

• There appears to be a disconnect between the way positive and negative 

prediction errors are conceptualized in the behavioral and connectivity analyses 

on the one hand, and model-based fMRI analyses on the other. Whereas the 

behavioral and connectivity analyses compare trials with positive and negative 

prediction errors, the model-based fMRI analysis does not consider the sign of 

prediction errors but tests for positive and negative correlations with model-

derived prediction errors, spanning a continuum from negative to positive 

prediction errors. This is obviously not the same as asking what brain areas 

encode positive and negative prediction errors. The analysis as implemented 

cannot reveal brain areas that encode positive and/or negative prediction errors. 

This could only be done by separately testing for prediction error-related 

parametric modulations within trials with (1) positive and (2) negative prediction 

errors. Such an analysis could have four possible outcomes: (1) regions 

correlating positively with positive prediction errors, (2) regions correlating 

negatively with positive prediction errors, (3) regions correlating positively with 

negative prediction errors, (4) regions correlating negatively with negative 

prediction errors. 



• Because prediction errors in the model-based fMRI analysis are not separated by 

sign but span a continuum from negative to positive, this analysis cannot test 

whether positive and negative PEs are encoded in different networks. Insofar, the 

statement on page 101 that “I observed a clear distinction between 

dopaminergic, striatal system signaling positive prediction errors and insular-

frontal system signaling negative prediction errors” is in no way supported by the 

data.  

• Related to the two points above, the model-based fMRI analysis confounds 

prediction error-related signals with the valence of the outcome. Prediction errors 

for positive outcomes (gains in the reward-seeking context and neutral outcomes 

in the punishment-avoidance context) are always positive, whereas prediction 

errors for negative outcomes (neutral outcomes in the reward-seeking context 

and losses in the punishment-avoidance context) are always negative. Thus, 

positive and negative correlations with PEs shown in Figure 4.5. are confounded 

by signals that may have nothing to do with continuous prediction errors but 

categorically differ between positive and negative outcomes. This confound 

complicates the interpretation of the findings presented in Figure 4.5. To avoid 

this confound, the prediction error regressor in the 1st level GLM has to be 

orthogonalized with respect to a dummy regressor that codes for outcome 

valence (i.e., good vs. bad outcome).  

• Correlations between activity and model-derived prediction errors may only 

capture part of the key features of prediction errors, and thus may lead to the 

erroneous conclusion that an area codes prediction errors. This fallacy is avoided 

in the axiomatic testing approach proposed by Rutledge and Glimcher (Rutledge 

et al. 2010). This caveat of a correlative approach deserves to be discussed.  

• The reinforcement learning model incorporates value updating for both the 

chosen and unchosen option (equation 4.2). This explicitly incorporates 

knowledge about the anti-correlated task structure into the model. It is well-

established that such models fit data better than standard RL (Hampton et al., 

2006), but it represents a deviation from standard RW and TD learning and this 

deserves to be discussed.  



 

EVALUATIVE SUMMARY 

Overall, this is a very strong doctoral dissertation. It manages to provide a substantial 

advance in a crowded area of research. A particular strength of the written dissertation 

are the description of the theoretical background, which demonstrates fundamental 

theoretical knowledge in the relevant areas. The behavioral modeling and the network 

analyses demonstrate mastery and innovation in the independent application of this 

theoretical knowledge to new scientific problems. This results in interesting findings that 

will move the field forward. There are weaknesses in the approach of the model-based 

fMRI data analysis that affect the interpretation and conclusions. However, these 

weaknesses are relatively minor compared to the impressive strengths of the other 

parts of the work. Overall, it is my assessment that the dissertation meets the conditions 

set out in Art 187 paragraph 1 and 2 of the Act on Higher Education and Science of July 

20, 2018 (as amended).  

 

APPLICATION FOR DISTINCTION 

Based on the overall quality or the written dissertation, the behavioral modeling, and the 

novel investigation of how prediction error signaling modulates whole-brain network 

connectivity, I believe the doctoral dissertation deserves a distinction.  
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