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Abstract

Learning from trial-and-error is facilitated by prediction errors – signals reflecting
discrepancy between expected and experienced results of our decisions. Positive
prediction errors promote approach behaviors, while negative prediction errors lead
to avoidance. One of the most influential findings of modern neuroscience was the
discovery of prediction error coding in dopaminergic neurons. Using functional magnetic
resonance imaging (fMRI), we can identify brain regions broadcasting prediction errors
in various learning scenarios. In this thesis, I provide a holistic description of prediction
error correlates in the reward-seeking and punishment-avoiding contexts. To elicit and
investigate prediction errors, I used a probabilistic reversal learning task and scanned
a group of healthy subjects using fMRI. I merged three complementary perspectives
– behavioral, localization, and network – to comprehensively characterize the brain’s
implementation of reinforcement learning. On the behavioral level, I found that learning
speed depends only on the sign of the prediction error and not on the experimental
context. In line with the dual system hypothesis, activation analysis localized two
independent sets of brain regions signaling positive-going and negative-going prediction
errors. Whole-brain network analysis revealed a multi-scale community structure
with a separate striatal reward network emerging at a finer topological scale and
a ventromedial prefrontal network emerging at a coarser topological scale. I also
found that the integration between large-scale networks increased when switching from
positive to negative prediction error processing. The pattern of large-scale network
reconfiguration followed the predictions of the Global Workspace hypothesis.





Streszczenie

Uczenie się metodą prób i błędów jest możliwe dzięki błędom predykcji – sygnałom
odzwierciedlającym różnicę pomiędzy oczekiwanym a rzeczywistym efektem naszych
decyzji. Dodatnie błędy predykcji promują powtarzanie wykonanych czynności, pod-
czas gdy ujemne błędy predykcji wytwarzają zachowania unikające. Jednym z na-
jważniejszych sukcesów współczesnej neuronauki było odkrycie kodowania błędów
predykcji w neuronach dopaminergicznych. Przy użyciu funkcjonalnego rezonansu
magnetycznego (fMRI), możemy zidentyfikować obszary przetwarzające błędy predykcji
w różnych sytuacjach decyzyjnych. W mojej pracy przedstawiam holistyczny opis
korelatów błędów predykcji w kontekście kar i nagród. Do wywołania i analizy błędów
predykcji przeprowadziłem badanie fMRI z udziałem zdrowych osób podczas wykonywa-
nia zadania wykorzystującego uczenie probabilistyczne. Połączyłem trzy uzupełniające
się podejścia – behawioralne, lokalizacyjne i sieciowe – aby wyczerpująco scharaktery-
zować implementację uczenia ze wzmocnieniem w ludzkim mózgu. Analiza behawioralna
pokazała, że tempo uczenia zależy jedynie od znaku błędu predykcji i jest niezmienne ze
względu na kontekst nagrody i kary. Zgodnie z założeniami hipotezy dwóch systemów,
analiza aktywacji pozwoliła mi zlokalizować dwa niezależne systemy w mózgu, które
odpowiadają za przetwarzanie dodatnich i ujemnych błędów predykcji. Analiza sieci
funkcjonalnych ujawniła wieloskalową strukturę modularną z osobną siecią nagrody w
mniejszej skali topologicznej i małą siecią brzuszo-przyśrodkową kory przedczołowej w
większej skali topologicznej. Integracja pomiędzy podsieciami funkcjonalnymi zwięk-
szyła się podczas przetwarzania ujemnych błędów predykcji. Wzorzec rekonfiguracji
podsieci okazał się zgodny z przewidywaniami teorii Globalnej Przestrzeni Roboczej.
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Introduction

Human behavior is driven by rewards and punishments. On the most fundamental level,
the goal of our behavior is to maximize rewards and minimize punishments. This goal
is facilitated by our ability to tune our behavior by learning the associations between
actions and consequences. Learning these associations can take different forms. One of
the most essential is reinforcement learning, in which rewarding events cause behavioral
reinforcement, whereas punishing events have an opposite effect. Machine learning
research demonstrated that the critical part of reinforcement learning is the prediction
error signal (Sutton and Barto, 2018). Prediction errors reflect the difference between
the expected and experienced outcomes of our actions. Years of research showed that
the brain implements prediction error coding as a modulation of the phasic activity of
dopaminergic neurons (Colombo, 2014; Montague et al., 1996).

The prediction error sign distinguishes between better-than-expected and worse-
than-expected outcomes and instructs an agent to reinforce or eliminate a particular
action. From the computational perspective, positive and negative prediction errors
arise from the exact underlying computation that considers reward and value functions.
These functions usually map both rewarding and punishing events onto a common scale
ranging from negative to positive. This observation suggests that a single system could
be sufficient for signaling both types of prediction errors. However, the human brain is
a physical system constrained by the laws of physiology. These constraints cast doubt
upon the idea of a single neural circuit broadcasting full prediction error (Palminteri
and Pessiglione, 2017). Researchers suggested that an opponent system carrying a
negative portion of the signal should exist. In line with this assumption, multiple
studies reported brain areas involved in negative prediction error processing outside
the dopaminergic system (Fazeli and Büchel, 2018; Hauser et al., 2015; Yacubian et al.,
2006). However, it is still unknown whether the opponent system can be observed on a
functional network level.

Positive prediction errors usually reinforce actions that lead to rewarding outcomes.
Yet, they can also promote behavior that avoids punishment in adverse environments
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(Nieuwenhuis et al., 2005; Palminteri et al., 2015). An example of this type of prediction
error is a relief from successful avoidance in anxiety disorder. Similarly, negative
prediction errors can also be experienced when an anticipated reward is omitted in a
reward-rich environment. For example, we might feel bad when our colleague gets a
higher pay raise than us, despite the experience of getting raise being generally pleasant.
These effects can be simply explained by the relative context-dependent encoding of
value (Bavard et al., 2018; Rangel and Clithero, 2012). In this encoding type, an agent
continuously adjusts the reference point to which experienced outcomes are compared.
These considerations raise an interesting question of whether both learning systems
signaling positive and negative prediction errors are invariant to the outcome valence.

In recent years, we observed an emergence of a new interdisciplinary field of network
neuroscience. Research within this field demonstrated that functional brain networks
constantly reorganize to meet the demands of various cognitive tasks (Bullmore and
Sporns, 2009). Describing and understanding network dynamics during cognition and
linking it with behavior is a fundamental challenge of cognitive neuroscience (Deco
et al., 2015). Despite numerous studies on neural correlates of prediction errors, the
question of network reconfiguration during prediction error processing is still open.
Up to this day, only few studies investigated functional connectivity of specific brain
areas like the ventral striatum or amygdala during reward and punishment processing.
Moreover, these studies yielded inconsistent answers to whether regions encoding
positive and negative prediction errors share similar or different connectivity profiles
during prediction error processing.

This thesis comprehensively describes neural correlates of prediction errors on
behavioral, activation, and connectivity levels. My goal is to fill the gaps in our
understanding of the reinforcement learning mechanisms implemented in the brain.
Throughout the thesis, I emphasize the network neuroscience perspective since it
provides a complementary description of brain function during cognition and opens a
new exciting area of scientific inquiry. I explain the scientific background of modern
neuroscience of decision making, describing formal computational models of learning
and advanced neuroimaging techniques. I also present the results of my fMRI study on
probabilistic reversal learning in two opposite outcome environments – reward-seeking
and punishment-avoiding.

In Chapter 1, I explain essential mathematical tool and algorithm of reinforcement
learning – Markov decision process and temporal-difference learning. I explain the link
between the formal mathematical model of learning and the dopaminergic system in
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the mammalian brain. I also discuss theoretical problems associated with punishment-
avoidance learning.

In Chapter 2, I describe the method of functional magnetic resonance imaging. I
review existing findings on neural correlates of prediction errors in the human brain,
separately discussing activity and connectivity studies. I accentuate results significant
for the debate on punishment-avoidance learning.

In Chapter 3, I introduce the network theory – a mathematical framework for
describing and investigating real-world networks. I explain the concept of modularity
– the tendency of network nodes to organize into communities. I provide evidence
that modern network neuroscience can expand our understanding of various cognitive
functions.

In Chapter 4, I present the methods and results of my fMRI study. I discuss
findings in light of three hypotheses – dual system, reference point, and Global
Workspace.

I believe that this thesis provides a comprehensive picture of the brain’s implemen-
tation of learning from trial-and-error. My contribution may expand our understanding
of the relationship between reinforcement learning and brain networks. It may also be
an important voice in the debate on punishment-avoidance learning and the brain’s
implementation of negative prediction errors. This knowledge is vital for a better under-
standing of addiction and learning impairments in many mental disorders. Moreover,
it may inspire new developments in artificial learning research.

The study presented in this thesis was supported by:

• ETIUDA scholarship (2020/36/T/HS6/00104) for Ph.D. candidates, funded by
the National Science Centre, Poland.

• PROM scholarship (edition 2019/2020), funded by the National Agency for
Academic Exchange, Poland

• SUPPORTING GRANT for young scientists (1034-F), funded by the Faculty of
Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń,
Poland





Chapter 1

Reinforcement learning

One of the most critical features of intelligence is the ability to learn. An intelligent
agent can learn by interacting with its environment and observing the relationship
between causes and effects. For example, a novice chess player may play random moves
at first and start noticing basic tactical patterns, enabling him to outplay opponents
as he gains more experience. This way, he can learn without an explicit teacher or
guideline. This type of learning, often called reinforcement learning or learning by trial
and error, is undeniably the most prevalent source of information about the surrounding
environment. Studying basic learning principles allows us to understand how the brain
interacts with the environment to acquire new skills and optimize behavior. Also,
advancements in reinforcement learning allow artificial intelligence researchers to build
more effective learning systems.

1.1 The behaviorist perspective on learning

The quest for understanding animal and human learning originated in behavioral
psychology at the beginning of the XXth century. Behaviorists assumed that every
behavior is learned from the environment as a result of stimulus-response associations.
One of the founders of behaviorism, John B. Watson, stated that the purpose of
psychology is “To predict, given the stimulus, what reaction will take place; or, given
the reaction, state what the situation or stimulus is that has caused the reaction”
(Watson, 1930).

In the 1890s, Russian physiologist Ivan Pavlov studied innate reflexes in dogs.
Pavlov measured salivary reflex in dogs exposed to the neutral stimuli – a metronome
sound – followed by the inborn triggering stimuli – food. He noticed that after several
trials, dogs started to salivate to the metronome sound itself, indicating they were
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able to learn the association between consistently paired stimuli (Pavlov, 1928). In
behaviorism’s terminology, dogs learned to elicit a conditioned response (CR) to the
initially neutral stimulus that became conditioned stimulus (CS) after reliable pairing
with natural triggering stimulus called unconditioned stimulus (US). This form of
learning is called classical or Pavlovian conditioning. Classical conditioning is the
mechanism of learning about predictive relationships between stimuli and anticipating
events essential for the organism’s survival.

Further investigation of the classical conditioning phenomenon led to discovering
additional properties of this form of learning: blocking and higher-order conditioning.
Blocking is the inability to learn new CR when a potential CS is presented together
with another CS that has already been paired with US (Kamin, 1969). In other words,
Pavlov dogs initially conditioned to salivate on the metronome sound would fail to
learn the association between other neutral stimuli, e.g., a flash of light, and food, if
the flash would be presented along with the sound. Learning the light would have been
blocked by the initially learned association. Higher-order conditioning is the ability
for CS to act as US conditioning other initially neutral stimuli. For example, Pavlov
described an experiment where a dog was first conditioned to salivate to the sound of
the metronome, and then another neutral stimuli – black square – was paired with the
sound of the metronome but without following food reward. After few trials, the dog
began to salivate upon seeing the black square despite the lack of inherently rewarding
stimulus in all trials in which the black square occurred. This phenomenon is called
second-order conditioning.

The discovery of various properties of classical conditioning posed a problem of
theoretical explanation accounting for observed data. Search for the mathematical
model of classical conditioning resulted in early behaviorist theories that later inspired
the research in reinforcement learning. In 1972, Robert A. Rescorla and Allan R. Wagner
created an influential mathematical model of classical conditioning (Rescorla and
Wagner, 1972). The Rescorla-Wagner model (RW) assumed compound CS consisting
of two components, A and X (e.g., the metronome sound and the black square). The
model introduced the associative strength of each component stimulus – a single number
representing how reliably that component can predict a rewarding event. According to
the RW model, the animal adjusts the associative strength of component A (VA) and
X (VA) according to:

∆VA = αAβ(λ− VAX)
∆VX = αXβ(λ− VAX) ,

(1.1)
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where αA and αX are the salience parameters of components A and X, β is the rate
parameter for the rewarding stimuli, λ is the maximum associative strength that the
US can support, and VAX = VA + VX is the aggregate associative strength for the
entire compound stimulus. The RW model introduced a novel assumption that animals
learn only in situations in which they are surprised – i.e., the term λ− VAX is nonzero.
The idea that learning relies on the difference between the reward that an organism
experiences and the reward it expects based on past events, turned out to be key
to understand basic principles of learning and decision-making (Bush and Mosteller,
1951).

This RW model provided an elegant explanation for blocking – after the initial
phase of pairing stimulus A with the US, associative strength VA reaches an asymptotic
value of λ which results in λ − VAX = 0 even after introducing stimulus X. This is
equivalent to the perfect prediction of the future state, implying ∆VX = 0, reflecting
blocking any potential changes in associative strength of stimulus X.

The RW model provided a quantitative explanation of some classical conditioning
phenomena and motivated researchers to search for better mathematical models of
learning. However, the RW model had its limitations. Being a trial-level model – a
model ignoring any possible between-trial interactions – the RW model failed to explain
higher-order conditioning. In the following section, I introduce the Markov decision
process – the mathematical framework of the temporal-difference model of learning.
The temporal-difference model can be viewed as an extension of the RW model with
timing effects between stimuli.

1.2 Markov decision process

Studying reinforcement learning models requires one to formally define the problem
that learning agents are trying to solve. In other words, to model learning and decision-
making, we first need to provide a model of the interactions between the agent and
his environment. This model should be simple enough to be manageable for precise
mathematical analysis while still providing enough flexibility to cover many real-world
learning setups. The Markov decision process (MDP) fulfills both of these criteria.
MDP is a mathematically idealized model of sequential decision-making in which an
agent’s actions can influence immediate and delayed consequences (Sutton and Barto,
2018). This property introduces the temporal dependency between the events faced
by the agent that needs to be taken into account while modeling animal and human
learning.
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action

Agent

state reward

Environment

Fig. 1.1 System described by the Markov decision process. At each timestep,
an agent is observing the state of the environment St and selects an action At which
result in numerical reward Rt+1 and the transition of the environment to the new state
St+1.

The MDP is a chain of interactions between the agent and the environment (Fig.
1.1). The agent is a learner, i.e., a conditioned dog, a novice chess player deciding which
move to play, or an automatic cleaning robot vacuuming the carpet when no one is home.
The environment represents everything outside of the agent that is relevant to the
modeled problem. The MDP consist of a sequence of discrete timesteps t = 0, 1, 2, . . . .
At each timestep, the agent observes the current state of the environment St ∈ S and
chooses an action At ∈ A. The action selected by the agent results in a numerical
reward, Rt+1 ∈ R, and the transition to the next state St+1. Then the cycle of state,
action, and reward repeats. Here I will only consider a finite MDP characterized by
finite sets of states S and actions A. The most important property of the MDP is, as
the name implies, the Markov property:

P [St+1 | St] = P [St+1 | S1, . . . , St] , (1.2)

in which P [St+1 | St] is the probability of the environment transitioning into the new
state s = St+1. The Markov property indicates that the process of agent-environment
interactions is memoryless, i.e., the new state of the system is independent of the entire
system history, and only the current state influences the transition probability. The
Markov property is the simplification required to ensure the mathematical tractability
of the decision process.

The full information about the MDP can be described by two functions: the
state-transition probability function, and the reward function. The state-transition
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probability function is defined as conditional probability that environment transitions
to the state s′ given that the agent chooses the action a in the state s:

p(s′ | s, a) = P [St+1 = s′ | St = s, At = a] . (1.3)

The state-transition probability function completely describes how evolution of the
state can be influenced by the agents actions. The reward function describes the
expected immediate reward after choosing the action a in the state s:

r(s, a) = E [Rt+1 | St = s, At = a] . (1.4)

The MDP framework is a highly flexible abstraction that allows researchers to
model various decision-making and learning scenarios. For example, we might use it to
describe a game of chess. In this case, the state would be equivalent to the current
position of all pieces; the action would be the move selected by the player, and the
reward signal would be one if the game is won or zero otherwise. It is important to
note that this particular mapping of the real-world situation to abstract mathematical
objects is not unique in any way. It might be useful for a computer scientist trying to
develop a new chess engine but impractical for a psychologist trying to understand how
psychological factors can impact a chess player’s performance. For a psychologist, it
might be appropriate to include psychological factors in the state representation to take
into account the fact that the player’s mental state can influence his decisions, hence
affecting the next state. Regardless of the particular representation of the real-world
problem, the main idea of the MDP stays the same – there are three discrete signals:
state signal representing the situation the agent is facing, action signal representing
the choices made by the agent, and the reward signal expressing the agent’s goal.

1.3 Temporal-difference learning

A precise mathematical formulation of the sequential decision-making problem in the
form of the MDP allows one to ask the following question: what is an effective and
biologically plausible way to solve the MDP? We might first ask what properties
should characterize a potential solution. First, it should take into account temporal
dependencies between states and actions. In many real-world scenarios, agents trying
to maximize long-term rewards must ignore the immediate consequences of their
actions. For example, a chess player may sacrifice his most powerful piece to begin
a devastating attack on the enemy king. This behavior is possible only if the agent
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appreciates complex trajectories in the environment’s state space. Second, the ideal
model should offer a generalization of the previously successful model – the RW model
in this case. The new model should explain some phenomena that previous models
failed, i.e., higher-order conditioning, while still maintaining the predictive power that
the previous model offered. Third, the model needs to be biologically plausible – it
should be possible to map between the elements of the model and some biological
process.

The first step to find the desired solution is to state the agent’s goal precisely.
In other words, we need to answer the question, What does it mean to solve the
MDP – using rigorous mathematical terms? Solving the MDP can be broken down
into two distinct components: prediction and control. Prediction involves evaluating
the future rewards given some fixed strategy of an agent, whereas control focuses on
tuning the agent’s strategy to maximize the future rewards. To simplify, I will focus
on the prediction component of the complete reinforcement learning problem. All
classical conditioning experiments involve learning but not decisions so that they can
be modeled as prediction processes. Formally, the prediction problem can be studied
within the Markov reward process framework – the MDP without actions. The Markov
reward process can arise if we combine the MDP with some fixed strategy of an agent,
called policy, which is a probabilistic mapping from states to actions:

π(a | s) = P [At = a | St = s] . (1.5)

The inclusion of the policy makes the state-transition probability function and the
reward function independent of actions that are now controlled by the probabilities
π(a | s). A learning agent’s goal, assuming a fixed policy, is to estimate the expected
value of future rewards:

v(s) = E
[
Rt+1 + γRt+2 + γ2Rt+2 + . . . | St = s

]
, (1.6)

where v(s) is called the value function, and γ ∈ [0, 1] is the discountfactor. The
discount factor should be included for several reasons. The first reason is purely
mathematical – in cyclic MDPs, the sum of undiscounted rewards Rt+1 + Rt+2 + . . .

can be infinite. Second, discounting essentially neglects the distant future, which
can account for the inherent uncertainty related to long predictions. Third, it is well
established that animals and humans show a strong preference for immediate rewards
(Vanderveldt et al., 2016). The value function captures important information for
the decision-maker – it quantifies how good a certain state is. If the value function
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is accurate, an agent can effectively make the best decisions by greedily picking an
action that moves the environment to the state with higher value. For example, in the
game of chess, the value function can be used to evaluate a chess position – e.g., if the
enemy king is a few moves away from being check-mated, the value function of the
agent’s position will be high (close to one if we assume that winning leads to a reward
RT = 1). Successful evaluation of the position enables an agent to play moves that
increase the value function. A fundamental property of the value function is that it can
be recursively expressed as an expectation of the immediate reward plus discounted
value of the next state:

v(s) = E
[
Rt+1 + γRt+2 + γ2Rt+3 + . . . | St = s

]
=

= E [Rt+1 + γ(Rt+2 + γRt+3 + . . . ) | St = s] =
= E [Rt+1 + γv(St+1) | St = s] =
= r(s) + γE [v(St+1) | St = s] ,

(1.7)

where r(s) = E [Rt+1 | St = s] is the reward function for the Markov reward process.
This formula is known as the Bellman equation, and it is fundamental for reinforcement
learning (Sammut, 2010). It allows reducing the possibly infinite sum Rt+1 + γRt+2 +
γ2Rt+3 + . . . into the simple expression reflecting the relationship between the value
function in two consecutive states. The Bellman equation expresses practically useful
intuition – an agent can easily confirm that he learned the correct value function only if
an estimated value of any given state equals the sum of the immediate reward plus the
discounted value of the successor state. This intuition provides a basis for a learning
rule for estimating value function from experience. Let’s call an agent’s estimate of
the value function V (s) to distinguish it from the true value function v(s). The goal of
learner is to find V (s) = v(s) ∀s ∈ S. The Bellman equation suggests that trial-wise
learning can be achieved by estimating the discrepancy between right and left-hand
side of (1.7) and using this value as a correction signal to nudge V (s) towards v(s)
(Sutton, 1988). This correction signal is called the temporal-difference (TD) prediction
error (PE) and it can be calculated as:

δt = Rt+1 + γV (St+1)− V (St) , (1.8)

where Rt+1 is the experienced reward at time step t + 1. Note that the agent uses a
piece of experience received from the environement in a form of sample reward Rt+1

to update his own estimate of the value function. After observing the cycle of state,
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reward and succesor state, agent can compute δt and use it to update the estimated
value for the state St:

V (St)← V (St) + αδt , (1.9)

where α ∈ [0, 1] is the learning rate parameter controlling the rate of changes of V (s).
The sign of δt carries important information for the learner – it reflects whether the
experienced reward was higher or lower than the anticipated reward. If the experience
turned out to be better than expected, the value function was understated, and it
needs to be increased; otherwise, the value function was overestimated, and it needs to
be decreased.

The temporal-difference prediction error has a strikingly similar structure to the
Rescorla-Wagner learning rule. We can change the notation used in the RW model to
match the MDP framework and reexpress (1.1) as:

δt = Rt+1 − V (St), (1.10)

where λ is now recognized as a reward signal Rt+1, associative strength VAX is the value
function in the state represented by stimuli A and X and the change in associative
strength ∆V is now the update term for the value function. Now it is visible that the
only difference between the RW error and the TD error is the addition of the term
γV (St+1) in the latter. This difference reflects the essence of both models: the RW
model aims to maximize only the immediate reward Rt+1 neglecting the possibility of
higher delayed rewards resulting from temporal dependencies between states, whereas
the TD model aims to maximize the sum of both immediate and delayed rewards. It
turns out that the TD model offers an elegant explanation of high-order conditioning
– a property of classical conditioning that the RW model failed to explain (Seymour
et al., 2004).

In this section, I showed that the TD model offers a valuable solution to the MDP
problem because it considers temporal dependencies between states, allowing an agent
to maximize both immediate and delayed rewards. Moreover, the TD model can be
viewed as a generalization of the RW model, providing a concise explanation for the
high-order conditioning phenomenon. In the next section, I will describe a striking
correspondence between the TD model and the dopaminergic system in the brain. This
correspondence serves as the biological foundation of the TD model and its relevance
to the explanation of animal and human learning.
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1.4 Dopamine reward prediction error hypothesis

Dopamine neurons in the brain reside primarily in small nuclei in the midbrain and the
brainstem from which they send widespread connections to the striatum, amygdala,
hippocampu,s and frontal cortex (Fig. 1.2A). What is the function of these neurons?
Years of research in this area converged on the two processes related to dopamine
– movement control (Cenci, 2007) and appetitive behavior and reward processing
(Wise, 1982). Dopamine neurons have been famously called the brain’s reward system
because of their reinforcing capabilities observed in the direct brain self-stimulation
experiments in rats and various drug addictions (Wise, 1996). However, the reward
system hypothesis was recently refined by observing an astounding connection between
the phasic activity of the dopamine neurons and the temporal-difference prediction
error.

In the 1980s and 1990s, neurobiologist Wolfram Schultz conducted a series of classical
conditioning experiments with macaque monkeys. He recorded phasic responses of
monkey’s dopaminergic neurons related to the administration of the reward (droplets
of the grape juice) in three types of trials: unexpected reward trials, expected reward
trials, and expected reward trials with the omission of the reward (Schultz, 1986). In
the expected reward trials, about 1s before reward administration, monkeys received a
cue acting as a conditioned stimulus predicting reward. During the unexpected reward
trials, dopaminergic neurons responded to the appearance of the reward, whereas during
the expected reward trials, they responded shortly after the appearance of the cue.
Moreover, in the expected reward trials with the omission of the reward, when monkeys
noticed that the expected reward is missing, their dopaminergic neurons decreased
firing rate below the baseline (Fig. 1.2B). This data suggested that dopaminergic
neurons do not respond to the reward itself, but rather their response to the reward
is modulated by the animal predictions about the reward. This puzzling pattern of
dopaminergic neurons activity was initially explained in terms of “attentional and
motivational processes underlying learning and cognitive behavior” (Schultz et al.,
1993). However, this explanation was not satisfactory or convincing since it was not
grounded in any significant learning or decision-making theory.

In the early 1990s, the dopaminergic neurons response pattern was recognized as the
TD prediction error (Montague et al., 1993; Montague, 2007). To better understand the
connection between TD prediction error and dopamine, it is worth looking at Schultz’s
experiment from the reinforcement learning perspective. Let us assume that the droplet
of juice acts as a reward signal R = 1 and that the experiment is modeled as the
Markov reward process without discounting, i.e., with γ = 1. The experiment can be
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A B

Fig. 1.2 Prediction error signaling in dopaminergic system. (A) The anatomy
of the reward circuit illustrating the main structures and pathways. Amy - amygdala;
dACC - dorsal anterior cingulate cortex; dPFC - dorsal prefrontal cortex; Hipp -
hippocampus; LHb - lateral habenula; hypo - hypothalamus; OFC - orbital frontal
cortex; PPT - pedunculopontine nucleus; S - shell, SNc - substantia nigra, pars
compacta; STN - subthalamic nucleus.; Thal - thalamus; VP - ventral pallidum; VTA
- ventral tegmental area; vmPFC - ventral medial prefrontal cortex. Figure from
Haber and Knutson (2010). (B) Phasic activity of dopamine neurons during classical
conditioning experiment. CS - conditioned stimulus; R - reward. Figure from Schultz
et al. (1997).
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characterized by two states: Sbase when monkey waits for the next event, and Scue when
the cue is presented to the monkey. After the conditioning phase, the monkey learns
that the cue predicts the reward, so the estimated value of the state with the cue is
close to the value of the reward, V (Scue) ≈ R = 1. On the other hand, the state Sbase is
the neutral baseline with V (Sbase) ≈ 0. After receiving the unexpected reward, the TD
prediction error can be calculated as δ = R + V (Sbase)− V (Sbase) ≈ 1. In the expected
reward trial, when the cue is presented environment’s state changes from Sbase to Scue.
This change elicits the prediction error δ = V (Scue) − V (Sbase) ≈ 1. Then, the cue
disappears, which is reflected by the environment transitioning back to the state Sbase.
If the reward is administered during that transition, the prediction error is close to zero,
δ = R + V (Sbase)− V (Scue) ≈ 0, otherwise it is negative, δ = V (Sbase)− V (Scue) ≈ −1.
It is now apparent that the phasic activitiy of monkey’s dopaminergic neurons perfectly
reflects the TD prediction error – the firing rate increases when δ > 0, decreases when
δ < 0, or remains on the baseline when δ ≈ 0. The statement that phasic activity of
dopaminergic neurons broadcast the prediction error learning signal was encapsulated
with the reward prediction error hypothesis (RPEH) of dopamine.

Over thirty years of research provided converging evidence in favor of RPEH.
Prediction error signal carried by the dopaminergic neurons was recognized in monkeys
(Bayer and Glimcher, 2005; Nakahara et al., 2004; Satoh et al., 2003), rats (Oyama
et al., 2010; Roesch et al., 2007) and humans (Zaghloul et al., 2009). Moreover,
dopamine responses in the striatum turned out to be consistent with the TD model
predictions in classical conditioning experiments with blocking (Waelti et al., 2001).
Other experiments have shown that phasic dopamine activity is scaled by both reward
magnitude and reward probability related to the specific cue (Fiorillo et al., 2003).
This probability-scaling effect is also predicted by the TD model – cue that more
reliably predicts future reward is associated with the state with a higher value, hence
the signaled prediction error δ = V (Scue)− V (Sbase) is higher.

The RPEH is considered as “one of the largest successes of computational neuro-
science” (Colombo, 2014). RPEH provided a deep and elegant explanation of animal
learning and inspired a new area of neuroscientific inquiry. Despite its undeniable
success RPEH also has limitations like any scientific theory. For example, the RPEH
was mainly verified in the setting with rewards and without punishments. How-
ever, it is well known that animals can effectively learn how to avoid punishments.
This observation raises the question – how the brain dopaminergic system implements
punishment-avoidance learning? In the following section, I will shed light on this issue
by presenting recent research on punishment-avoidance learning.
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1.5 Punishment-avoidance learning

According to behaviorism, punishment is any intervention that reduces the likelihood
of repeated animal behavior. For behaviorists, punishment and reinforcement act
like two opposite forces that either decrease or increase preceding behavior. Our
conscious experience as human beings also shows that rewards and punishments
relate to two unique categories of events and trigger distinct emotions and behaviors.
However, the computational perspective on learning does not impose that rewards and
punishments must be considered as separate categories. For example, in TD learning,
it is perfectly reasonable to represent rewards and punishments as values from a single
continuum ranging from negative to positive. Using that approach, one can simply
model punishments as negative rewards R < 0. On the other hand, physiological
constraints suggest that a single dopaminergic system may not be sufficient to represent
negative prediction errors effectively (Bayer and Glimcher, 2005). Specifically, according
to neurophysiological experiments, negative prediction errors are encoded as suppressed
phasic activity of dopaminergic neurons (Fig. 1.2B). However, since these neurons’
baseline activity (action potential frequency) ranges between 2-10Hz and phasic activity
following the onset of the stimulus can reach up to 30Hz, the possible range of
suppression is much narrower than the available range of activation. In other words,
negative prediction errors cannot be precisely encoded because the firing rate is always
above zero.

Several hypotheses have been proposed to reconcile these conflicting observations
(Fig. 1.3A) (Palminteri and Pessiglione, 2017):

• Single system hypothesis. The first hypothesis postulates that only one
dopaminergic learning system is responsible for broadcasting positive and negative
PEs. According to this hypothesis, negative PEs are encoded as the duration
of the suppressed baseline activity of dopaminergic neurons (Maia and Frank,
2011).

• Gradient hypothesis. The second hypothesis, similarly to the first hypothesis,
states that only one dopaminergic learning system exists, but different parts of
this system encode rewards and punishments as increased phasic activity of the
neurons. Specifically, the assumption is that ventral parts of the striatum are
signaling rewards, whereas dorsal parts are responsible for punishment-avoidance
behavior (Seymour et al., 2007).
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• Serotoninergic opponent system hypothesis. The third hypothesis assumes
that the opponent system uses neuromodulator serotonin to signal negative
prediction errors. The serotoninergic system is well known for its impact on
decision-making and avoidance learning (Homberg, 2012).

• Dual systems hypothesis. The fourth hypothesis states that negative predic-
tion errors are signaled by other cortical and subcortical structures not directly
related to dopaminergic or serotoninergic systems. The precise organization
of this negative prediction-error network is still a matter of debate, but recent
meta-analysis has shown that aversive outcomes are reflected by increased activity
of dorsomedial cingulate cortex, bilateral anterior insula, bilateral dorsolateral
prefrontal cortex, thalamus, and amygdala (Fouragnan et al., 2018). Moreover,
several animal studies using different experimental paradigms suggested that
these regions are implicated in avoidance behaviors (Hayes et al., 2014).

The behavioral data analysis suggests the difference in processing positive and
negative prediction errors supporting the dual systems hypothesis. Many studies have
shown that the magnitude of the TD update in equation (1.9) is biased depending
on the sign of the prediction error (Frank et al., 2007; Gershman, 2016; Gershman
et al., 2009). The standard TD model does not offer the mechanism to treat positive
and negative prediction errors differently. A common practice to incorporate the
assumption of different neural substrates of reward-seeking and punishment-avoidance
learning is introducing differential learning rates to the model (Frank et al., 2007).
Differential learning rates for positive and negative prediction errors allow asymmetric
value updates, explaining risk preference effects (Niv et al., 2012). For example, higher
learning rates for positive prediction errors lead to risk-seeking behavior. However, it
is unclear whether differential learning rates should distinguish between positive and
negative prediction errors, rewards and punishments, or both.

Even though all four hypotheses are mutually exclusive, one can find evidence to all
of them. According to Palminteri and Pessiglione (2017), this complicated picture can
result from an improper separation between outcome valence and prediction error sign
in most of the experiments. The distinction between rewards and punishments and
between positive and negative prediction errors is orthogonal to one another because
both types of prediction errors can arise in a purely rewarding or punishing context
(Fig. 1.3B). In the reward-rich environment, a smaller reward or the omission of the
reward will result in a negative prediction error. On the other hand, in the context of
prevailing punishments, successful avoidance will result in a positive prediction error.
The conflicting results on the opponent system may arise due to confounding outcome
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Fig. 1.3 Punishment-avoidance learning. (A) Main hypotheses on punishment-
avoidance learning implementation in the brain. Red links are the connections within
the punishment-avoidance system, whereas green links correspond to the reward-seeking
circuit. 5HT - serotonin; DA - dopamine; dACC - dorsal anterior cingulate cortex;
dDA - dorsal dopamine; DS - dorsal striatum; dVTA - dorsal VTA; PFC - prefrontal
cortex; SNpc - substantia nigra pars compacta; vDA - ventral dopamine; vmPFC
- ventromedial PFC; VS - ventral striatum; VTA - ventral tegmental area; vVTA -
ventral VTA. Figure from Palminteri and Pessiglione (2017). (B) Classification of
prediction errors along two orthogonal directions – prediction error sign and outcome
valence. Both types of prediction errors can occur in a purely rewarding or punishing
context.
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valence changes with prediction error sign changes. Therefore, it is critical to design an
experimental paradigm carefully to delineate between four types of prediction errors
and distinguish between different kinds of changes.

It is still largely unknown along which experimental axis – outcome valence axis
or prediction error sign axis – brain systems are organized. Several theories have
been formulated to explain decision-making in rewarding and punishing contexts. A
common theme among these theories revolves around a reference effect (Rigoli, 2019).
The reference effect hypothesis states that the value of our decisions is not constructed
in absolute terms but arises as the average stimulus value encountered in the past.
It has critical implications for choice and learning processes. The reference effect is
implicitly embedded in classical theories of choice like Expected Utility Theory or
Prospect Theory (Camerer and Loewenstein, 2011; Kahneman and Tversky, 1979), and
in the TD model of learning. If the reference effect determines the reward system’s
organization, the system should be sensitive to changes of prediction error signs but
not outcome valence. Changing between reward-seeking and punishment-avoiding
environments would be accompanied by the system’s adjustments of the reference
point, called normalization, allowing valence invariant processing of prediction errors.

The reference effect and normalization were recently demonstrated by behavioral
studies on context-dependent choice (Khaw et al., 2017; Louie et al., 2013). Some
studies provided evidence of the reference effect in the brain. For example, Rigoli
et al. (2016) used fMRI to examine brain responses during a gambling task with
two different reward distributions. They showed that value responses in the ventral
tegmental area/substantia nigra and hippocampus were context-dependent. Moreover,
this context-dependence effect increased with an increased contextual influence on
choice. In another study, Park et al. (2012) investigated prediction errors elicited
by Pavlovian cues for different lotteries and monetary payoffs. They found that the
ventral striatum signaled normalized prediction errors consistent with the reference
effect assumptions. This finding suggested that context-dependent normalization of
prediction errors during learning is equally important as value normalization during
choice (Rangel and Clithero, 2012).

In summary, punishment-avoidance learning is not fully understood because most
research on reinforcement learning focused on positive reinforcement using the reward
context. The essential question to understand how the brain implements punishment-
avoidance behaviors is to delineate between outcome-valence changes and prediction
error sign changes and describe how brain systems are organized in relation to this
distinction. In the next chapter, I will review essential findings on the neural correlates
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of prediction errors in the human brain, emphasizing the difference between different
types of prediction errors and methodological approaches.



Chapter 2

Human brain imaging of prediction
errors

The formulation of the reward prediction error hypothesis and converging evidence from
electrophysiological studies supporting RPEH had an immense impact on the field of
decision-making and learning. The astonishing connection between a relatively simple
computational model of learning and neural signaling of a specific group of neurons
encouraged neuroscientists to investigate this connection using various neuroimaging
modalities. One of these modalities is functional resonance magnetic imaging, offering a
noninvasive means of examining cortical and subcortical brain activity under changing
experimental conditions. The non-invasiveness and the ability to study subcortical
areas made fMRI a perfect candidate for a tool to investigate PE processing in humans.
In this chapter, I will describe basic fMRI principles and methodology enabling the
investigation of neural correlates of prediction errors. I will also review critical findings
on human prediction error processing with an emphasis on punishment-avoidance
learning.

2.1 Functional magnetic resonance imaging

Functional magnetic resonance imaging allows measuring brain activity by detecting
blood flow fluctuations. The fMRI technique was developed in the early 1990s by
Seiji Ogawa’s group at Bell Laboratories (Ogawa et al., 1990). Since its invention,
it has become a prevailing experimental technique in cognitive neuroscience. fMRI
combines an image generation process from magnetic resonance imaging (MRI) with
the knowledge of metabolic changes following brain activity.
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The MRI technique relies on the quantum magnetic resonance process. Resonance
can only occur within a powerful static magnetic field generated by MRI scanner.
Modern scanners use superconducting magnets to produce static fields of usually 1.5, 3,
or 7 Tesla. When a person’s brain, composed of ∼75% of water (Mitchell et al., 1945),
slides in the MRI scanner, hydrogen atom’s nuclei, i.e., protons inside water molecules
interact with the scanner’s static magnetic field by aligning their spin in the same
direction as the external field. Due to the interaction between magnetic momentum
and external magnetic field, spins precess around the external field axis with Larmor
frequency:

ω0 = γB0 (2.1)

where γ is gyromagnetic ratio equal to 42.58MHz
T for hydrogen nucleus, and B0 is strength

of an external field. Furthermore, nuclei spin energies split into two states: low-energy
state with spin parallel to the field and high-energy state with spin antiparallel to
the field. This spectral splitting is called the Zeeman effect. In the equilibrium state,
populations of both states are uneven, with slightly more nuclei occupying low-energy
state (Landini et al., 2018).

All individual spins sum up to a net magnetization vector, M⃗ . In the absence of an
external magnetic field, the random orientations of individual spins cancel out, and
|M⃗ | = 0. However, when a static field is present, nonzero net magnetization arises due
to the surplus of nuclei occupying a low-energy state. This magnetization is parallel
to the external field. The component of the M⃗ parallel to the external field is called
longitudinal magnetization M∥. The other component of the net magnetization, per-
pendicular to the field axis, is called transversal magnetization M⊥. In the equilibrium
state, M⊥ = 0, because individual spins precess out of sync canceling each other on
the plane perpendicular to the field axis.

After the brain is placed inside the scanner, a specialized set of radiofrequency coils
emits an electromagnetic wave, called RF pulse, that matches the Larmor frequency of
hydrogen nuclei. Emitted RF pulse resonates with nuclei affecting net magnetization
vector M⃗ in two ways. First, a subpopulation of nuclei changes from the low-energy
state to the high-energy state. In turn, more spins from a high-energy state are aligned
antiparallel to the field, decreasing longitudinal magnetization M∥. Second, individual
spins start to precess in phase, which builds up transversal magnetization M⊥. By
adjusting the parameters of the RF pulse, one can influence net magnetization M⃗ in
multiple ways. For example, the 90° RF pulse tilts net magnetization by 90° causing
longitudinal magnetization to disappear, while the 180° RF pulse flips over both the
transverse and longitudinal components of the net magnetization.
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Fig. 2.1 MRI physics. Nuclear magnetic resonance process. (A) Random nuclear
spin orientation without external magnetic field. (B) Nuclear spin alignment in
magnetic field B⃗0 leads to longitudinal net magnetization M⃗ . (C) Larmor precession.
(D) Zeeman effect for hydrogen nucleus. (E) 90° RF pulse flipping net magnetization
vector. (E) Relaxation process generating free induction delay (FID) signal.

After a brief duration, the RF pulses are turned off, and nuclei begin returning to
their equilibrium state in the process of relaxation. The time needed to go back to an
equilibrium differs between both types of magnetization. For longitudinal relaxation, a
time constant T1 determines the pace at which initial M∥ is rebuilt. A similar time
constant, T2, denotes the pace at which transversal magnetization decays due to spin
precession decoherence. During these relaxation processes energy is released from the
brain tissue in the form of electromagnetic waves. Receiver coils can then measure
these waves as free induction decay (FID) signals. Different types of RF pulses are
usually combined into a sequence to create different MRI contrasts. Each contrast is
individually tuned to capture between-tissue differences in relaxation times T1 or T2.

In real systems, transversal magnetization decays at a quicker pace than T2 suggests.
Local inhomogeneities of the magnetic field lead to more rapid dephasing of spins
aligned by 90° RF pulse. This shorter transversal relaxation time, T2*, forms the basis
of functional MRI. The relationship between T2 and T2* is given as:

1
T ∗

2
= 1

T2
+ γ∆B0, (2.2)
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where ∆B0 is the difference in local field strengths (Chavhan et al., 2009). Local
magnetic field inhomogeneities have non-random component reflecting a map of the
chemical environment within the brain. For example, they can be used to measure a
concentration of oxygenated and deoxygenated hemoglobin. This is possible because
both types of hemoglobin have different magnetic properties: oxygenated hemoglobin is
diamagnetic, whereas deoxygenated hemoglobin is paramagnetic (Glover, 2011). Local
magnetic field inhomogeneities can be measured using a spin echo (SE) sequence. In the
SE sequence, the 90° RF pulse is followed by 180° RF pulses flipping net magnetization
and causing spins dephased by T2* effects to rephrase. Rephased spins generate echoes
that can be registered by receiver coils and used to recreate a T2* weighted brain
image.

By measuring rates of concentration of oxygenated and deoxygenated hemoglobin
reflected by T2* image, one can indirectly infer brain activity due to the hemodynamic
response mechanism. The hemodynamic response is the rapid delivery of oxygenated
blood to active neuronal populations. It is crucial for brain sustainability since neurons
do not have their reservoir of oxygen and glucose but quickly deplete their energy
when active. The hemodynamic response is modeled by the hemodynamic response
function (HFR), which reflects expected blood-oxygenation-level-dependent changes
(BOLD) following increased neuronal activity. Neuronal activity can be recovered using
different modeling techniques from collected T2* images reflecting the BOLD signal.

In the following sections, I will introduce two complementary approaches to modeling
BOLD signals. The first approach aims to discover brain activity correlated with latent
cognitive processes. It is suitable for identifying brain regions signaling increasing and
decreasing prediction errors in reward-seeking and punishment-avoiding environments.
The second approach is a method for quantifying functional associations between
brain regions during task execution. It allows the examination of task-modulated
connectivity, and can be used to investigate brain network reconfiguration related to
switching between positive and negative prediction errors and between reward-seeking
and punishment-avoiding task conditions.

2.2 Prediction error-related activity

The discovery of prediction error coding in dopaminergic neurons using single-unit
recording motivated a search for BOLD correlates of prediction errors. The non-
invasiveness and flexibility of fMRI allowed researchers to ask more detailed questions
about brain implementation of prediction errors. One of the most intriguing questions
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concerned the debated issue of punishment-avoidance learning – Does the brain
employ one or two prediction-error signaling networks? To provide the answer,
researchers developed a model-based fMRI approach. It relies on correlating precom-
puted computational model variables against BOLD signal from a subject performing
a cognitive task involving learning the value of the stimuli.

2.2.1 Model-based fMRI

The model-based fMRI approach extends a traditional activation analysis commonly
employed to find brain regions involved in the cognitive process in question. However,
while an activation analysis merely answers the question “where” a particular cognitive
process takes place, the model-based analysis tackles both “where” and “how” questions
(O’Doherty et al., 2007). Specifically, it tries to answer how a process is implemented,
providing invaluable insights for improving theoretical models of cognition.

Before model-based fMRI, decision-making and learning neuroscience relied on
either behavioral data or animal studies to discriminate between competing theories.
Behavioral data was sufficient to measure latent variables in simple learning models
like the Rescorla-Wagner model. In the RW model, an associative strength was simply
estimated as the strength of conditioned response. However, as the models had become
more complex and involved multiple latent processes interacting to produce behavior,
the sole behavioral approach became less efficient. For example, in the temporal
difference model, learning rates may be indirectly measured using learning curves, but
prediction errors usually remain unobservable if only behavioral data is used (Rescorla,
2002). To observe what has been previously hidden, one can use the model-based
approach by finding BOLD signals correlated with prediction errors. Furthermore, this
approach provides an additional source of data – a compelling source of evidence for
competing theories.

The backbone of the model-based fMRI method is a computational model providing
mapping from task stimuli to the behavioral responses. In other words, a proper
computational model can simulate an agent’s behavior given the presented stimuli.
Almost every model relies on some “internal” operations required to generate responses.
These operations are an essential part of the model-based approach. In a typical value-
based learning task, these operations include: calculating the value of competing stimuli,
choosing the best option, computing prediction errors, and updating value estimates.
Model-based fMRI aims to find brain regions signaling these internal operations.

The model-based fMRI analysis usually starts by selecting competing models during
the experimental design phase. Then, the experiment is conducted, and models are
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fitted to subjects’ behavioral data using existing free parameters to minimize the error
of their predictions. Once the best-fitting model parameters are found, models are
compared, and the model with the highest explanatory power is selected for further
analysis. It is important to remember that model complexity can trivially increase
model fit and decrease model generalization (Schwarz, 1978). Hence, an essential
consideration during model comparison should be the appropriate penalization of
model complexity. Multiple solutions like Akaike information criterion (Akaike, 1998),
or Bayesian information criterion were proposed as model selection metrics integrating
model fit and complexity. The alternative to these standard approaches is Bayesian
modeling offering a framework based on Bayes theorem unifying model fitting with
model comparison adjusted for complexity (Lee, 2011). After the winning model is
determined, internal model operations are extracted and regressed against fMRI data.
Regression is usually performed using a general linear model (GLM) with additional
model-based regressors. A standard second-level statistical modeling follows this
procedure to show areas exhibiting significant correlation between BOLD signal and
predicted timeseries reflecting internal model operations.

Just like all methodologies, model-based fMRI has some pitfalls. First and foremost,
a significant correlation between a model variable and BOLD timeseries does not
decisively prove that a region is implementing hypothesized computations. Other
models with poorer fits to behavioral data may still better explain the BOLD signal.
One way to overcome this issue is to investigate the explanatory power of competing
models using both behavioral and fMRI data (O’Doherty et al., 2007). Second, a recent
study has shown that the model-based fMRI approach can be insensitive to gross
changes in free parameters like learning rates (Wilson and Niv, 2015). This finding
suggests potential difficulties with precisely identifying computation implemented by
brain areas and undermines the efficiency of using fMRI data to discriminate between
competing models. However, another study contradicted these findings suggesting that
sensitivity to free parameters is sufficient when considering different populations, i.e.,
mental disorder patients or healthy controls (Katahira and Toyama, 2021). Third, a
model-based fMRI suffers from poor spatiotemporal resolution. For some cognitive
processes, a sampling frequency of ~2s available for a typical fMRI sequence may not be
sufficient to capture phenomena lasting hundreds of milliseconds. Similarly, a spatial
resolution of ~3mm allows discovering only large neuronal populations carrying the
same signal neglecting smaller structures or structures with more spatially diverse
neural coding.
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2.2.2 Positive and negative prediction errors in the brain

How does a human brain encode prediction errors? This question has been tackled
by dozens of studies using the model-based fMRI approach. Researchers used a broad
range of task designs, behavioral modeling approaches, and stimuli types. The most
common task designs chosen to elicit prediction errors were: probabilistic reversal
learning (PRL) task (Lin et al., 2012; Mattfeld et al., 2011; Meder et al., 2016; Nickchen
et al., 2017; Schlagenhauf et al., 2014; Van den Bos et al., 2012), Markov decision
task (Daw et al., 2011; Guo et al., 2016; Tanaka et al., 2016), multi-armed bandit
task (Diuk et al., 2013; Schonberg et al., 2010), or simple Pavlovian conditioning task
(O’Doherty et al., 2004; Seymour et al., 2007). Among behavioral models of learning,
the three most influential were: the Rescorla-Wagner model (Gläscher et al., 2009;
Kahnt et al., 2011; Li et al., 2006; O’Sullivan et al., 2011), the SARSA model (Gläscher
et al., 2010; Gradin et al., 2011; Seger et al., 2010), and the temporal-difference model
(Guo et al., 2016; Meder et al., 2016; O’Doherty et al., 2003; Van den Bos et al., 2012).
To assess whether prediction error signaling is invariant to reward and punishment type,
researchers used a variety of primary and secondary reinforcers: sweet juice and salty
solutions (McClure et al., 2003; Metereau and Dreher, 2013; Valentin and O’Doherty,
2009), pictures of unhealthy food (Hare et al., 2008), warm and cold thermal stimuli
(Rolls et al., 2008), smiley and angry faces (Katahira, 2015; Lin et al., 2012; Meder et al.,
2016), money gains and losses (Gläscher et al., 2009; Guo et al., 2016; Ribas-Fernandes
et al., 2011), and abstract symbols (Meder et al., 2016).

The most consistent finding of these studies demonstrates a critical role of the
ventral striatum (VS), i.e., nucleus accumbens, in broadcasting the prediction error
signal. Numerous studies have shown that the BOLD signal in VS correlates with
modeled timecourse of prediction errors (Abler et al., 2006; Daw et al., 2011; Delgado
et al., 2000; Guo et al., 2016; Hare et al., 2008; Katahira, 2015; Lin et al., 2012;
Mattfeld et al., 2011; McClure et al., 2003; Meder et al., 2016; Metereau and Dreher,
2013; Ribas-Fernandes et al., 2011; Schlagenhauf et al., 2014; Seymour et al., 2007;
Tanaka et al., 2016; Valentin and O’Doherty, 2009; Van den Bos et al., 2012; Watanabe
et al., 2013). VS is one of the main parts of the basal ganglia and the receiving end of
the dopaminergic pathway. It receives dense projections from dopaminergic neurons
located in the ventral tegmental area, i.e., midbrain neurons originally associated with
the prediction error signal in monkeys (Bayer and Glimcher, 2005; Nakahara et al.,
2004; Satoh et al., 2003; Schultz, 1986). These projections carry PE signals originating
in the midbrain to the VS, making it detectable by fMRI techniques.
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A B

Fig. 2.2 Neural correlates of negative prediction errors. (A) Brain regions
signaling positive (red) and negative (blue) prediction errors across reward-seeking and
punishment-avoiding task conditions. Positive prediction error correlates were found
in the dorsomedial prefrontal cortex, vmPFC, bilateral VS, posterior cingulate cortex,
left inferior parietal cortex, and left orbitofrontal cortex. Negative prediction errors
were signaled in dorsal ACC, right dorsal premotor cortex, right dorsolateral prefrontal
cortex, bilateral insula, precuneus, and left dorsolateral prefrontal cortex. Figure from
Meder et al. (2016) (B) Results from ALE meta-analysis along the PE sign component.
In blue, brain areas processing negative prediction errors (activated by NEG>POS
pattern). Figure from Fouragnan et al. (2018).
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Several other cortical regions have been frequently implicated in signaling increasing
prediction errors. For example, multiple studies found PE correlates in the ventromedial
prefrontal cortex (vmPFC) (Baram et al., 2021; Daw et al., 2011; Meder et al., 2016;
Van den Bos et al., 2012), an area commonly associated with signaling decision value
or utility (Hare et al., 2009; Rangel et al., 2008). A large group of studies reported PE
correlates in dorsal parts striatum, i.e., caudate or putamen (Delgado et al., 2000; Diuk
et al., 2013; Mattfeld et al., 2011; McClure et al., 2003; Valentin and O’Doherty, 2009).
Other studies also found BOLD correlates of prediction errors in anterior cingulate
cortex (ACC) (Ide et al., 2013; Ribas-Fernandes et al., 2011), parahippocampal gyrus
(Van den Bos et al., 2012), insula (Katahira, 2015), and medial temporal cortex
(Delgado et al., 2000).

The flexibility of the model-based fMRI allowed researchers to investigate brain
regions with response patterns resembling “inversed” prediction errors. These regions
increase their activity with decreasing prediction errors, implementing punishment-
avoidance learning by broadcasting the negative part of the PE signal. As described in
the previous section, four main hypotheses regarding the negative prediction system
have been proposed. According to the single system hypothesis, negative prediction
errors are signaled by the same dopaminergic system but encoded as the duration of
the suppressed neuronal activity (Maia and Frank, 2011). The single system hypothesis
predicts that no regions should display increased activity with decreasing prediction
errors. The gradient hypothesis suggests a functional separation of striatum into ventral
and dorsal parts, reflecting the distinction between positive and negative prediction
errors (Palminteri and Pessiglione, 2017). It predicts that caudate and putamen
should exhibit increased BOLD signal with decreasing prediction errors. The third
hypothesis suggests that the serotoninergic system processes the negative PE signal.
Since neurotransmitter serotonin is located mainly within the brainstem raphe complex,
this hypothesis is difficult to test using fMRI, which is not suitable for the brainstem
imaging (Aghajanian and Liu, 2017; Beissner, 2015). The last dual system hypothesis
postulates a distributed system of cortical and subcortical regions carrying the negative
prediction error signal. Although the exact organization of this system is still a matter
of debate, most researchers suggest the involvement of the insula, amygdala, and
cingulate cortex as critical parts of network signaling negative PEs (Palminteri and
Pessiglione, 2017; Yacubian et al., 2006).

Several studies investigated punishment-avoidance learning over the past twenty
years. In one of the first studies directly investigating neural correlates of negative
prediction errors, McClure et al. (2003) measured neural responses following omission of
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the expected droplet of juice. Activity in left putamen correlated with negative PEs but
also with positive PEs supporting the single system hypothesis. Two other studies used
either the Pavlovian conditioning task (Seymour et al., 2007) or associative learning
task (Mattfeld et al., 2011) to investigate reward and punishment learning. In both
studies, researchers reported functional segregation within the striatum, with anterior
parts signaling positive PEs and posterior parts signaling negative PEs. These findings
directly corroborate the gradient hypothesis. However, subjects experienced rewards
and punishments simultaneously in both experiments, confounding the PE sign with
the outcome valence. A large body of evidence from model-based fMRI studies has also
supported the dual system hypothesis. For example, Yacubian et al. (2006) reported
negative prediction errors in the amygdala, suggesting that “the ventral striatum and
the amygdala distinctively process the value of a prediction and subsequently compute
a prediction error for gains and losses”. In another study, Fazeli and Büchel (2018) used
painful thermic stimuli and aversive pictures to investigate how predictions modulate
processing of these unpleasant stimuli. Researchers reported aversive prediction error
signaling in the anterior insula. Some studies reported a broad network of regions with
BOLD signal increasing with decreasing prediction errors. Hauser et al. (2015) used
probabilistic reversal learning task to investigate cognitive flexibility in adolescence.
They have found negative prediction error processing in anterior insula, dorsomedial
and dorsolateral prefrontal cortex, inferior parietal lobule, and precuneus.

Only one model-based fMRI study directly investigated the differences in PE
processing between reward-seeking and punishment-avoiding conditions (Meder et al.,
2016). Meder et al. (2016) used a factorial design with a probabilistic reversal learning
task to disentangle effects related to prediction error sign from outcome valence effects.
They reported a set of regions processing negative PE regardless of the outcome
valence. These regions included: dorsal anterior cingulate cortex, right premotor cortex,
bilateral dorsolateral prefrontal cortex, precuneus, bilateral anterior insula, and primary
visual area (Fig. 2.2A). Interestingly, there was a significant difference between
reward-seeking and punishment-avoidance learning. A stronger neural response to PE
in reward-seeking compared with the punishment-avoidance condition was reported
in: left inferior frontal gyrus, supplementary motor area, posterior cingulate cortex,
left dorsomedial prefrontal cortex, left amygdala, bilateral secondary visual areas,
right thalamus, and left middle temporal gyrus. A posthoc analysis showed that in
most of these areas, the effect was driven by “strong positive contrast estimates in
reward-seeking conditions and contrast estimates close to zero in punishment-avoidance
conditions”. That finding suggested that some brain regions were selectively involved
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in processing positive PEs in the reward-seeking condition. This study supported the
dual system hypothesis but challenged the view that the direction of prediction errors
is the only important axis along which brain systems are organized. Nonetheless, an
outcome-valence-invariant delineation between regions processing positive and negative
PEs suggests that two distinct brain networks are responsible for reward-seeking and
punishment-avoiding learning regardless of the type of used reinforcement.

A few meta-analyses focused on prediction error processing providing the most
convincing evidence supporting the dual system hypothesis. Liu et al. (2011) conducted
activation likelihood estimation (ALE) meta-analysis using 142 neuroimaging studies
utilizing reward-related decision-making tasks. Although the authors focused on reward
and punishment instead of positive and negative PEs, these quantities are often strongly
correlated. Nucleus accumbens was reported as the region processing both rewarding
and punishing outcomes. Exclusive processing of rewards was reported in the medial
orbitofrontal cortex and posterior cingulate cortex. In contrast, punishments were
processed within the anterior cingulate cortex, bilateral anterior insula, and lateral
prefrontal cortex. Two years later, Garrison et al. (2013) published another ALE meta-
analysis explicitly focused on differentiating between Pavlovian versus instrumental
learning. The authors found distinct patterns of PE signaling for rewarding and aversive
stimuli. Reward prediction errors were reported in the striatum, whereas punishment
prediction errors were located within the insula and habenula. However, this meta-
analysis ignored the sign of PE-related BOLD signal focusing solely on the types of
reinforcers used as stimuli. The only ALE meta-analysis that explicitly modeled effects
related to increasing and decreasing PEs was conducted by Fouragnan et al. (2018).
In this study, two patterns of BOLD signaling were considered: NEG>POS, where
neural responses were higher for negative compared with positive or null outcomes
(negative PEs), and POS>NEG, where neural responses were higher for positive
compared with negative or null outcomes (positive PEs). The authors found two
distinct networks correlating with NEG>POS and POS>NEG patterns. Neural
correlates of positive PEs were found in the VS, ventromedial prefrontal cortex, posterior
cingulate cortex, ventrolateral orbitofrontal cortex, and dorsomedial prefrontal cortex.
In contrast, negative PEs regions included: dorsomedial cingulate cortex, bilateral
anterior insula, pallidum, middle frontal gyrus, inferior parietal lobule, middle temporal
gyrus, amygdala, thalamus, habenula, dorsolateral prefrontal cortex, fusiform area,
precentral cortex, and dorsomedial orbitofrontal cortex (Fig. 2.2B). Despite that
these results seem to corroborate the gradient hypothesis because of the involvement
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of the pallidum in negative PE processing, the amount and extensiveness of significant
clusters for NEG>POS pattern firmly favors the dual system’s hypothesis.

2.3 Prediction error-related connectivity

The identification of brain areas responsible for signaling prediction errors has been a
primary focus of neuroscientists interested in learning and decision-making. As reviewed
in the previous section, many studies have found a broad network of coactivated areas
signaling positive and negative prediction errors. One critical question that a model-
based fMRI cannot address arises from these studies – How do prediction error
areas interact with each other and the rest of the brain during learning?
Understanding both brain activations and interactions is crucial for understanding
how the brain implements a specific cognitive process (Friston, 2011). One way to
characterize interactions between brain systems is to estimate functional connectivity.

2.3.1 Functional connectivity

Functional connectivity (FC) is usually defined as a temporal correlation between
activity patterns of spatially separated brain areas (Friston et al., 1993). Although any
neuroimaging modality with temporal dimension is suitable for functional connectivity
analysis, this approach has been most frequently used with fMRI data. In the context
of fMRI, FC reflects a statistical dependency between the BOLD signals of different
brain regions.

The idea behind functional connectivity assumes that if two brain areas are strongly
coupled or connected, their activity should be correlated. It is important to acknowledge
that FC does not show how brain areas influence each other. There are multiple
possible sources of functional connectivity between a pair of brain regions. First, a
direct structural connection may exist between regions, causing one region’s activity to
influence the other. It has been shown that the existence of a structural connection
between areas usually correlates with a high degree of FC between them (Eickhoff et al.,
2010). Second, regions may not share a connection but can be influenced by a third
mediating region influencing them both. Third, regions may be involved in a more
complicated network of regions consisting of loops which causes them to activate in
unison. In some cases, FC can arise as a byproduct of some external event or structured
noise. For example, activity in sensory areas induced by the occurrence of stimuli is
usually cascaded into parietal regions responsible for the perceptual classification and
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premotor cortex for response generation. This parallel processing may induce temporal
correlations between structurally disconnected brain areas. It was also shown that
physiological effects and motion artifacts could artificially inflate FC estimates (Birn,
2012). In spite of its limitations, FC offers a straightforward and effective approach to
investigate brain interactions.

Most research on functional connectivity focused on measuring connectivity during
resting-state, i.e., a state when no explicit task is performed. Resting-state functional
connectivity can be simply calculated as a Pearson’s correlation between BOLD signals
of distinct brain areas. Investigation of resting-state interactions led to a famous
discovery of default mode network and other resting-state networks (Raichle, 2015).
Recently, there has been increasing recognition for the importance of studying FC
during cognitive task execution (Di and Biswal, 2019). Unlike resting-state, cognitive
tasks usually consist of short events or blocks distributed across the scanning duration.
That feature of task-based fMRI makes simple correlation analysis impossible, posing
a need for more sophisticated statistical methods to estimate task-based FC. The two
most important approaches to task-based FC are beta-series correlation (BSC) (Rissman
et al., 2004) and psychophysiological interaction (PPI) (Friston et al., 1997). Although
both methods rely on different statistical assumptions, a recent study suggested that
they should “in principle yield similar results” when comparing the differences between
task conditions (Di et al., 2021).

Both BSC and PPI require a division of the brain into spatially separate units,
corresponding to either single voxels or clusters of voxels called regions of interest
(ROIs). Early task-based FC research implemented a seed-voxel approach focusing on
connectivity between a single ROI, called seed, and the rest of the voxels in the brain.
This limiting approach neglects a large-scale perspective on the brain, emphasizing
that the brain is a complex network with many parts interacting to meet cognitive
demands of the organism. An alternative to seed-voxel is a ROI-ROI approach focusing
on pairwise interaction between dozens or even hundreds of regions (Fornito et al., 2012;
Gerchen et al., 2014). The advantage of the ROI-ROI over the seed-voxel approach
stems from the fact that ROI-ROI analysis does not require a priori assumptions
about the role of particular brain regions and allowing to quantify complex interactions
beyond a scale of a single region.

2.3.2 Beta-series correlation

Beta-series correlation is an efficient method for assessing context-dependent functional
connectivity during task execution (Cisler et al., 2014). Rissman et al. (2004) proposed
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BSC as a method intended for event-related designs. BSC relies on a simple idea that
a pair of functionally connected areas should simultaneously activate or deactivate
with response to similar events. In other words, BSC estimates the correlation of
trial-by-trial BOLD activations for a pair of areas in a certain task condition.

In a typical BSC analysis, each trial is modeled as a separate regressor in the GLM.
This procedure results in a set of beta maps representing the voxel-wise BOLD response
specific to a particular trial. Beta maps are then averaged within the prespecified
seed or ROIs to represent regional responses. A sequence of regional beta values for
each trial is called beta series. The last step of BSC consists of splitting the beta
series according to investigated task modulation and calculating condition-specific
correlations between beta series. For example, to investigate brain interactions during
prediction error processing, each outcome event of a learning task may be modeled
as a separate trial. Then, trials can be divided according to the outcome valence.
Positive outcome trials (win or loss-avoidance) induce positive prediction error signaling,
whereas negative outcome trials (loss or win-omission) produce negative prediction
errors. BSC allows estimating FC for positive and negative prediction errors separately,
enabling to investigate differences between the two.

A recent study suggested that BSC is more robust than PPI in detecting FC
in event-related designs, especially with many trials and short event durations and
inter-stimulus-intervals (Cisler et al., 2014). However, another study using a large data
sample did not support this claim (Di and Biswal, 2019). Another report investigated
the differences and similarities between BSC and PPI. Authors concluded that “when
context-sensitive changes in effective connectivity are present, [ . . . ] BSC can reflect
similar connectivity differences as measured by PPI” (Di et al., 2021).

2.3.3 Connectivity during prediction error processing

How do prediction error networks interact with each other and the rest of the brain
during learning? The answer to this question would provide a more complete un-
derstanding of the brain’s implementation of reinforcement learning. However, only
a handful of studies investigated functional connectivity dynamics associated with
prediction error processing.

In one of the first studies on PE-related connectivity, Kahnt et al. (2009) investi-
gated FC of ventral and dorsal striatum during the probabilistic reversal learning task.
The PPI analysis showed increased connectivity between VS seed and ventral/anterior
midbrain, right hippocampus, pons, and cerebellum during positive prediction error
processing. Conversely, the dorsal striatum strengthened its coupling with the dor-
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sal/posterior midbrain, right hippocampus, thalamus, and cerebellum. The authors
suggested that striatal-midbrain connectivity may implement a value updating process
in the striatum.

A similar study conducted by Camara et al. (2009) used the seed-voxel BSC
approach to investigate connectivity between the ventral striatum and the rest of the
brain during monetary gains and losses. The study has reported a broad network
of regions connected with VS regardless of the outcome valence comprised of the
amygdala, hippocampus, insula, and orbitofrontal cortex. Researchers have found
valence-dependent differences in connectivity between VS and orbitofrontal cortex and
between VS and amygdala, with both connections more pronounced for losses.

In another study, Van den Bos et al. (2012) used a probabilistic reversal learning
task and a seed-voxel PPI approach to examine developmental changes in learning from
trial-and-error. The FC analysis revealed that connectivity between VS and medial
prefrontal cortex increased with age. Furthermore, a stronger association between these
regions correlated with the learning rate for negative prediction errors demonstrating
behavioral relevance of the interaction between the striatum and prefrontal cortex.
Some researchers focused on more ecological tasks to investigate neural interactions
related to reinforcement learning. For example, Horga et al. (2015) used a virtual maze
task with hidden rewards and seed-voxel BSC analysis to examine how gradual learning
modulate striatal connectivity. They have found progressive connectivity enhancement
between the sensorimotor cortex and posterior putamen as subjects learned the task.
Moreover, these connections differentiated participants who learned the task from those
who failed. Although the study did not directly address the difference between positive
and negative PEs, successful learning is often related to a gradual decrease in PEs,
hence the study findings can shed light on the question of PE-related FC.

Two more recent studies investigated how FC between PE-signaling regions is
altered in major depressive disorder (MDD) (Kumar et al., 2018) and internet gaming
disorder (IDG) (Lei et al., 2020). Both studies used reward-based learning tasks to
evoke positive and negative PEs and the PPI approach to assess context-dependent
FC. Kumar et al. (2018) found impaired reward prediction error signaling in MDD
patients and reduced functional connectivity between the midbrain ventral tegmental
area and striatum during PE processing. Researchers also tested the group difference
in connectivity between striatum and habenula, i.e., area commonly associated with
negative prediction errors, but found no significant differences. On the other hand, Lei
et al. (2020) found increased connectivity between the right caudate, right putamen,
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bilateral dorsolateral prefrontal cortex, and right dorsal anterior cingulate cortex in
the IDG patients compared to healthy controls.

Several other studies also examined functional connectivity during reinforcement
learning but did not directly address prediction-error-related changes. Specifically, some
studies investigated connectivity during the choice phase (Cohen et al., 2005; Erdeniz
and Done, 2019; Fouragnan et al., 2015), used effective connectivity with constrained
hypotheses offered by dynamic causal modeling approach (den Ouden et al., 2010;
Den Ouden et al., 2009), or investigated differences between the goal-directed and
habitual decisions (de Wit et al., 2012).

It is still unclear how regions signaling prediction errors are connected and how these
connections are modulated by outcome valence and prediction error signs. Previous
studies provided conflicting or, at best inconclusive results regarding functional connec-
tivity changes following PE processing. Some studies reported changes in connectivity
between the ventral striatum and orbitofrontal regions (Camara et al., 2009; de Wit
et al., 2012; Kumar et al., 2018). In contrast, others showed altered connectivity
between the VS and midbrain (Kahnt et al., 2009) or between the putamen and
sensorimotor cortex (Horga et al., 2015). The observed diversity of findings is likely
a consequence of diversity in task designs, methodological approaches to estimate
functional connectivity, and tested hypotheses. In addition, none of the presented
studies used an experimental design to differentiate between outcome valence (reward
vs. punishments) and prediction error signs (positive vs. negative). Until these two
experimental axes remain entangled, the question of which one is accountable for
observed changes will remain unanswered.

To the best of my knowledge, all previous studies of PE-related connectivity used a
seed-voxel approach with seeds usually located within striatum or an effective connec-
tivity approach with only few regions involved in PE processing. Drawing conclusions
solely based on these studies would neglect that the brain is an immensely complex
network of interactions between many cortical and subcortical areas. Furthermore, it is
well established that the whole brain network consists of multiple stable subnetworks
observed during rest and task execution (Gratton et al., 2018). Understanding how
these networks interact during learning is critical for understanding how reinforcement
learning is implemented in the brain. In the next chapter, I will introduce core ideas
of network neuroscience – the study of brain networks across temporal and spatial
scales. I will also show how researchers had successfully used network neuroscience to
explain cognitive processes, emphasizing why this approach is critical for understanding
reinforcement learning.
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Network neuroscience

The human brain is an exceptionally complex network comprised of almost a hundred
billion neurons and more than a hundred trillion synapses (Azevedo et al., 2009). The
emergence of graph theory and network neuroscience allowed measuring and modeling
brain networks using data from different neuroimaging modalities. Graph theory
provided a mathematical framework to abstract a brain as a system comprised of
elements and interactions among them. Network neuroscience has used that framework
to identify connectivity patterns reflecting the structural and functional brain organi-
zation. These patterns revealed that the brain network has a modular and small-world
structure with highly connected hub regions (Bullmore and Sporns, 2009; Bullmore
and Bassett, 2011). In this chapter, I will introduce the assumptions and core concepts
of the network theory. I will then review the essential findings on functional brain
networks, highlighting research on brain network dynamics during cognitive processing.

3.1 Network theory

Network theory has its roots in graph theory – a branch of discrete mathematics
studying graphs. A graph is a simple mathematical structure modeling pairwise
associations between objects. The foundations of graph theory were established in
1736 by Leonhard Euler, who solved the famous Königsberg bridge problem. The
Königsberg bridge problem concerned finding a closed path through the prussian city
of Königsberg that traversed each of seven bridges only once. Euler proved the negative
result for the problem by recognizing the significance of topological properties – features
invariant to any continuous deformation of the geometrical object, which led him to
formulate the definition of a graph. Since its inception, graph theory has provided
solutions to multiple puzzling mathematical problems, like map coloring, traveling
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salesman, or finding a shortest path in the graph. The advancement of technology in
the XXI century enabled scientists from various fields to collect large datasets, which
provided rich information about interacting elements of studied systems. The need
to discover meaning within these datasets inspired a network theory – a study of
real-world networks using graph theory mathematics. Network theory has been applied
in many disciplines, e.g., computer science (Riaz and Ali, 2011), sociology (Barnes,
1969), and biology (Mason and Verwoerd, 2007). Recently, neuroscientists applied a
network theory to study functional connectivity in the human brain (Goldenberg and
Galván, 2015).

3.1.1 Weighted undirected graph

A graph is a mathematical representation of a structure comprised of a set of objects
related to each other. The most basic graph is an undirected graph, defined as a pair
G = (N , E), where N ≡ {n1, n2, . . . , nN} is a set of nodes (or vertices), and E is a set of
edges (or connections). The number of nodes and edges is usually denoted as |N | = N

and |E| = K. Graph nodes are labeled by the integer index i, which corresponds to
their order in a set N . In the undirected graph, an edge denoted as eij represents a
bidirectional association between nodes ni and nj. The nodes connected by an edge
are referred to as adjacent. A set of nodes N is assumed to be finite, which implies
that E is also finite.

A directed graph is a generalization of an undirected graph in which edges have
orientation pointing from one node to another. In a directed graph, the order of indices
indexing an edge is important, eij ̸= eji, because eij denotes an edge pointing from ni

to nj while eji denotes an edge pointing from nj to ni. In the case of brain interactions,
a directed graph is suitable to represent effective connectivity which shows the causal
influence of one brain region on another. In contrast, functional connectivity typically
reflects directionless statistical dependency between signals. Hence an undirected graph
is a more appropriate model for functional connectivity.

A graph of size N can have at most
(

N
2

)
= N(N−1)

2 edges. Graph with an edge
between all pairs of nodes is referred to as fully connected. Graphs that are almost fully
connected, i.e., K = O(N2) are called dense, whereas graphs with little connections,
i.e., K ≪ N2 are called sparse.

Both directed and undirected graphs described above were also unweighted (or
binary). In unweighted graphs, edges simply exist or not, and none of their properties
is relevant. In contrast, in a weighted graph, each edge is associated with a numerical
value called weight. Edge weight can correspond to any connection property associated
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with the studied system. For example, in a functional brain network, a weight of
functional connection may represent a correlation coefficient between the BOLD signal
of two brain regions. Formally, a weighted graph is a triple, GW = (N , E ,W), which
additionally include a set of weights (or values), wij ∈ W, associated with each edge.
The one-to-one correspondence between edges and weights implies that |W| = |E| = K.
Generally, weights are positive real numbers wij ∈ R+. In some applications, this
constraint is relaxed to include negative weights wij ∈ R. This is especially important
in network neuroscience, where negative weights represent an associations between
brain regions with the anticorrelated neural signals.

Both weighted and binary graphs can be directed or undirected, resulting in four
distinct graph type combinations. Each graph, regardless of its type, has an adjacency
matrix representation. The adjacency matrix A is a N ×N square matrix containing
complete information about the graph. An element of the adjacency matrix, Aij

represents an edge between nodes ni and nj, or lack thereof. If an edge is absent,
Aij = 0. If an edge is present, Aij = 1 in a binary graph, or Aij = wij in a weighted
graph. Additionally, the adjacency matrix can encode information about edge directions
for directed graphs. In undirected graphs, Aij = Aji which implies that the adjacency
matrix is symmetrical. In directed graphs, Aij and Aji represent both possible edge
directions pointing from ni to nj or from nj to ni. The adjacency matrix provides a
unified way of representing different graphs and simplifies the computation of many
graph properties.

One of the most fundamental graph properties is the degree distribution. It provides
information on how connections are distributed across network nodes. The degree
distribution reflects the probability distribution over node degree in binary networks
or node strength in weighted networks. The degree (or strength) of a node ni is simply
the number of edges connected to this node (or sum of its connection weights). Both
node degree and strength can be calculated using adjacency matrix as ki = ∑

j Aij.

3.1.2 Modularity

Many real-world networks reveal community structure. For example, a group of
friends in a social network can be considered a network module (or community) – a
subnetwork with densely interconnected nodes and sparse connections with the rest of
the network. In a functional brain network, modules correspond to sets of brain areas
with highly correlated activity. Understanding network community structure is crucial
for understanding network organization and dynamics. Modules are beneficial for the
network dynamics, fostering efficient information flow between nodes. Different groups
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of nodes can be independently assigned to different functions in modular systems,
promoting network efficiency. It was shown that large modular networks are usually
more efficient than non-modular networks (Tosh and McNally, 2015).

Several methods have been developed to identify the network’s community struc-
ture: distance-based modules, Infomap algorithm, block models, independent compo-
nent analysis, and modularity maximization (Sporns and Betzel, 2016). Modularity
maximization is by far the most widely used approach to investigate brain network
communities. In this approach, a network is divided into a set of nonoverlapping
partitions to maximize quality function Q. Function Q is referred to as modularity and
reflects the quality of the community division. Modularity reflects a simple heuristic –
a network is considered modular if the within community connection density is higher
than expected by chance. The expected probability of a connection between pairs of
nodes can be estimated using a null graph model with random topology but preserved
degree distribution. In the weighted graph, probability of a connection is replaced by
expected connection weight. According to the null model, a probability that two nodes
with degrees ki = ∑

j Aij and kj = ∑
i Aij will share an edge is given as:

Pij = kikj

2m
, (3.1)

where 2m = ∑
ij aij is the total number of network edges in a binary graph or sum

of edge weights in a weighted graph. The intuition behind equation (3.1) is simple –
the probability of random connection between nodes is proportional to the product of
node degree, i.e., network nodes with many connections with the rest of the network
have a high chance of being randomly connected. This null model enables to express
the modularity heuristic as:

Q =
∑
ij

(Aij − Pij)δ(σi, σj) , (3.2)

where σi indexes the community to which node i is assigned, and δ is the Kronecker
delta function.

The process of finding optimal community structure requires changing a candidate
partition, hoping to find the one that maximizes quality function Q. The brute force
approach cannot be used in this case because even for relatively small networks, the
space of all possible partitions is enormous. Multiple heuristic-based algorithms have
been developed to allow approximating optimal community structure in real-world
networks. These algorithms include spectral decomposition (Newman and Girvan,
2004), simulated annealing (Guimera and Amaral, 2005) and greedy Louvain method
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(Blondel et al., 2008). The Louvain method is widely used in network neuroscience
and promises to run in time O(N log N). It relies on an iterative process in which
small communities are found by optimization of local modularity and then grouped
into a single node. The Louvain algorithm is based on a random process, so its output
can vary from run to run. This implies that when applied to real data, the algorithm
should be run multiple times to produce a representative set of high-quality partitions.

3.1.3 Small-worldness, hubs, and scale-free networks

A small-world graph is a graph with a high degree of clustering and low distance
between nodes. Specifically, high clustering reflects nodes’ tendency to form clusters,
which means that two nodes sharing the same neighbour have a high probability of
being connected. At the same time, in a small-world graph, an average number of
edges required to traverse to move between random pair of nodes is roughly log N ,
where N is the number of nodes in the network. The small-world phenomenon was
initially discovered in social networks (Milgram, 1967) and formalized by Watts and
Strogatz (1998). According to the Watts–Strogatz model, the small-world graph is
the intermediate step between the random network with low clustering and a short
distance between nodes and the regular lattice network with high clustering and long
distance between nodes. A degree of network small-worldness can be calculated as the
standardized ratio of the clustering coefficient and path length (Humphries and Gurney,
2008). The small-world phenomenon has been found in almost all real-world networks,
i.e., communication, genetic, social, and brain (Bullmore and Sporns, 2009). The
small-world organization of a network promotes two types of information processing:
segregated local processing within clusters of nodes and integrated whole-network
processing facilitated by short path (Bullmore and Bassett, 2011).

Hubs are nodes with high node centrality. The node centrality is any measure that
ranks node position within a graph. It can be based on many properties like information
flow, neighbors, or influence on other nodes. The most straightforward measure of
centrality is a node degree. Hubs are critical nodes allowing efficient communication
within a graph (Freeman, 1977). Studies showed that damaging hubs might disrupt a
graph’s capability to process information efficiently (Fornito et al., 2010). The existence
of hubs is directly related to a scale-free property (Barabási, 2009).

A scale-free network is a network with a power-law degree distribution. In other
words, the probability of finding a node with a degree k can be approximated as k−η,
where η is a scale parameter usually ranging between 2 and 3 (Choromański et al.,
2013). The power-law degree distribution with a “heavy-tail” implies that the network
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has no specific scale and contains nodes with extremely high degrees (hubs). Barabási
and Albert (1999) showed that scale-free networks emerge in a process in which new
network nodes are preferentially connected to already existing high-degree nodes. This
model of network growth is called preferential attachement. Many real-world networks
demonstrate a truncated power-law degree distribution associated with fewer hubs
than in ideal scale-free networks. This is a consequence of cost constraints of real-world
networks embedded in a physical space (Amara et al., 2011).

3.2 Functional brain networks

The growing interest in investigating functional connectivity during rest and tasks
using the ROI-ROI approach led to the birth of a new branch of network neuroscience
focusing on understanding functional brain networks. Functional brain networks can
be modeled as weighted undirected graphs with negative weights. In these networks,
brain regions are nodes, and interregional functional connectivity estimates are edge
weights. Modeling brain interactions as networks enabled researchers to utilize the
mathematical tools of network science to ask critical questions about brain dynamics
and organization. The network approach provided a better understanding of brain
network properties and led to the discovery of resting-state networks. Recently there
has been growing interest in studying functional brain networks during various cognitive
processes. Combining the functional brain network approach with the study on human
cognition can shed new light on the implementation of these processes in the brain.

3.2.1 Resting-state networks

In one of the first resting-state experiments in fMRI, Biswal et al. (1995) discovered
that BOLD signals in the left and right motor cortex were highly synchronized. Biswal’s
discovery motivated researchers to explore spontaneous synchronization between other
brain areas. Several studies found correlated signals between regions of the primary
visual network, auditory network, or cognitive networks (Cordes et al., 2001; Damoi-
seaux et al., 2008, 2006; Van Den Heuvel et al., 2008; Xiong et al., 1999). These studies
demonstrated that the brain is constantly active and that its activity forms highly
correlated spatial patterns (Greicius et al., 2009). These patterns comprised of brain
areas with synchronized activity at rest were termed large-scale networks (LSNs). It
turned out that the organization of LSNs closely resembles activity patterns elicited by
various cognitive tasks (Smith et al., 2009; Thomas Yeo et al., 2011). The ubiquity and
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Fig. 3.1 Resting-state networks. Brain division into eleven large-scale networks
during resting-state for a large cohort of 828 subjects. Regional network membership
represented as a color code for different brain areas was detected using community
detection algorithm. Reward-related regions formed preferentially coupled reward
system with high stability (green). Bottom panel shows a spring-embedded layout of
the network shown on the top panel. Figure from Huckins et al. (2019).

importance of LSNs were emphasized by the studies demonstrating LSNs in humans
under sedation and during sleep (Mhuircheartaigh et al., 2010; Tagliazucchi and Laufs,
2014) and in other mammalian species like rats and monkeys (Lu et al., 2012; Mantini
et al., 2011).

The exact number and organization of LSNs is still a matter of debate, but most
researchers delineate from ten to fifteen LSNs (De Luca et al., 2006; Huckins et al., 2019;
Power et al., 2011). Commonly reported LSNs include: default mode network, fronto-
parietal network, cingulo-opercular network, ventral and dorsal attention networks,
and somatosensory networks (Fig. 3.1). The issue of LSNs topography is challenging
because of the hierarchical organization of functional brain networks (Doucet et al.,
2011). For example, a recent study on functional network organization in individuals
reported consistently finding nine subnetworks within the default-mode network (Gor-
don et al., 2020). Understanding the role of LSNs is vital for our understanding of the
human brain and cognition. Below I describe the topography and functions of major
LSNs.
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Default mode network

The default mode network (DMN) is the largest LSN comprised of the medial prefrontal
cortex, posterior cingulate cortex, lateral parietal cortex, and lateral temporal cortex
(Buckner et al., 2008). The DMN topography can be recovered from seed-voxel analysis
using the posterior cingulate cortex, one of the most important hubs in a functional
brain network, as a seed region (Greicius et al., 2003).

To this day, the exact role of the DMN remains elusive. Interestingly, the areas of the
DMN have been found to consistently deactivate during the execution of cognitive tasks
(Fox et al., 2005). The DMN is most active when subjects are resting (Raichle et al.,
2001). Some studies suggested that the DMN is responsible for self-generated cognitive
processes like moral judgment or autobiographical memory (Andrews-Hanna, 2012).
These properties of DMN led some researchers to coin the terms task-negative and
taks-positive networks for LSNs comprised of regions deactivating or activating during
cognitive tasks. Some researchers suggested that the dichotomy of task-negative DMN
and other task-positive networks represent antagonism resulting in the interference
between self-generated thoughts and task execution (Cocchi et al., 2013). Despite its
claimed “task-negativity,” recent studies demonstrated that the DMN might play an
important role in task-related cognitive processes like working memory (Finc et al.,
2017), cognitive training (Finc et al., 2020), and reinforcement learning (Dohmatob
et al., 2020).

Fronto-parietal network

The fronto-parietal network (FPN) is a task-positive network comprised of the prefrontal
cortex, inferior parietal lobule, middle temporal gyrus, dorsomedial prefrontal cortex,
and anterior cingulate cortex. The regions of the FPN activate when a task requires
adaptive control or its cognitive demands increase. The FPN is thought to be responsible
for goal-oriented control processes and working memory. Some researchers hypothesized
that the FPN inhibits intrusive thoughts and distractions generated by the DMN and
switches attention in line with current cognitive demands (Vincent et al., 2008). Others
suggested that the FPN can act as a mediator between the DMN and other task-positive
networks to support goal-directed control (Spreng et al., 2010).

Cingulo-opercular network

The cingulo-opercular network (CON) is another task-positive network composed of
the operculum, anterior cingulate cortex, anterior insula, and thalamus (Sadaghiani
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and D’Esposito, 2015). In contrast to the FPN, the CON is responsible for maintaining
goal-directed control, task monitoring, and alertness (Coste and Kleinschmidt, 2016).

Dorsal and ventral attention networks

The dorsal attention network (DAT) is a task-positive network encompassing areas
adjacent to the intraparietal sulcus and frontal eye fields. The activity of DAT regions is
anticorrelated with the DMN, and it constitutes the most consistent negative correlation
in the functional brain network (Fox et al., 2005). The DAT is active during tasks
requiring spatial attention and visual working memory (Vossel et al., 2014). It was
suggested that the DAN plays a significant role in a top-down attention process
(Corbetta and Shulman, 2002).

The counterpart of the DAT responsible for bottom-up attention is the ventral
attention network (VAT). Two main parts of the VAT are the ventral frontal cortex and
temporoparietal junction (Vossel et al., 2014). The regions of VAT are activated during
unexpected or stimulus-driven attention. The VAT displays a high degree of asymmetry
between left and right-lateralized areas constituting this network. Specifically, VAT
regions within the left hemisphere overlap with Broca and Wernicke areas; thus, they
are strongly activated during language processing tasks.

Reward network

The reward network was recently recognized as a LSN by Huckins et al. (2019) in a
study examining a large dataset of resting-state fMRI. Researchers wanted to establish
whether regions involved in reward processing form a separate LSN. They identified a
system of interconnected reward-related areas, stable across a wide range of connectivity
thresholds. This reward network consisted of the VS, lateral and medial orbitofrontal
cortex, and vmPFC. It was classified as a subordinate system along with other LSNs
like DAT and VAT. Interestingly, the reward network was the second most stable
subordinate network.

3.2.2 Functional brain networks during cognition

Functional brain networks are primarily dominated by stable group and individual
features (Gratton et al., 2018). Despite that stability, changes between distinct
task states correlate with predictable transitions between network’s functional states
(Cole et al., 2014). Investigating these transitions can give us critical insight into
understanding how functional networks facilitate cognitive processes.
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Since the inception of network neuroscience, the most scientific effort has been
put into investigating connectivity patterns during resting-state. However, in the
past decade, there has been a growing interest in exploring these patterns during
human cognition. According to the recent systematic review, the central areas of
application of network neuroscience to human cognition include human intelligence,
cognitive load, working memory performance, and behavioral performance in natural
environments (Farahani et al., 2019). A number of studies also investigated brain
network reconfiguration during motor and value learning (Bassett and Mattar, 2017;
Gerraty et al., 2018; Mattar et al., 2018).

Human intelligence is a subtle and complex function of human cognition. According
to the Parieto-Frontal Integration Theory (P-FIT), intelligence is promoted by the
long-range interactions between brain areas residing within frontal and parietal cortices
(Jung and Haier, 2007). These brain areas comprise task-positive fronto-parietal and
attentional networks. Many studies have supported P-FIT by demonstrating intriguing
relationships between general intellectual abilities and properties of functional brain
networks (Hilger et al., 2017; Langer et al., 2012; Van Den Heuvel et al., 2009).
For example, higher intelligence was associated with increased functional integration
between frontal and parietal regions, high centrality of hub regions within the salience
network, and the short overall distance between network nodes. It was also shown,
that the intelligence quotient is positively correlated with nodal centrality within the
attention network and negatively correlated with nodal centrality of DMN regions (Wu
et al., 2013).

Several studies investigated functional network reconfiguration during increasing
cognitive load. Theoretical neuroscientists formulated the Global Workspace Theory
(GWT), which states that the brain processes low-effort tasks within specialized
modules (Baars, 2002; Dehaene et al., 1998). In contrast, high-effort complex tasks
require the formation of an integrated workspace characterized by increased integration
between distinct brain modules (Bullmore and Sporns, 2012). Many studies empirically
supported GWT assumptions. Shine et al. (2016) demonstrated that the brain network
fluctuates between integrated and segregated states with increased involvement of
integrated states during high cognitive demands. In another study, Braun et al. (2015)
showed that increased network reconfiguration within frontal networks correlated with
working memory performance. Vatansever et al. (2015) showed that network modularity
decreased with increasing demands of the n-back working memory task. Moreover,
the higher magnitude of modularity decrease was associated with better behavioral
performance. Two further studies supported and expanded on Vatansever et al. (2015)
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findings by showing that modularity breakdown associated with increased cognitive
demands is related to decreased segregation of DMN and increased integration between
DMN and other LSNs (Fig. 3.2) (Finc et al., 2020, 2017). The effect of cognitive load
on modularity was also observed during the semantic decision-making task (DeSalvo
et al., 2014). Compared with resting-state, intra-modular connections strengthened,
while intra-modular connections weakened during choice.

Gradual reorganization of functional brain networks has been observed during
various types of learning. For example, motor sequence training has been related
to increased segregation between visual and motor networks (Bassett et al., 2015).
Moreover, better learning performance was correlated with increased autonomy of
hubs in frontal and cingulate cortices and elevated network flexibility (Bassett et al.,
2011, 2015). Another study reported increased segregation of the DMN and increased
integration of task-positive LSNs during 6-week working memory training (Finc et al.,
2020). Mattar et al. (2018) investigated functional network reconfiguration during 4-day
learning of the values of novel stimuli. They found that connections between visual,
frontal, and cingulate networks became stronger with learning progression. Studies
of functional network reconfiguration following learning suggest that task automation
and efficiency are related to a more segregated network organization with increased
autonomy of task-relevant systems.

To this date, only a handful of studies explored functional brain network reconfigu-
ration associated with reinforcement learning. Gerraty et al. (2018) used a modified
version of the probabilistic learning task to investigate gradual changes in network
coordination associated with value learning. Dynamic connectivity analysis revealed
increased integration between the striatum and distributed brain regions located within
visual, orbitofrontal, and ventromedial prefrontal cortices. Additionally, the flexibility
of the striatal network was correlated with the learning rate and precision fitted to
subjects’ responses. In another study, Sadler et al. (2020) investigated the dynamics
of a reward-related network during a taste-motivated reinforcement learning task. In
this task, the administration of sweet taste was related to the positive prediction
error processing, whereas bitter taste elicited negative prediction errors. Researchers
reported prediction-error-related effects on community structure. During positive PE
processing, the ventromedial prefrontal cortex was coupled with bilateral precuneus,
whereas during negative PE processing, it formed a separate module with the bilateral
pre/postcentral gyrus and bilateral dorsal striatum. On the other hand, ventrolateral
prefrontal cortices separated from the rest of the reward network during positive PE
processing and integrated with the ventromedial prefrontal cortex and dorsal striatum
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Fig. 3.2 Network reorganization following increasing cognitive load. Func-
tional connections that significantly increased (bottom panel; strengthened network)
or decreased (top panel; weakened network) their connection strength with increasing
difficulty of working memory n-back task. The weakened network is comprised mostly of
intra-DMN edges, whereas the majority of strengthened network connections link DMN
with other LSNs. This effect is in line with similar studies on cognitive load showing
increased integration and decreased segregation of large-scale networks. DM - default
mode; FP - fronto-parietal; CO - cingulo-opercular; DA/VA - dorsal/ventral attention;
MEM - memory; AU - auditory; VIS - visual; SAL - salience; SOM - somatomotor;
SUB - subcortical. Figure from Finc et al. (2017).
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during negative PE processing. One limitation of this study was that it did not
investigate other large-scale networks and their interactions with the reward network.
Moreover, reward-related regions were selected a priori and might not have precisely
reflected the underlying reward system.

The network neuroscience approach of investigating functional brain network re-
configuration during human cognition provided vital insight into our understanding
of intelligence, cognitive load, and gradual learning. It helped to extend neurosci-
entific theories of various cognitive processes by providing supporting evidence and
new ideas. However, there have been only few attempts to study functional network
dynamics during reinforcement learning. Therefore, the question of large-scale network
reconfiguration during prediction error processing remains unresolved. To address this
gap, I designed and conducted an fMRI study focused on examining how large-scale
networks interact and how these interactions change when subjects switch between the
processing of positive and negative prediction errors and between reward-seeking and
punishment-avoiding environments. In the following chapter, I will describe this study.





Chapter 4

Prediction error processing during
reward and punishment learning

4.1 Introduction

In the previous chapters, I showed that the prediction error signal reflecting the differ-
ence between expected and experienced outcomes is the critical element of reinforcement
learning. Despite that positive and negative prediction errors arise from the same
underlying computation, Palminteri et al. (2010) suggested that the brain uses separate
systems for processing both types of prediction errors. A recent meta-analysis identified
two spatially distinct learning systems for processing positive and negative prediction
errors (Fouragnan et al., 2018). However, it is unclear whether the functional brain
network resembles a similar distinction between positive and negative PE systems.

Although positive prediction errors are usually related to rewarding outcomes,
they can also signal relief from avoiding punishment when the agent perceives the
environment as generally adverse (Nieuwenhuis et al., 2005; Palminteri et al., 2015).
Similarly, negative prediction errors can arise when the reward is anticipated but not
provided in a rewarding environment. These reference effects assume that the brain uses
the reference point to which experienced outcomes are compared (Bavard et al., 2018;
Rangel and Clithero, 2012). This consideration raises an interesting question of whether
both learning systems are invariant to the outcome valence. Using outcome valence
as an explicit experimental factor, studies have found that the ventral reward system
signaled positive prediction errors irrespectively of the outcome dimension (Meder
et al., 2016; Palminteri et al., 2015). On the other hand, regions of the amygdala,
inferior frontal gyrus, and dorsomedial prefrontal cortex signaled positive PEs in reward
but not punishment context (Meder et al., 2016). Due to these inconclusive findings,
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outcome invariance of learning systems is still a debated issue. Moreover, it is unknown
whether the reference effect is also reflected by the outcome invariance of the functional
brain network.

Despite a substantial number of studies focused on neural underpinnings of positive
and negative prediction errors, the current view lacks an understanding of the neural
interactions associated with prediction error processing. Only a few studies investigated
connectivity profiles of the ventral striatum or amygdala during reward and punishment
processing. For example, a similar network of brain regions encompassing the amygdala,
orbitofrontal cortex, and insula was coupled with VS during monetary gambling
irrespectively of the outcome valence. However, the orbitofrontal cortex had stronger
connections with VS during punishing trials (Camara et al., 2009). Other studies found
increased functional connectivity between VS and vmPFC (Van den Bos et al., 2012)
and between the amygdala and VS, midbrain, cingulate cortex, thalamus, orbitofrontal
cortex, and dorsolateral prefrontal cortex during reward processing (Cohen et al.,
2005). Overall, these findings yield inconsistent answers to whether regions encoding
prediction errors share similar or different connectivity profiles during positive and
negative prediction error processing.

To this date, there have been only few attempts to investigate large-scale brain
networks during reinforcement learning. However, most studies investigated gradual
network changes associated with value learning neglecting possible rapid changes related
to switching between positive and negative prediction errors (Gerraty et al., 2018;
Mattar et al., 2018). Only one study directly investigated network reorganization
associated with prediction error switching. In this study, Sadler et al. (2020) used
a taste-motivated learning task to examine the dynamics of the reward network.
The community structure of a functional network was affected by the prediction
error sign – ventromedial and ventrolateral prefrontal cortices changed their module
assignment during sweet taste eliciting positive PEs compared with bitter taste eliciting
negative PEs. However, this study investigated only the reward network ignoring other
large-scale networks. Therefore, there is still no explanation for how prediction error
processing shapes whole-brain network dynamics.

To answer these outlined research questions, I designed an fMRI study using a
probabilistic reversal learning paradigm with separate reward-seeking and punishment-
avoiding conditions. I analyzed collected data on three levels: behavioral, neural
activity, and neural connectivity. On the behavioral level, I employed a Bayesian model
with four competing submodels to assess which computational model of reinforcement
learning best explains the subjects’ decisions. I used parameters of the best fitting model
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to estimate experienced prediction errors. These prediction errors were then subjected
to the model-based fMRI analysis and beta-series correlation analysis, allowing the
investigation of PE-related changes in neural activity and neural interactions. I
was particularly interested in examining the whole-brain functional network during
prediction error processing. Specifically, I wanted to describe how this network organizes
itself into modules and how this organization shifts when subjects switch between the
processing of positive and negative outcomes. These three complementary approaches
allowed me to construct a thorough characterization of prediction error processing in
the human brain.

4.2 Hypotheses

I stated three central hypotheses using available theoretical work and empirical findings
on punishment-avoidance learning and large-scale network reconfiguration during
cognition. I hypothesized that (1) two separate systems are responsible for positive
and negative PE processing, (2) agents rescale their prediction errors according to the
reference effect, and (3) large-scale networks increase their integration during negative
prediction error processing. I tested the first two hypotheses using all three data
analyses: behavioral, activation, and connectivity. The third hypothesis was tested
only on the connectivity level since it described specific network effects unrelated to
the behavioral or activation levels.

Dual systems hypothesis

I hypothesized that a separate set of brain regions outside the dopaminergic system
signals negative prediction errors. This hypothesis is based on multiple activation
studies and meta-analyses showing that negative prediction errors are signaled in
the dorsomedial cingulate cortex, anterior insula, dorsolateral prefrontal cortex, and
amygdala (Fazeli and Büchel, 2018; Fouragnan et al., 2018; Hauser et al., 2015; Meder
et al., 2016; Yacubian et al., 2006). On the activation level, I hypothesized that these
regions would exhibit increasing BOLD response with decreasing prediction errors.
On the connectivity level, I hypothesized that prediction error processing regions
would form a separate community with two sub-communities corresponding to the
dopaminergic system signaling positive prediction errors and opponent cortico-insular
system signaling negative prediction errors.

According to the dual systems hypothesis, independent brain systems implement
learning from positive and negative prediction errors. This independence may be
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behaviorally reflected by the differential speed of learning from positive and negative
prediction errors. From the behavioral modeling perspective, this would result in
independent learning rates for temporal-difference value updates following positive and
negative outcomes. I hypothesized that a family of models with separate learning rates
for positive and negative prediction errors would outperform other model families in
explaining subjects’ decisions.

Reference effect hypothesis

I hypothesized that the primary axis along which the brain’s learning systems are
organized is the prediction error sign axis, not the outcome valence axis. This is one
formulation of the reference effect hypothesis, which states that decision values are
actively constructed based on average values present in the environment. The reference
hypothesis was supported by both behavioral (Khaw et al., 2017; Louie et al., 2013)
and neuroimaging studies using fMRI (Park et al., 2012; Rigoli, 2019).

The average stimulus values differ between reward-seeking and punishment-avoiding
conditions in the probabilistic learning task with explicitly controlled outcome valence.
The reference hypothesis postulates the reference effect, which predicts dynamically
adjusted reference point reflecting generally positive outcomes during reward-seeking
and generally negative outcomes during punishment-avoiding. This mechanism is
responsible for signaling negative prediction errors in the reward-seeking condition
(omission of reward) and positive prediction errors in the punishment-avoiding condi-
tion (avoidance of punishment). The reference effect enables utilizing both positive
and negative prediction error systems regardless of the distribution of rewards and
punishments.

According to the reference effect hypothesis, prediction error systems should be
invariant to the outcome valence. On the behavioral level, this hypothesis would
predict that subject’s learning rates for positive and negative prediction errors are
invariant to the task condition. I hypothesized that a behavioral model with separate
learning rates for positive and negative prediction errors and identical learning rates for
reward-seeking and punishment-avoiding conditions would outperform other competing
reinforcement learning models. On both activity and connectivity levels, outcome
valence invariance suggests that neural correlates of prediction errors should be identical
during reward-seeking and punishment-avoiding. Specifically, statistical maps for the
PE effect should reveal significant areas of the reward system, whereas statistical
maps for the condition effect should not contain any significant changes. However, I
expected that the study might not confirm this strict version of the hypothesis since
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evidence suggests subtle valence-related differences in PE processing (Meder et al.,
2016). Therefore, I relaxed the original statement and hypothesized that PE-related
changes in activity and connectivity would be far more pronounced than outcome-
valence-related changes. Similarly, on the connectivity level, I hypothesized that
both global and local network reconfiguration occurs when switching between positive
and negative prediction errors and not when changing between reward-seeking and
punishment-avoiding environments.

Global Workspace hypothesis

The Global Workspace hypothesis states that low-effort tasks are processed within
specialized modules, whereas high-effort tasks require the formation of an integrated
workspace characterized by a high level of integration between specialized modules
(Baars, 2002). What are low-effort and high-effort tasks in the context of probabilistic
reversal learning? I hypothesized that negative prediction errors processing requires
higher cognitive effort than positive prediction errors processing. In the reversal learning
setup, positive prediction errors usually confirm the subject’s internal judgment about
a more beneficial option and are typically followed by choice repetition. On the other
hand, negative prediction errors lead to a conflict – the subject has to judge whether
the source of the error lies in the environment stochasticity or reflects a shift of reward
contingencies. This conflict requires the increased engagement of cognitive resources.

Several studies demonstrated that increased cognitive effort was related to decreased
network modularity, increased integration, and reduced segregation of cognitive systems
(Braun et al., 2015; Finc et al., 2017; Shine et al., 2016; Vatansever et al., 2015). Finc
et al. (2017) showed that the load-related modularity breakdown result from decreased
segregation of DMN and its increased integration with other large-scale networks,
especially task-positive ones. I hypothesized that the same effect would be observed
when switching from positive to negative prediction errors. Specifically, I expected
decreased segregation of the DMN and the reward network and increased integration
between these networks and the task-positive networks. I also hypothesized that
whole-brain network modularity should decrease along with decreasing prediction
errors.
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4.3 Experimental design

4.3.1 Probabilistic reveral learning task

A probabilistic reversal learning (PRL) task was selected to examine neural correlates
of prediction errors (Cools et al., 2002). The PRL task is a powerful paradigm
for investigating updating and relearning the stimulus-reward association through
reinforcement. Here, participants performed the PRL task in two conditions (1)
reward-seeking and (2) punishment-avoiding. In each of these variants, winning and
losing are opposed to neutral outcomes, enabling disentangling between often confused
dimensions: outcome valence and prediction error sign (Palminteri and Pessiglione,
2017). This quality is crucial to investigate how these dimensions independently affect
decision behavior and neural correlates of prediction errors.

Both task conditions were performed inside the fMRI scanner. Participants were
instructed to repeatedly choose between yellow and blue boxes to collect as many
points as possible in the reward-seeking condition or lose as few points as possible in
the punishment-avoiding condition (Fig. 4.1A). One of the boxes had the probability
of being correct (rewarding or non-punishing depending on the condition) p = 0.8
and the other one p = 0.2. These probabilities were unknown to the subjects and
had to be learned from experience. The reward/punishment contingency changed
four times throughout each task condition (Fig. 4.1C). Each box had associated
reward/punishment magnitude, randomly selected at the beginning of each trial.
Magnitudes for both boxes were integers summing up to 50, with the difference
between them not exceeding 40. They were represented as white numbers on the boxes,
indicating possible gain in the reward-seeking condition or loss in the punishment-
avoiding condition. Successful performance in the PRL task requires the decision-maker
to correctly estimate correct choice probabilities from experience and integrate them
with reward/punishment magnitudes to choose an option with a higher expected value.

Each task condition was associated with the separate fMRI run and consisted
of 110 trials. Each trial began with the decision phase indicated by the question
mark appearing within the fixation circle (Fig. 4.1B). During the decision phase a
subject had 1.5 s to choose one of the boxes by pressing a button on the response
grip with either left or right thumb. The decision phase was followed by a variable
inter-stimulus-interval (ISI; 3-7 s, jittered), after which an outcome was presented for
1.5 s. During the outcome phase fixation circle was colored accordingly to the rewarded
or punished box, and the number within the circle represented the number of gained
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Fig. 4.1 Probabilistic reversal learning task. (A) Task structure for reward-
seeking and punishment-avoiding conditions of the PRL task represented as a decision
tree. In the punishment-avoiding condition, numbers on the boxes represented pun-
ishment magnitudes, the fixation circle changed its color according to the punished
box, and the number of lost points was displayed in the middle. (B) Example trial of
probabilistic reversal learning task in reward-seeking condition. Each trial began with
a choice phase where the subject had 1.5s to choose between blue and yellow boxes.
Subjects had to consider both reward magnitudes visible on the boxes and reward
probabilities estimated from previous trials. After variable inter-stimulus-interval (ISI),
an outcome phase began giving the subject choice feedback. During the outcome phase,
the fixation circle changed its color according to the rewarded box, and the number of
rewarded points was displayed in the middle. The outcome phase was followed by a
variable inter-trial-interval, after which a new trial began. (C) Each task condition
consisted of 110 trials. Reward contingency changed four times throughout the task.
The solid line represents true reward probability for the yellow box, whereas the dashed
line represents prediction of a standard TD model.
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or lost points. The outcome phase was followed by a variable inter-trial-interval (ITI;
3-7 s, jittered).

The gray account bar on the bottom o the screen represented points that a subject
gathered in the reward-seeking condition or the remaining points in the punishment-
avoiding condition. In the reward-seeking condition, subjects were informed that if
they fill half of the bar or the entire bar, they will receive 10 PLN (≈ 2.5 USD) or 20
PLN (≈ 5 USD), respectively. Similarly, in the punishment-avoiding condition, they
were informed that they would receive 20 PLN if left with more than half of the bar,
10 PLN if left with less than half of the bar, and no money if they lose all of their
points. To maintain a constant motivation throughout the task, incentives thresholds
were set such that all participants acquired 10 PLN from either task.

Heterogeneity in the prior expectations regarding the task structure may lead to
heterogeneity in behavior even in simple tasks leading to inaccurate behavioral modeling
(Shteingart and Loewenstein, 2014). Therefore, participants were explicitly instructed
that one of two boxes (without telling which) will be more frequently rewarded in the
reward-seeking condition or punished in the punishment-avoiding condition and that
this contingency may reverse several times throughout the task. Before the MRI scan,
subjects practiced both task conditions on the lab computer. During the first phase of
the practice, participants were provided with feedback indicating which box is more
frequently correct to ensure that they grasp the correct model of the task environment.

PsychoPy software (v. 1.90.1; www.psychopy.org; Peirce (2007)) was used for
task presentation on the MRI compatible NNL goggles (NordicNeuroLab, Bergen,
Norway). Behavioral responses were collected using MRI-compatible NNL response
grips (NordicNeuroLab, Bergen, Norway), which were held in both hands. Each
condition lasted approximately 24 min. The order of task conditions and the colors for
the left and right boxes (yellow and blue) were counterbalanced across subjects.

4.3.2 Subjects

Thirty-two healthy volunteers (14 female; mean age: 20.9±2.24; age range: 18-28)
were recruited from the local community through social networks and word-of-mouth.
All participants were right-handed, had a normal or corrected-to-normal vision, and
did not suffer from neurological or psychiatric disorders at the time of examination
or in the past. Informed consent was obtained in writing from each participant, and
ethical approval for the study was obtained from the Ethics Committee of the Nicolaus
Copernicus University Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland, in
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accordance with the Declaration of Helsinki. One participant was excluded from the
neuroimaging part of the analysis due to reversed placement of the response grips.

4.3.3 Data acquisition

Brain imaging data were collected using a GE Discovery MR750 3 Tesla fMRI scanner
(General Electric Healthcare) with a standard 8-channel head coil. Anatomical images
were obtained using a three-dimensional high resolution T1-weighted (T1w) gradient-
echo (FSPGR BRAVO) sequence (TR = 8.2 s, TE = 3.2 ms, FOV = 256 mm, flip
angle = 12 degrees, matrix size = 256 × 256, voxel size = 1 × 1 × 1 mm, 206 axial
oblique slices). Functional images were obtained using a T2*-weighted gradient-echo,
echo-planar imaging (EPI) sequence sensitive to BOLD contrast (TR = 2,000 ms,
TE = 30 ms, FOV = 192 mm, flip angle = 90 degrees, matrix size = 64 ×64, voxel
size 3 × 3 × 3 mm, 0.5 mm gap). Two runs of probabilistic reversal learning in
the reward-seeking and punishment-avoiding conditions were acquired (24 min 20 s;
730 volumes each). Forty-two axial oblique, interleaved slices were scanned for each
functional run, and five dummy scans (10 s) were collected at the beginning of each
run to stabilize magnetization.

4.3.4 Data preprocessing

The raw DICOM data were converted to NifTI format, structured according to the
Brain Imaging Data Structure (BIDS) standard, and validated using BIDS Validator
(https://bids-standard.github.io/bids-validator/) (Gorgolewski et al., 2016; Yarkoni
et al., 2019). The preprocessing was performed using fMRIPrep version 1.4.1 (Esteban
et al., 2019; Gorgolewski et al., 2011).

The T1-weighted images were corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.2.0 (Avants
et al., 2008), and used further used as reference T1-weighed image. The T1w reference
was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh
workflow (from ANTs), using OASIS30ANTs as the target template. Brain tissue
segmentation of cerebrospinal fluid (CSF), white matter (WM), and gray matter was
performed on the brain-extracted T1w using FAST (FSL 5.0.9, Zhang et al. (2000)).
Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, Dale et al. (1999)),
and the brain mask estimated previously was refined with a custom variation of the
method to reconcile ANTs-derived and FreeSurfer-derived segmentation of the cortical
gray matter of Mindboggle (Klein et al., 2017). Volume-based spatial normalization
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to the standard space (MNI152NLin2009cAsym) was performed through nonlinear
registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions of
both T1w reference and the T1w template. The ICBM 152 Nonlinear Asymmetrical
template was selected for spatial normalization (version 2009c; TemplateFlow ID:
MNI152NLin2009cAsym; Yoon et al. (2009)).

For each of the two fMRI runs per subject, the following preprocessing was performed.
First, a reference volume and its skull-stripped version were generated using a custom
methodology of fMRIPrep. The blood-oxygen-level dependent reference was then
co-registered to the T1w reference using bbregister (FreeSurfer), which implements
boundary-based registration (Greve and Fischl, 2009). Co-registration was configured
with nine degrees of freedom to account for distortions remaining in the BOLD
reference. Head-motion parameters for the BOLD reference were estimated before any
spatiotemporal filtering using mcflirt (FSL 5.0.9, (Jenkinson, 2003)). fMRI time series
were slice-time corrected using 3dTshift from AFNI 20160207 (Cox and Hyde, 1997).

Then, time series were resampled to surfaces on the fsaverage5 space, their original
native space, and standard MNI152NLin2009cAsym space by applying a single compos-
ite transform to correct head-motion and susceptibility distortions. These resampled
time series are referred to as preprocessed time series. First, a reference volume and
its skull-stripped version were generated using a custom methodology of fMRIPrep.
Several confounding time series were calculated based on the preprocessed time series:
framewise displacement (FD), spatial standard deviation of successive difference images
(DVARS), and three region-wise global signals. FD and DVARS were estimated for
each functional run, using their implementations in Nipype. The three global signals
were extracted from the CSF, WM, and whole-brain masks. Additionally, head-motion
estimates calculated during the correction step were stored as confounds time series.
All head-motion and global signal confounds were expanded with the inclusion of
temporal derivatives and quadratic terms (Satterthwaite et al., 2013). Frames that
exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were marked as motion
outliers.

4.4 Behavioral modeling

4.4.1 Model space

Reinforcement learning models can quantitatively account for learning by trial-and-
error (Montague, 1999). Precisely, models based on the idea of the temporal-difference
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learning postulate that stimulus values are updated proportionally to the prediction
error weighted by adjustable learning rate (Wagner and Rescorla, 1972). Because of the
anticorrelated design of correct choice probabilities during the PRL task, simultaneous
stimulus value updates for the chosen and non-chosen options were assumed (O’Doherty
et al., 2007). Following previous studies, models with separate learning rates for positive
and negative PEs were considered to account for possible risk-sensitivity effects. These
models would be referred to as prediction-error dependent (PD) models (Niv et al.,
2012; Reiter et al., 2016; Van den Bos et al., 2012). To capture possible valence
effects, e.g., loss aversion, models with separate learning rates for reward-seeking and
punishment-avoiding conditions were also included. These models would be referred
to as condition-dependent models (CD). To fully explore model space, all possible
combinations of models were considered, which resulted in four different models:

1. PICI model with single learning rate independent of the sign of prediction error
and outcome valence,

2. PICD model with two separate learning rates for reward-seeking and punishment-
avoiding conditions,

3. PDCI model with two separate learning rates for positive and negative PEs,

4. PDCD model with four separate learning rates for prediction error signs and task
conditions.

All models assumed that prediction error at each trial t is computed as the difference
between experienced outcome, rt, and the expected probability that chosen option will
be correct (rewarding / not-punishing), pc

t :

δt = rt − pc
t . (4.1)

Outcomes could be either rt = 1 when a stimulus is rewarded / not punished or
rt = 0 when stimulus is punished / not rewarded at trial t. Note that randomly
drawn reward magnitudes did not follow any structured rules. Hence, participants
learned and estimated only correct choice probabilities and not action values. In
each trial, probability estimates for both chosen, pc

t , and unchosen stimulus, pu
t , were

simultaneously updated according to a standard Rescorla-Wagner rule:pc
t = pc

t−1 + αtδt

pu
t = pu

t−1 − αtδt

, (4.2)
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where αt ∈ [0, 1] is the learning rate used in trial t. Note that learning rate values
close to zero result in minor updates and slow learning, whereas values close to one
result in probability matching behavior. In the simplest PICI model, a single learning
rate, αPICI

t , was used to update probability estimates regardless of PE sign and task
condition. The rest of the models assumed separate learning rates depending on task
condition, prediction error sign, or both:

αPICD
t =

αRS if condition is reward-seeking
αPA if condition is punishment-avoiding

,

αPDCI
t =

α+ if δt > 0
α− if δt < 0

,

αPDCD
t =



αRS+ if δt > 0 and condition is reward-seeking
αRS− if δt < 0 and condition is reward-seeking
αP A+ if δt > 0 and condition is punishment-avoiding
αP A− if δt < 0 and condition is punishment-avoiding

.

(4.3)

Action selection was modeled based on reward/punishment magnitudes and con-
tinuously updated probability estimates. Utility of both options was assumed as
Pascalian expected value, i.e., a product of the expected probability that the box is
rewarded/punished, ρt, and reward/punishment magnitude for that box, xt:

v
left/right
t = ρ

left/right
t x

left/right
t . (4.4)

Note that in the case of punishment-avoiding condition expected probability that
stimulus leads to punishmnt equals one minus the expected probability that it is a
correct choice:

ρt =

pt if condition is reward-seeking
1− pt if condition is punishment-avoiding

. (4.5)

Finally, the choice probability was derived by coupling expected values with the
softmax policy rule (Luce, 1957):P left

t = exp−1(β(vleft
t − vright

t ))
P right

t = 1− P left
t

, (4.6)
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where precision (or “inverse-temperature”) parameter β ∈ [0,∞) reflects choice stochas-
ticity by controlling sensitivity of the choice probability to differences in expected
value between the two stimuli. Choice probability values served as likelihood functions
generating choices in the Bayesian modeling framework.

4.4.2 Bayesian modeling

Bayesian modeling provides a strict and flexible way of relating formal cognitive models
to behavioral data (Lee and Wagenmakers, 2014). Bayesian modeling aims to estimate
a set of parameters, θ, which can represent hidden parameters of behavioral models or
variables used for model comparison. In Bayesian statistics, parameters are represented
as probability distributions instead of single numbers, which preserves the information
about their uncertainty. The general principle of Bayesian analysis is to use collected
data, X, to update the prior beliefs about parameters to posterior beliefs represented
as new probability distributions over parameters in question. The “updating process”
is captured in a Bayes formula:

p(θ |X) = p(X | θ)
p(X) p(θ) (4.7)

where p(θ |X) is a posterior distribution of θ given the data X, p(X | θ) is a probability
of observing data X given prior beliefs about θ, p(θ) is a prior probability distribution,
and p(X) is a normalizing constant. Posterior distribution p(θ |X) represents updated
belief about parameters and takes into account both prior beliefs and collected data X.

Here, a Bayesian hierarchical latent-mixture (HLM) model was used to perform
model selection and parameter estimation. This type of Bayesian model contains
parameters representing behavioral parameters like learning rates or precision and
parameters reflecting the belief about which competing model generates the observed
data. The hierarchical structure of the model assumes behavioral parameters of
individuals coming from group-level distributions. The latent-mixture structure assumes
that observed behavior can arise as a combination of computations from different
cognitive processes. The HLM model was estimated with PICI, PICD, PDCI, and
PDCD submodels as competing submodels for model comparison (Fig. 4.2). Then
a hierarchical model with a winning submodel as a generative model for behavioral
responses was estimated for parameter recovery purposes.



64 Prediction error processing during reward and punishment learning
PI

CI
 m

od
el

PI
CD

 m
od

el
PD

CI
 m

od
el

PD
CD

 m
od

el

 tr
ia

ls

 s
ub

je
ct

s

hyperpriors priors utility choice
probability

model
indicator choice

F
ig

.
4.

2
H

ie
ra

rc
hi

ca
l

la
te

nt
-m

ix
tu

re
m

od
el

.
C

ho
ic

e
pr

ob
ab

ili
ty

fo
r

th
e

tr
ia

lt
an

d
su

bj
ec

t
i,

is
m

od
el

ed
as

a
la

te
nt

m
ix

tu
re

of
ch

oi
ce

pr
ob

ab
ili

tie
s

ca
lc

ul
at

ed
fo

r
fo

ur
di

ffe
re

nt
re

in
fo

rc
em

en
t

le
ar

ni
ng

su
bm

od
el

s:
PI

C
I

w
ith

sin
gl

e
le

ar
ni

ng
ra

te
fo

r
ea

ch
su

bj
ec

t,
PI

C
D

w
ith

tw
o

se
pa

ra
te

le
ar

ni
ng

ra
te

s
fo

r
re

wa
rd

-s
ee

ki
ng

an
d

pu
ni

sh
m

en
t-

av
oi

di
ng

co
nd

iti
on

,P
D

C
I

w
ith

tw
o

se
pa

ra
te

le
ar

ni
ng

ra
te

s
fo

r
po

sit
iv

e
an

d
ne

ga
tiv

e
pr

ed
ic

tio
n

er
ro

rs
an

d
PD

C
D

w
ith

fo
ur

se
pa

ra
te

le
ar

ni
ng

ra
te

s
fo

r
re

wa
rd

-s
ee

ki
ng

an
d

pu
ni

sh
m

en
t-

av
oi

di
ng

co
nd

iti
on

s
an

d
po

sit
iv

e
an

d
ne

ga
tiv

e
pr

ed
ic

tio
n

er
ro

rs
.

Pr
ob

ab
ili

tie
s

fo
r

ea
ch

su
bm

od
el

ar
e

ap
pr

ox
im

at
ed

by
a

su
bj

ec
t-d

ep
en

de
nt

m
od

el
in

di
ca

to
rv

ar
ia

bl
e

z i
.C

irc
ul

ar
no

de
sr

ep
re

se
nt

co
nt

in
uo

us
va

ria
bl

es
,

sq
ua

re
no

de
s

re
pr

es
en

t
di

sc
re

te
va

ria
bl

es
,u

ns
ha

de
d

no
de

s
re

pr
es

en
t

un
ob

se
rv

ed
va

ria
bl

es
,s

ha
de

d
no

de
s

re
pr

es
en

t
ob

se
rv

ed
va

ria
bl

es
,s

in
gl

e
bo

rd
er

no
de

s
re

pr
es

en
ts

to
ch

as
tic

va
ria

bl
es

,d
ou

bl
e

bo
rd

er
no

de
s

re
pr

es
en

td
et

er
m

in
ist

ic
va

ria
bl

es
.B

ox
es

on
th

e
le

ft-
ha

nd
sid

e
de

sc
rib

e
th

e
ro

le
of

ea
ch

va
ria

bl
e

in
th

e
m

od
el

,b
ox

es
on

th
e

bo
tt

om
-r

ig
ht

pr
es

en
t

th
e

de
ta

ils
of

th
e

pr
io

r
an

d
hy

pe
rp

rio
r

di
st

rib
ut

io
ns

.



4.4 Behavioral modeling 65

Weakly informative hyperpriors were set to model the distribution of the learning
rates and precision across individuals. Following previous studies, learning rates were
assumed to come from a beta distribution (Gershman, 2016). Beta distribution is
defined for the continuous interval α ∈ [0, 1] covering entire range of possible learning
rate values:

f(a, b, α) = ca,bα
a−1(1− α)b−1 (4.8)

where a and b are two non-negative shape parameters. These were set to come from
the uniform hyperprior distribution a ∼ Uniform(1, 10) and b ∼ Uniform(1, 10). Note
that both shape parameters were assumed greater than 1, since for a < 1 and b < 1
beta distribution takes a behaviorally implausible U-shape. Precision parameter β was
independently included for each submodel to provide additional flexibility in model
parameter space and avoid potential dependence between competing models. Generative
distribution for precision parameter β was represented as a lognormal distribution.
Hyperpriors for lognormal parameters distributions were set to µ ∼ Uniform(−2.3, 3.4)
for lognormal group mean and σ ∼ Uniform(0.01, 1.6) for lognormal standard deviation.
These weakly informative hyperpriors were used in previous studies and derived from
the constrain to confine group mean for the precision parameter within 0.1 to ∼ 30
interval (Meder et al., 2019; Nilsson et al., 2011). The latent-mixture part of the model
assumed a subject-specific model indicator variable to represent a latent mixture of
four competing submodels. This assumption allowed to model each subject response
pattern independently by using a different mixture of competing submodels. Model
indicator variable, zi, was modeled with uniformly distributed flat prior representing
lack of expectations toward which behavioral model best explains subjects response
patterns.

4.4.3 Markov Chain Monte Carlo

Typically, the posterior distribution p(θ |X) can only be calculated analytically for
a limited set of simple Bayesian models. For more complex models, the analytical
approach becomes ineffective and different solutions are needed. An efficient, computer-
driven sampling method known as Markov Chain Monte Carlo (MCMC) has been
developed to overcome this issue (Gamerman and Lopes, 2006; Kass et al., 1998).
The MCMC method samples posterior probability distribution p(θ |X) by generating
Markov chains. A sufficiently large number of samples in a chain allows accurate
reproduction of p(θ | X). Here, the MCMC sampling was performed using JAGS
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software (v4.3.0; http://mcmc-jags.sourceforge.net/) called from MATLAB R2017a
via matjags.m script (v1.3.3; https://github.com/msteyvers/matjags). A sampling
procedure with 2000 burn-in samples, four chains, and 15,000 samples per chain was
used to estimate the hierarchical latent-mixture model.

To ensure that chain samples are unaffected by starting values and come from a
stationary distribution, it is common to measure sampling convergence. A popular
diagnostic measure – potential scale reduction, R̂, was calculated for each model
variable, and corresponding chain traceplots were visually inspected to ensure that the
procedure converged. R̂ combines information on the variation within and between
chains to determine whether all chains reflect the same stationary target distribution.
Convergence was declared for R̂ values less than 1.1.

For a model selection, a posterior model probability was calculated for each sub-
ject using posterior samples of the model indicator variable. PI and PD models
were independently compared by marginalizing model indicator variables over sub-
jects and calculating Bayes factors for PICI+PICD (PI model family) models versus
PDCI+PDCD (PD model family) models. Bayes factor is a measure of relative evidence
of two competing hypotheses calculated as:

BF12 = p(θ | H1)
p(θ | H0)

, (4.9)

where H1 and H2 are two competing hypotheses. Here, these hypotheses refer to PI
and PD model families generating observed behavioral data, and θ represents the model
indicator variable. An analogous procedure was repeated to compare between CI and
CD models. A standard interpretation of Bayes factors was used to report levels of
evidence (van Doorn et al., 2021).

The single best submodel was selected by calculating estimated model frequen-
cies and protected exceedance probabilities (Rigoux et al., 2014) for the model fre-
quency being highest among other submodels. These calculations were performed
with the Variational Bayesian Analysis toolbox (v1.9.2; https://github.com/MBB-
team/VBA-toolbox), which implements Bayesian model selection for group studies.
Model parameters for the winning model were fitted by estimating a reduced hier-
archical latent-mixture model. A full model was reduced to the single hierarchical
Bayesian model by removing the model indicator variable and all branches representing
competing submodels. Posterior samples for learning rates and precision were used
to derive point estimates for these parameters. These point estimates were used in
subsequent model-based fMRI analyses.
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4.4.4 Behavioral performance

Successful performance in the PRL task requires subjects to take into account changing
reward or punishment probabilities and magnitudes associated with each choice. As
in any version of the PRL task, probabilities had to be learned from experience by
trial-and-error.

An individual subject’s performance accuracy was calculated to establish if subjects
succeeded in learning probabilistic associations. Accuracy was defined as the proportion
of choices that led to rewarding outcomes in reward-seeking condition or non-punishing
outcomes in punishment-avoiding condition. Since the study examined healthy subjects
without valence-dependent learning deficits, I hypothesized similar performance levels
for both task conditions.

The accuracy was significantly higher than a chance level for both reward-seeking
(accRS = 62.81%; one-sided t-test t(31) = 13.00; p < 0.0001) and punishment-avoiding
condition (accPA = 62.13%; one-sided t-test t(31) = 11.38; p < 0.0001). Subjects
performed equally well in both experimental contexts – no significant difference in
performance between task conditions was found (two-sample t-test; p = 0.62).

I was also interested in whether reward and punishment magnitudes influenced the
subject’s choices. A significant relationship between reward/punishment magnitude and
choice proportion suggests that subjects correctly understood the task structure, consid-
ering magnitudes as an essential factor for successful performance. The probability of
choosing the right box was estimated for each possible difference in reward/punishment
between the right and left boxes. This probability was defined as the proportion of
right box choices pooled over subjects and task conditions. A significant correlation
between the two variables was found (r = 0.95; p < 0.0001), indicating that subjects
used magnitude information to guide their choices (Fig. A.1A).

Next, I wanted to test whether task conditions affected probability matching
behavior, which manifests as a loose-shift strategy in a probabilistic learning scenario
(Gaissmaier and Schooler, 2008). The number of choice reversals was calculated for
each subject and task condition. Subject frequently reversed their choices – mean
number of reversals was equal to 30.41± 11.93 in reward-seeking and 30.25± 11.98
in punishment-avoiding condition. Moreover, the number of choice reversals did not
significantly differ between the two task conditions (two-sample t-test; p = 0.94).

Finally, I wanted to quantify possible differences in choice duration, i.e., reaction
time (RT), between reward-seeking and punishment-avoiding conditions and positive
and negative prediction errors. Choice times following gain/no-lose trials were assigned
to the +PE group, whereas these following lose/no-gain trials reflected −PEs. A
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two-way repeated measures ANOVA (rmANOVA) was performed on RT values with
task condition and PE sign as factors. There was a significant interaction effect
between task condition and PE sign (F (31) = 14.06; p < 0.001; Fig. A.1B) indicating
that choice durations were modulated by both experimental factors. In general,
choice durations were longer for the punishment-avoiding compared to reward-seeking
conditions as indicated by the significant task condition effect (RTRS = 687.4±126.3ms;
RTPA = 651.7± 110.9ms; F (31) = 4.27; p < 0.05). Post hoc within-condition analysis
showed that choice times following negative prediction errors were longer in punishment-
avoiding condition (paired t-test; t(31) = 3.04; p < 0.01) but not in reward-seeking
condition (paired t-test; p = 0.26).

4.4.5 Model selection

The hierarchical latent-mixture model with four competing submodels was evaluated
to select the winning submodel. A sampling of the probability distribution of the
model indicator variable zi resulted in posterior distribution for each subject reflecting
posterior probability for each competing submodel.

A majority of the subjects (27/32; 84.4%) had most of the probability mass located
over either the PDCI model (19/32; 59.4%) or PDCD model (8/32; 25%) (Fig. 4.3A).
Models with separate learning rates for reward-seeking and punishment-avoiding
conditions were favored in five subjects (1/32; 3.1%; PICD and 4/32; 12.5% PICI).
Posterior distribution of the model indicator variable was marginalized over subjects and
model classes to investigate whether subject response patterns are better explained by
models with: (1) prediction error dependent (PD) versus prediction error independent
(PI) learning rates, and (2) condition dependent (CD) versus condition independent
(CI) learning rates. These comparisons reflected two orthogonal experimental axes:
prediction error sign and task condition. Moderate evidence was found in favor of the
hypothesis that behavioral responses are better explained by the models with separate
learning rates for positive and negative prediction errors (BFPD−PI = 3.19; Fig. 4.3B).
On the other hand, there was a weak evidence against the hypothesis assuming separate
learning rates for reward-seeking and punishment-avoiding conditions (BFCD−CI = 0.67;
Fig. 4.3B). Measures of the likelihood for each submodel being more frequent than all
other submodels of the HLM model was computed as protected exceedance probabilities.
This procedure determined a single winning submodel for further fMRI analysis. The
PDCI model was the most likely model across participants with probability close to 1
(protected exceedance probability; p = 0.9995; Fig. 4.3D).
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Fig. 4.3 Model selection and parameter recovery results. (A) Posterior distri-
bution of the model indicator variable zi. Most of the subject had the probability mass
over either PDCI (19/32) or PDCD (8/32) models. (B and C) Posterior distribution
of the model indicator variable zi marginalized over subjects and model classes. Model
families: prediction error dependent (PD; PDCI and PDCD models); prediction error
independent (PI; PICI and PICD models); condition dependent (CD; PICD and PDCD
models); condition independent (CI; PICI and PDCI models). Numbers over the
bars represent Bayes factors for the hypothesis that behavioral responses are better
explained by the models with separate learning rates for (B) positive and negative
prediction errors or (C) reward-seeking and punishment-avoiding conditions. (C)
Protected exceedance probabilities for each submodel being more frequent than all
other submodels. (E) Posterior probability distribution of learning rates for positive,
α+, and negative prediction errors, α−, for the winning PDCI model. The hierarchical
model with PDCI submodel as a generative model for subject responses was evaluated
independently of the main HLM model. (F) Posterior probability distribution of
the precision parameter for the winning PDCI model. (G) Relationship between the
difference in positive and negative learning rates estimated from the PDCI model and
a mean number of reversals indicating probability matching behavior.
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4.4.6 Parameter recovery

The winning PDCI submodel was independently evaluated as a generative model for
subjects’ behavioral responses. A hierarchical model comprised of the branch of the
full HLM model without the model indicator variable node was created and sampled
using the MCMC sampling technique. Posterior distributions of learning rates and
precision nodes enabled estimating individual values of these latent cognitive variables.

First, group-level distributions of behavioral parameters were investigated by
marginalizing individual distributions over subjects. Learning rates for positive pre-
diction error were higher than learning rates for negative prediction error (α+ =
0.737 ± 0.275; α− = 0.415 ± 0.149; Fig. 4.3E). A Bayesian hypothesis testing was
used to determine whether learning rates for positive prediction errors are higher than
for negative prediction errors. Moderate evidence was found in favor of this hypothesis
(BF = 4.78). However, after restricting this hypothesis to the 19 subjects with most of
the probability mass located over the PDCI model, very strong supporting evidence
(BF = 37.90) was found. These results suggest a greater influence of positive than
negative prediction errors on value estimates, especially in subjects whose behavior is
best explained by the PDCI model.

4.4.7 Relationship between model parameters and behavioral
performance

To better understand a behavioral significance of the observed gap between learning
rates for positive and negative prediction errors, I investigated a possible relationship
between the difference in learning rates and the mean number of reversals. A significant
negative correlation between the two variables was found (r = −0.76; p < 0.0001),
indicating that the higher difference between the learning rate for positive and negative
prediction error was related to the lower reversal tendency (Fig. 4.3G). These results
suggest that probability matching behavior is reflected by (1) a high learning rate
for positive prediction errors because the subjects are more likely to repeat their
choice after the previous correct choice and (2) relatively low learning rate for negative
prediction errors because the subjects tend to switch their choice after a previous
incorrect choice.
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Fig. 4.4 Event model for single trial. Task events, latent computational variables,
and GLM regressors are shown on a timeline for single experimental trial. Top panel
shows a trial timeline with corresponding visual changes (eye icon) and motor responses
(hand icon). Middle panel shows latent reinforcement learning variables like expected
value and prediction errors time-locked to task events (see section 4.4.1). Bottom panel
presents modeled BOLD responses used in first-level GLM.

4.5 Model-based fMRI

4.5.1 First-level GLM

The single-subject effect of processing increasing prediction errors was modeled with a
subject-level general linear model. Two separate GLMs were created for reward-seeking
and punishment-avoiding task conditions. Each GLM was composed of regressors
modeling task events and estimated latent decision parameters and nuisance regressors
accounting for noise components related to head motion and scanner drift. Task
regressors of interest included regressor modeling onset of the outcome phase and its
parametric modulation with the estimated trial-wise prediction error (PE regressor).
Task regressors of no interest modeled other experimental events: onset of the decision
and its parametric modulation with the expected probability that chosen option will be
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correct, left and right button press, trials with a missing response, offset of the outcome
phase (Fig. 4.4). Nuisance regressors included 24 head motion parameters to remove
residual movement artifacts and cosine functions derived from the cosine drift model to
remove low-frequency artifacts. All task events were modeled as impulse functions with
zero duration and convolved with a canonical double-gamma hemodynamic response
function. First-level contrast was defined as a one-sample t-test for the PE regressor
effect against the baseline. Resulting statistical parametric maps were used in the
second level of analysis.

4.5.2 Second-level GLM

The second level of the analysis was performed as random-effects analysis separately
modeling each task condition and within-subject effects. The significance of the two
effects of interest across the group was tested: (1) the combined effect of increasing
and decreasing prediction error across both task conditions and (2) difference in
response to increasing and decreasing prediction error between reward-seeking and
punishment-avoiding conditions. A threshold of p < 0.0001 with false discovery rate
(FDR) correction was used for the former effect, accounting for its high statistical
power compared with the latter effect. This stringent thresholding was imposed to
reduce the number of significant clusters and improve the readability of the statistical
maps. A threshold of p < 0.001 with FDR correction was used for the latter effect.
An additional threshold for cluster size of 20 connected voxels was used in either case.

Differences in response to PE between reward-seeking and punishment-avoiding
conditions cannot be unambiguously interpreted since statistical testing of this effect
relies on testing the difference between slopes of the regression between voxel activity
and the prediction error. For example, significant response for increasing PEs in reward-
seeking compared to the punishment-avoiding condition may be related to one of the
three effects: (1) for both conditions, activity is correlated with increasing PE, but
for the reward-seeking condition the relationship is significantly stronger, (2) for both
conditions activity is correlated with decreasing PE, but for reward-seeking condition
the relationship is significantly weaker or (3) activity is correlated with increasing PE
in reward-seeking condition and correlated with decreasing PE in punishment-avoiding
condition. A post hoc test on the cluster level was performed to discriminate between
these effects. Response profiles were extracted for each subject, task condition, and
significant cluster exhibiting increased or decreased response to prediction error in
reward-seeking condition compared to punishment-avoiding condition. These profiles
were calculated as first-level parameter estimates, i.e., GLM beta values, for peak voxel
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for the PE regressor effect. Then, average beta values across subjects were calculated
for both conditions. To further confirm the significant change in response profiles, a
paired t-test between reward-seeking and punishment-avoiding betas was performed
for all clusters.

4.5.3 Context-independent prediction error processing

I wanted to identify brain regions in which activity increases with increasing PEs
and decreases with increasing PEs. I used individually calculated prediction errors to
construct PE regressors modeling latent PE computation time-locked to the outcome
onset. My first aim was to identify brain regions encoding increasing and decreasing
PEs regardless of the task condition. These regions form the core of the learning
network enabling the processing of positive and negative feedback information used to
update values of chosen stimuli.

A broad network of regions in which activity was correlated with increasing and
decreasing PEs was found (Fig. 4.5A). For increasing PEs, significant activity was
found in clusters in the vmPFC, superior temporal gyrus, bilateral orbitofrontal cortex,
bilateral putamen, left postcentral gyrus, right amygdala and VS, left posterior cingulate
cortex (PCC), left angular gyrus, right precentral gyrus, left middle temporal gyrus
(Table 4.1; increasing PE). Other significant clusters were located in the left caudal
middle frontal gyrus, bilateral planum temporale, left parahippocampal gyrus, and right
superior frontal gyrus. For decreasing PEs, significant activity was found in clusters
in the left dorsomedial cingulate cortex, bilateral anterior insula (aINS), right pars
opercularis, left dorsolateral prefrontal cortex (dlPFC), left cerebellum, left precentral
gyrus, and left superior frontal gyrus (Table 4.1; decreasing PE). Generally, activity
related to increasing PEs was more widespread than activity related to decreasing PEs.

4.5.4 Context-dependent prediction error processing

I wanted to test whether PE signaling in essential parts of increasing PE network like
striatum and vmPFC undergo valence-related changes. To investigate differences in PE
processing between task conditions, I evaluated a second-level GLM testing for higher
response to increasing PEs in reward-seeking than punishment-avoiding conditions.

A set of brain regions was found for which the regression slope between voxel activity
and the prediction error was higher in the reward-seeking compared to punishment-
avoiding condition (Fig. 4.5B). These regions included bilateral visual areas V3 and
V4, right supramarginal gyrus, right superior parietal lobule, right precuneus, right
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p < 0.0001
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Fig. 4.5 Model-based fMRI results. (A) Brain regions processing increasing and
decreasing prediction errors. Orange regions exhibit increased activity with increasing
prediction error in both task conditions. Blue regions decrease their BOLD response
with increasing prediction error in both task conditions. Statistical maps were FDR
corrected with a threshold p < 0.0001. (B) Brain regions responding differently to
prediction errors in rewards-seeking and punishment-avoiding conditions. For orange
clusters slope between voxel activity and PE was higher in reward-seeking compared
to punishment-avoiding conditions. (C) Post-hoc test for the clusters in B (only five
clusters with highest z-scores are shown). First-level parameter estimates (z-scores) for
the PE regressor were extracted individually for each cluster, subject, and condition.
Each region in B increased its activity with increasing PE in reward-seeking condition
and decreased its activity with increasing PE in punishment-avoiding condition (paired
t-test; p<0.0001). Abbreviations: SPL - superior temporal lobule.
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Table 4.1 Condition-independent PE signaling. Regions signaling increasing and
decreasing prediction errors across reward-seeking and punishment-avoiding conditions.

Region L/R X Y Z Z-score peak Cluster Size (mm3)

Increasing PE
Ventromedial Prefrontal Cortex L -3 48 -1 7.23 30397
Superior Temporal Gyrus L -48 -39 3 6.93 1417
Lateral Orbitofrontal Cortex L -39 33 -12 6.79 5071
Putamen L -30 -12 6 6.63 8473
Postcentral Gyrus L -27 -42 66 6.62 1732
Amygdala, Ventral Striatum, Putamen R 21 0 -12 6.52 8347
Posterior Cingulate Cortex L -6 -45 38 6.47 9985
Angular Gyrus L -54 -75 34 6.32 9009
Precentral Gyrus R 24 -24 59 6.30 2803
Middle Temporal Gyrus L -60 -12 -15 6.18 2425
Caudal Middle Frontal Gyrus L -27 24 48 6.07 1039
Lateral Orbitofrontal Cortex R 27 36 -12 6.00 3213
Planum Temporale, Supramarginal Gyrus R 45 -36 17 5.86 3244
Parahippocampal Gyrus L -33 -39 -12 5.80 1417
Precentral Gyrus L -15 -27 73 5.69 1039
Superior Frontal Gyrus R 21 39 55 5.69 1386
Planum Temporale L -57 -33 17 5.69 1669
Middle Temporal Gyrus L -57 -57 -1 5.39 850
Precentral Gyrus L -6 -18 52 5.39 787
Postcentral Gyrus L -39 -24 52 5.28 913

Decreasing PE
Dorsomedial Cingulate Cortex, SMA L -6 12 48 8.18 14647
Anterior Insula L -33 21 10 6.71 1543
Anterior Insula R 30 24 6 6.43 756
Pars Opercularis R 45 18 3 5.93 787
Dorsolateral Prefrontal Cortex L -45 30 34 5.89 2803
Cerebellum L -33 -60 -26 5.81 630
Precentral Gyrus L -30 -3 59 5.62 913
Superior Frontal Gyrus L -18 6 69 5.55 882
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Table 4.2 Between-condition differences in PE signaling. Regions exhibiting
differences in prediction error processing between reward-seeking and punishment-
avoiding conditions.

Region L/R X Y Z Z-score peak Cluster Size (mm3)

Increasing PE Reward-seeking > Punishment-avoiding
V3 / V4 R 42 -81 24 6.28 13608
Supramarginal Gyrus R 57 -27 52 6.22 3843
V3 / V4 L -48 -81 -1 5.64 3402
Superior Parietal Lobule R 21 -72 45 5.60 4410
Precuneus R 12 -39 52 5.56 1071
V1 R 3 -78 3 5.42 1921
Precentral Gyrus R 54 9 17 5.29 693

Increasing PE Punishment-avoiding > Reward-seeking
no significant clusters

primary visual cortex, and right precentral gyrus (Table 4.2). None of these regions
were part of the core PE processing network. Since differences in response to PE
between reward-seeking and punishment-avoiding conditions cannot be unequivocally
interpreted, a posthoc test was performed for all significant clusters by extracting
individual subject and condition response profiles as first-level parameter estimates for
the peak voxel. Positive activity scaling with increasing PEs in reward-seeking condition
and negative activity scaling with increasing PEs in punishment-avoidance condition
was found in all seven clusters (paired t-test; p<0.0001; Fig. 4.5C). There were no
brain regions with significantly higher response to increasing PE in punishment-avoiding
condition.

4.6 Analysis of functional brain networks

4.6.1 Brain parcellation

One of the first steps in brain network analysis is dividing the brain into regions
that will be considered nodes of the functional network (Sporns, 2013). Each specific
division is called brain parcellation or brain atlas. Choice of the parcellation can greatly
influence brain network analysis results. Therefore it is critical to choose a suitable
parcellation for a given set of research questions. Brain parcellations are usually defined
based on anatomical, functional, or multi-modal properties of the brain tissue (Glasser
et al., 2016). Many existing parcellations suggest that there is still no gold-standard
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Fig. 4.6 Prediction error signaling ROIs. Regions of interest created from activa-
tion likelihood estimation (ALE) meta-analysis clusters from Fouragnan et al. (2018).
Network signaling positive prediction errors (+PE; orange spheres) is created from
regions with higher BOLD activation for positive than negative PEs. Network signaling
negative prediction errors (−PE; blue spheres) is created from regions with higher
BOLD activation for negative than positive PEs.

approach to the brain division among the neuroscientific community (Eickhoff et al.,
2018). Nonetheless, some brain atlases gained more popularity in the recent decade.

The frequently used brain parcellation in resting-state and task-based fMRI studies
is the parcellation introduced by Power et al. (2011). It consists of 264 regions of
interest defined based on a meta-analysis of activation patterns from multiple studies.
Each ROI is modeled as a 5mm sphere around the specific MNI coordinates. Power’s
parcellation additionally includes the division of the 264 ROIs into 13 large-scale
networks: auditory, cerebellar, somatomotor, cingulo-opercular, default mode, memory,
ventral attention, dorsal attention, fronto-parietal, salience, subcortical, uncertain and
visual. This division allows examining the dynamic interplay between LSNs in various
experimental conditions. However, Power’s parcellation does not contain separate
prediction-error-related networks; therefore, it cannot be directly used to study how
the reward system interacts with the rest of the brain during reinforcement learning.
To overcome this issue, the Power’s ROIs were combined with regions from the recent
meta-analysis on neural representations of prediction error valence (Fouragnan et al.,
2018). This procedure allows studying effects specific for networks signaling prediction
errors while still preserving reference to well-known large-scale brain systems. Moreover,
a recent meta-analysis provided evidence that reward-related brain regions form a
stable network observed even during rest (Huckins et al., 2019).
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Table 4.3 Prediction error signaling ROIs created from ALE clusters from Fouragnan
et al. (2018).

Region R/L X Y Z r(mm) Original network Strategy

ROIs signaling positive prediction errors (+PE)
Ventrolateral orbitofrontal cortex R 32 44 -10 5 Uncertain shifted
Ventral striatum L -12 8 -4 4 - created
Posterior cingulate cortex L 0 -36 26 5 Memory shifted
Medial prefrontal cortex L -2 46 20 5 Default mode shifted
Ventral striatum R 8 8 -2 4 - created
Dorsomedial prefrontal cortex L -6 -56 14 5 Default mode shifted
Ventromedial prefrontal cortex L -2 42 0 5 Default mode shifted
ROIs signaling negative prediction errors (−PE)
Anterior insula L -32 22 -4 5 Salience shifted
Middle frontal gyrus R 32 14 56 5 Fronto-parietal relabelled
Inferior parietal lobule R 40 -48 42 5 Fronto-parietal shifted
Superior temporal sulcus R 54 -43 22 5 Ventral attention relabelled
Fusiform area L -42 -60 -9 5 Dorsal attention relabelled
Pallidum R 12 8 4 4 Subcortical shifted
Dorsolateral prefrontal cortex R 40 34 30 5 Salience shifted
Dorsolateral prefrontal cortex L -42 25 30 5 Fronto-parietal relabelled
Middle temporal gyrus R 60 -28 -6 5 Default mode shifted
Inferior parietal lobule L -38 -48 42 5 Dorsal attention shifted
Thalamus L -6 -26 8 5 Subcortical shifted
Anterior insula R 32 24 -2 5 Salience shifted
Pallidum L -14 6 2 4 Subcortical shifted
Dorsomedial prefrontal cortex R 20 50 4 5 - created
Dorsomedial orbitofrontal cortex R 38 58 -2 5 - created
Precentral cortex L -52 0 34 5 - created
Habenula R 2 -20 -18 5 - created
Amygdala R 18 -6 -12 5 - created
Middle frontal gyrus R 38 4 32 5 - created
Middle frontal gyrus L -28 12 60 5 Fronto-parietal shifted
Dorsomedial cingulate cortex R 5 23 37 5 Salience relabelled
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The following procedure was employed to create extended brain parcellation. First,
two prediction-error-related networks were created based on cluster centers for the
valence analysis in a recent meta-analysis on neural correlates of prediction errors
(Table 2 in Fouragnan et al. (2018)). The network signaling positive prediction error
(+PE) was created from regions exhibiting higher BOLD activation for positive than
negative prediction errors (pattern A (ii) in Fouragnan et al. (2018)). Conversely, the
network signaling negative prediction error (−PE) consisted of regions with a higher
BOLD response for negative than positive prediction errors (pattern A(i) in Fouragnan
et al. (2018)). Second, for each cluster center, a new ROI was created using one of the
three strategies based on its distance to the closest ROI in Power’s atlas (d):

• If d > 10mm, there was no overlap between the 5mm sphere created at the cluster
center and existing ROIs, so a new ROI was created and added to the ROIs set
without any modification of the existing base parcellation.

• If 10mm > d > 5mm, there was a slight overlap between the 5mm sphere created
at the cluster center and the closest Power’s ROI (no more than 31% of sphere
volume overlapped). In this case, the closest Power’s ROI was shifted into the
location of the ALE cluster center and renamed according to the assignment to
one of the prediction-error-related networks.

• If d < 5mm there was a significant overlap between the 5mm sphere created
at the cluster center and the closest Power’s ROI (more than 31% of sphere
volume overlapped). In this case, the original Power’s ROI was retained at
its original location and relabelled according to the assignment to one of the
prediction-error-related networks.

All newly created ROIs were initially modeled as 5mm spheres around specific
MNI coordinates. Radi of four striatal ROIs – left and right pallidum and left and
right ventral striatum were decreased to 4mm to avoid overlap between spheres (Table
4.3). The extended brain parcellation consisted of 272 ROIs divided into 15 large-scale
networks (13 LSNs from Power et al. (2011) and 2 PE networks). Four ROIs from the
uncertain network – MNI coordinates (-31, -10, -36), (-56, -45, -24), (8, 41, -24), and
(52, -34, -27) – were further excluded due to signal dropout in some participants. The
final parcellation consisted of NROI = 268 regions of interest.
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4.6.2 Network construction

Task-related functional connectivity was estimated using a beta-series correlation
method introduced by Rissman et al. (2004). The method’s name comes from the GLM
parameter beta representing linear coefficient reflecting the contribution of modeled
signal into an observed BOLD response. The BSC method quantifies event-to-event
fluctuations in the activity of different brain areas. These fluctuations allow estimating
statistical dependency between regional activations for different event types.

In BSC, each trial is modeled separately in GLM. Then, a series of beta maps
representing brain activations for a series of events was used to calculate condition-
specific connectivity evoked by the task. An alternative methodology to calculate
task-evoked functional connectivity is psychophysiological interaction analysis (Friston
et al., 1997). However, it has been suggested that the BSC method can have more
statistical power than the PPI method when applied to event-related designs with many
trials and short event durations (Cisler et al., 2014). The “single-trial-versus-other-trial”
approach introduced by Mumford et al. (2012) was used to compute activation beta
maps. This approach assumes creating a separate GLM for each trial in which the trial
of interest is modeled as a separate regressor, and all other trials are modeled as a single
nuisance regressor. Simulations have shown that the “single-trial-versus-other-trial”
approach produces more accurate estimates of trial-wise activation patterns (Mumford
et al., 2012).

For each trial, a separate GLM was created. The GLM consisted of:

• One regressor modeling a trial of interest as an event of duration 0s (typically
used to model very short cognitive processes) time-locked to the onset of the
outcome phase, convolved with a standard SPM hemodynamic response function
(HRF).

• Two regressors modeling the rest of the trials of interest as events of duration
0s time-locked to the onset of the outcome phase, convolved with an HRF. One
regressor modeled trials with positive prediction errors (gain in reward-seeking
condition or no-loss in punishment-avoiding condition). The other modeled trials
with negative prediction errors (no-gain in reward-seeking condition or loss in
punishment-avoiding condition).

• Six regressors modeling the events of no interest: decision onset, decision onset
modulated with expected probability for side for being correct, decision onset for
missed trials, left button press, right button press, and decision offset for missed
trials.
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• Twenty-four head motion parameter regressors modeling motion-related noise.

• Cosine functions modeling low-frequency scanner drift.

The GLM was high-pass filtered with the cut-off frequency 1
128Hz and fitted to par-

ticipants data using FirstLevelModel class from the Nistats package. The output of
this procedure consisted of a three-dimensional beta map for each trial, indicating the
voxel-wise estimate of neuronal activity evoked during this trial (Fig. A.2).

After GLM estimation, beta values for each trial were averaged in each of 268
ROIs producing 268 beta-series per subject and task condition. Beta-series were
then z-transformed and separated by the sign of the prediction error of each trial.
This procedure gave four beta-series for each participant: +PE trials in reward-
seeking condition, −PE trials in reward-seeking condition, +PE trials in punishment-
avoiding condition, and −PE trials in punishment-avoiding condition. Beta-series
were then correlated using Pearson’s correlation coefficient, generating a NROI ×
NROI symmetrical correlation matrix for each subject, task condition, and trial-wise
prediction error sign. Correlation values were then converted to z-scores using Fisher
z-transform. Transformed matrices represented the final subject-level estimate of
functional connectivity pattern evoked by the specific task condition and type of trial.

4.6.3 Structural resolution parameter selection

The functional brain network is known to exhibit multi-scale community structure
(Betzel and Bassett, 2017). Most studies on the topological organization of functional
brain networks, however, have examined modular network structure at a single scale (Gu
et al., 2015). Different topological scales of a network represent levels of organization
at which one can examine a given network. For example, smaller topological scales
would reflect the relationship between individuals and smaller groups of friends in
social networks. In contrast, larger topological scales would reflect effects observed
at scales of hundreds or thousands of individuals and larger populations. Therefore,
exploring a network organization across a range of possible scales allows capturing
effects that might have been overlooked in a single-scale analysis. For example, it
has been shown that resting-state networks display interaction between age and scale,
i.e., larger communities become more segregated with age, while smaller communities
exhibit an opposite effect (Betzel et al., 2015).

A simple approach to multi-scale modularity analysis is to introduce a structural
resolution parameter, γ, into modularity function:
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Q(γ) =
∑
ij

(Aij − γPij)δ(σiσj) , (4.10)

where Aij is the connection strength between nodes i and j, Pij is the expected connec-
tion strength according to appropriate null model, σi indexes the community to which
node i is assigned, and δ is the Kronecker delta function. Tuning structural resolution
parameter allows uncovering communities of different sizes, otherwise mathematically
undetectable using standard modularity function (Fortunato and Barthelemy, 2007;
Reichardt and Bornholdt, 2006). Specifically, lower values of γ result in fewer larger
communities, and higher values produce more and smaller communities. At the lower
end of the γ range, all network nodes are placed within one community, whereas at
the higher end, there are as many communities as there are nodes. Different heuristics
have been proposed to find an appropriate sampling of structural resolution parameter
space. For example, similarity measures between partitions have been used to minimize
the variability in the results of modularity maximization techniques (Doron et al., 2012;
Lancichinetti et al., 2009). Here, I used heuristics based on the similarity between
data-driven partitions and a priori reference partition described in the section 4.6.1.
This choice has been guided by the intention to describe network reorganization with
reference to well-known LSNs. Two constraints have been imposed on the analyzed
topological scales:

1. Number of detected modules and mean module size should be similar to the
reference partition. In other words, large γ values generating partitions with
many singletons, i.e., single node communities, should be excluded from the
analysis.

2. Detected communities should exhibit high similarity to the reference partition
while preserving a high degree of inter-individual variability. High similarity
to the reference partition justifies the interpretation of the results in terms of
interactions between a priori LSNs. High inter-individual variability ensures that
the analysis will be more sensitive to topological changes between task conditions
and prediction error signs.

To calculate community structure properties across topological scales, the structural
resolution parameter space was sampled by varying γ from 0.05 to 3 with a step of
0.05. For each value of γ, the Louvain modularity maximization algorithm was used
to quantify optimal network structure (Blondel et al., 2008). Negative connections
were separately included in the modularity function and treated asymmetrically as
suggested in Rubinov and Sporns (2011):
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Fig. 4.7 Structural resolution parameter analysis. Structural resolution param-
eter, γ, was varied from 0.05 to 3 with a step of 0.05. For each value of γ, optimal
community structures for empirical networks were calculated using 100 repetitions
of Louvain algorithm (Blondel et al., 2008). (A) Number of all communities, sin-
gleton communities and non-singleton communities. Reference partition based on
Power ROIs described in section 4.6.1 has 14 communities. (B) Mean data-driven
community size compared with average size of 19.14 ROIs per community for reference
partition. (C) Average similarity between data-driven partitions and between reference
and data-driven partitions. Gray area indicates γ range for which partitions are more
similar to the reference than to themseleves. Orange line reflects the optimal trade-off
between high similarity to reference partition and high inter-individual variability in
data-driven partitions. MId−d - average mutual information between all pairs of data-
driven partitions; MId−r - average mutual information between data-driven partitions
and reference partition.
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Qasym(γ) = Q+(γ) + v−

v− + v+ Q−(γ) , (4.11)

where Q±(γ) are modularity values from (4.10) calculated separately for positive and
negative connections, and v± = ∑

ij A±
ij are total connection strengths, i.e., costs for

positive and negative connections. For each functional network, the Louvain algorithm
was run 100 times, and the partition with the highest value of Qasym(γ) was kept
for further analysis. Several metrics were computed to inspect different topological
scales (Fig. 4.7): (1) a mean number of communities, singletons, and non-singletons
(communities with more than one node), (2) mean community size, (3) mean similarity
between data-driven partitions, and (4) mean similarity between reference partition and
data-driven partitions. Partition similarity was computed as the normalized mutual
information between community partition vectors (Meilă, 2007).

The mean number of data-driven communities was closest to 14 reference commu-
nities for γ = 1.5 (average 14.59 communities per partition). For γ > 1.5, there was a
steep increase in the number of singletons, whereas the number of non-singletons rose
to 21.85 for γ = 2 and plateaued with further increase of structural resolution (Fig.
4.7A). The average data-driven community size was above 100 nodes per partition for
0 < γ < 0.9 and rapidly declined for γ ∼ 1. For γ = 1.65, the average community size
was closest to the average reference community size (18.86 nodes per community for
data-driven partitions; 19.14 nodes per community for reference partition) (Fig. 4.7B).
Similarity between partitions measured as normalized mutual information increased as a
function of γ (Fig. 4.7C). For 0.15 ≤ γ ≤ 2.1, data-driven partitions exhibited higher
similarity to themselves than to reference partition. The ratio between data-driven
partition similarity, MId−d, and similarity between reference and data-driven partition,
MId−r, was highest for γ = 0.4 (MId−d

MId−r
= 1.85).

According to the first heuristic, the analyzed γ range should include structural
resolutions for which the number of communities and the average size of the commu-
nity resembles characteristics of the reference partition. This consideration suggests
including γ ∼ 1.5 since the size and number of data-driven communities were closest to
the size and number of reference communities for this topological scale. On the other
hand, the second heuristic suggests including γ ∼ 0.5 because partitions observed for
this topological scale exhibit the optimal similarity to the reference partition while
preserving a high degree of inter-individual variability. For γ > 2 number of singletons
starts to dominate non-singleton communities, and relative inter-individual variability
decrease compared to similarity to reference partition, suggesting that this part of
the structural resolution scale should be excluded from further analysis. Considering
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both heuristics, the final range 0.5 ≤ γ ≤ 1.5 was adopted for all subsequent analyses.
Whereas dense sampling of this range (e.g., with a step of 0.05) would allow tracing
how observed effects smoothly appear and disappear when changing a topological
resolution, it would also be computationally expensive and challenging to describe
statistically. Therefore, a sparse sampling of γ range was employed, enabling to focus
on three distinct topological scales: γ = 0.5 representing the largest scale of few “super-
communities” consisting of multiple LSNs, γ = 1 representing most frequently studied
intermediate scale, and γ = 1.5 representing finer scale approximately resembling
well-known division into LSNs.

4.6.4 Network modularity and community structure

To assess subject-level modularity and community structure for both task conditions
and trial-wise prediction errors signs, I employed a similar procedure to the one used
during structural resolution parameter analysis (section 4.6.3). For each value of
γ ∈ {0.5, 1, 1.5} and each functional network, the Louvain modularity maximization
algorithm was executed 1000 times, and the output of the run with the highest
modularity was saved for further analysis (Fig. 4.8). The output consisted of weighted
modularity with the asymmetric treatment of negative weights, Qasym (defined in
equation 4.11; called Q in subsequent analysis), and a NROI × 1 community affiliation
vector, M , whose i-th element indexed community affiliation of node i.

4.6.5 Consensus partitioning

A consensus partition represents a modular structure of functional brain network during
the specific experimental condition. Group-level community structure represented by
consensus partition can be calculated from subject-level community affiliation vectors.
Consensus partitions effectively decrease data dimensionality, allowing a qualitative
description of the network reconfiguration. There are two popular approaches for
defining a consensus partition: (1) selecting a partition with the highest similarity to
the other partitions (Doron et al., 2012), and (2) reclustering an association matrix that
stores the information about pairwise nodal co-occurrence within the same community
(Bassett et al., 2013; Betzel et al., 2017; Lancichinetti and Fortunato, 2012). Here,
the latter approach based on the concept of agreement (or module allegiance) was
used. The agreement, Dij, is a measure defined for the pair of nodes, i and j, and
characterizes the extent to which these nodes belong to the same community (Bassett
et al., 2015; Bertolero et al., 2015):
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Dij = 1
N

N∑
k=1

ak
ij , (4.12)

where N is the number of partitions, and ak
ij equals 1 if nodes i and j belong to the

same community, and 0 otherwise. The elements of the agreement matrix, Dij, reflect
the probability that nodes i and j are found within the same community for randomly
selected partition given a set of partitions. Despite that information represented by the
agreement matrix is not independent of the information contained in the connectivity
matrix, an agreement can provide a complementary characteristic of nodal associations.
For example, two nodes can share a weak direct connection but many strong indirect
connections. In this case, there is a high chance that they will be placed within the
same community exhibiting significant agreement and low connectivity at the same
time. Furthermore, Bassett et al. (2015) has shown that agreement reduces the noise
in connectivity matrices and is more sensitive to differences in network organization
compared with information contained in connectivity values alone.

Representative modular structure for task conditions and prediction error signs was
calculated in four steps (Fig. 4.8). First, subject-level community affiliation vectors
were aggregated into four groups: reward-seeking, punishment-avoiding, positive PE,
and negative PE. Each group consisted of two vectors per subject, i.e., 58 in total.
For example, a reward-seeking group consisted of partitions for both +PE and −PE
networks in reward-seeking condition. Similarly, a positive PE group consisted of +PE
networks pooled over reward-seeking and punishment-avoiding conditions. This pooling
procedure allowed to examine representative community structure independently for
both experimental dimensions. Additionally, the fifth group consisting of partitions
from all task conditions was created. It consisted of four vectors per subject, i.e.,
116 in total. This group was included to represent a modular network structure
during prediction errors processing that is stable across task conditions. Second, an
agreement matrix was computed for each group. Third, agreement matrices were
thresholded to remove weak associations, i.e., all agreement values below τ = 0.5
were set to zero. Finally, thresholded agreement matrices were iteratively reclustered
with the Louvain algorithm until convergence, and the output affiliation vectors were
considered consensus partitions. This procedure yielded four condition-specific and
one condition-independent community vector. The consensus partitioning procedure
was independently repeated for three values of structural resolution parameter γ.
Agreement matrices and consensus partitions were calculated using agreement and
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Fig. 4.8 Consensus partitioning pipeline. Multi-step procedure employed to
calculate representative network partitions for task conditions and prediction error
signs. Subject-level connectivity matrices were first clustered via Louvain algorithm to
calculate network modularity, Q, and community affiliation vectors, M (Blondel et al.,
2008). Then, subject-level partition were grouped into four groups: reward-seeking,
punishment-avoiding, positive PE, and negative PE. For each group, agreement matrix
was calculated, thresholded and reclustered yielding final condition-specific consensus
partition.
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consensus_und functions from bctpy package (version 0.5.2) based on the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010).

4.6.6 Large-scale network agreement

The brain network continuously adapts its modular architecture to satisfy the demands
of various cognitive processes (Bassett et al., 2011; Braun et al., 2015). Therefore, it
is essential to explore the pattern of condition-related changes in modular network
organization.

I used an approach based on within and between-community agreement to in-
vestigate whether the integration and segregation of large-scale networks depend on
the outcome valence and prediction error sign. This community-level approach relies
on averaging node-level agreement, Dij, derived from data-driven partitions using a
reference partition. The reference partition can be either a consensus partition or a
priori partition representing a stable community structure (Conrad et al., 2020). To
better reflect the underlying structure of the data, the condition-independent consensus
partitions were used as reference partitions. Results from the extended Power partition
(see section 4.6.1) used as a reference partition are showed in Fig. A.4.

Community-level agreement values capture the level of association between LSNs.
When calculated for a single partition, they represent a subject-level pattern of integra-
tion and segregation of different brain systems. They have a clear and straightforward
probabilistic interpretation:

• Within-community agreement express the probability that two randomly selected
nodes from a given LSN will be found within the same data-driven community.
For example, a within-community agreement of 1 would reflect that all LSNs
nodes are a part of the same data-driven community. High values of within-
community agreement indicate stable and segregated LSN, whereas lower values
characterize more unstable and fragmented systems.

• Between-community agreement reflects the probability that a randomly selected
pair of nodes from two different LSNs will share the same data-driven community.
In most extreme cases, the between-community agreement can be 0 when all
nodes from both LSNs belong to different data-driven communities or 1 when both
LSNs are merged into a larger community in a data-driven partition. Between-
community agreement expresses the extent of integration between LSNs.

To investigate condition-specific changes in the community-level agreement, indi-
vidual community affiliation vectors described in section 4.6.4 were used to calculate
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Fig. 4.9 LSN agreement pipeline. Multi-step procedure employed to calculate
condition-specific changes in the community-level agreement. Subject-level community
affiliation vectors were used to calculate node-level agreement matrices, which were block
averaged to produce individual LSN agreement matrices. LSN agreement represents
the probability that two randomly selected nodes from reference LSNs belong to the
same data-driven community. For each entry in the LSN agreement matrix, two
t-tests were conducted testing the effect of task-condition and prediction error sign.
T-test significance was tested using the Monte Carlo permutation procedure. Shuffled
community affiliation vectors were randomly reordered 10,000 times and subjected to
the same analysis procedure as original vectors to produce a null distribution for both
t-statistics. P-values were assigned according to the position of the true t-statistic
within the null distribution.
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individual node-level agreement matrices (Fig. 4.9). An individual node-level agree-
ment is an NROI ×NROI matrix with entries Dij ∈ {0, 1} indicating whether a pair of
nodes belongs to the same data-driven community. These node-level matrices were then
block-averaged according to the network division into LSNs in condition-independent
consensus partition to create individual LSN agreement matrices:

DLSN
mn = 1

NM

NROI∑
i,j=1

Dijδ
m
i δn

j , (4.13)

where N and M are the sizes of communities n and m, and δm
i is a community

indicator equal to 1 if node i belongs to community m and 0 otherwise. Then, for
each community-level agreement value, DLSN

mn , a two-sided paired t-test was conducted
for task condition and prediction error sign effects. The null hypothesis states that
the degree of LSN agreement is the same in reward-seeking and punishment-avoiding
conditions for a task condition effect. For a prediction error sign effect, the statistical
test aims to answer if there is a significant change of LSN agreement when switching
between signaling positive and negative prediction errors.

To determine the significance of the computed t-statistics, a Monte Carlo permu-
tation procedure was employed (Conrad et al., 2020). Permutation-based procedures
represent an alternative approach to significance testing that is especially useful in
multidimensional neuroimaging data (Nichols and Holmes, 2002). The total number of
10,000 iterations was performed to obtain a reliable estimate of the null distribution
for computed t-statistics. For each iteration, the subject-level community allegiance
vectors, M , reflecting modular network structure, were randomly shuffled to represent
a random topology unrelated to the observed functional connections while preserving
the number and size of the original communities. These vectors were then subjected to
the same procedure employed for the actual dataset consisting of agreement calculation,
block-averaging, and statistical testing. Each iteration outputted two null t-statistic
matrices of size NLSN × NLSN for both effects of interest. A set of 10,000 of these
matrices formed a null distribution of the t-statistic. P-values were then calculated
based on the null distribution percentile corresponding to the true t-statistic. An effect
was considered significant if the true t-statistic was lower than 2.5th or higher than
97.5th percentile of the null distribution. A two-sided approach was used to account
for both increases and decreases in a community-level agreement between conditions.
Permutation-based p-values were then corrected for multiple comparisons using the
FDR method (Benjamini and Hochberg, 1995).
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Fig. 4.10 Whole-brain network modularity. Network modularity values for
different topological scales and task-conditions. Each plot corresponds to different
topological scale characterized by structural resolution parameter γ. Modularity values
are grouped according to prediction error sign (orange bars - positive prediction errors;
blue bars - negative prediction errors) and task conditions (Reward - reward-seeking
condition; Punishment - punishment-avoiding condition). The boxes show the quartiles
of modularity distribution while the error bars show lower and upper limits.

4.6.7 Differences in whole-brain modularity

On the level of whole-brain network topology, I was interested in whether the overall
degree of modularity changes when subjects switch between processing (1) positive and
negative prediction errors in (2) risk-seeking and punishment-avoiding environments.
I performed two-way repeated measures ANOVA (rmANOVA) on modularity values
with two factors: prediction error sign and task condition. Same statistical testing was
applied to all three topological scales.

Average network modularity was highest for the largest topological scale (Q(γ =
0.5) = 0.48±0.03) and smallest for the finest topological scale (Q(γ = 0.5) = 0.16±0.07).
It decreased significantly with increasing structural resolution parameter (p < 10−10;
paired t-tests between scales). However, the rmANOVA results were not significant.
All three effects: main prediction error sign effect, main task condition effect, and
interaction (prediction error sign × task condition) effect, did not reach the significance
threshold regardless of the topological scale (Fig. 4.10). This shows that the degree
of whole-brain network segregation expressed as modularity is stable across task
conditions and topological scales. Since the same degree of segregation can characterize
a large diversity of network architectures, it is important to analyze networks on finer
organizational scales of communities and individual nodes.
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4.6.8 Consensus network organization

I was interested in whether large-scale network organization differs between reward-
seeking and punishment-avoiding conditions and positive and negative prediction
errors. I hypothesized that (1) switching between positive and negative prediction
errors would lead to dynamic reorganization of the brain network and the formation
of prediction-error-specific subnetworks, (2) regions signaling prediction errors would
form separate subnetworks that should be detectable for finer topological scales. To
test this hypothesis, I calculated consensus network partitions for each experimental
condition and topological scale. I also calculated condition-independent consensus
partitions representing stable community structure during prediction error processing.
Condition-independent partitions were further used as reference partitions to test
condition-specific changes in large-scale networks agreement.

As expected, the number of communities increased, and the average commu-
nity size for condition-specific consensus partitions decreased with increasing struc-
tural resolution parameter γ. For γ = 0.5, consensus partitions consisted of few
“super-communities” (average 2.25 communities across conditions). The mean “super-
community” size was 119.1± 43.1 nodes (ROIs). For intermediate topological scale,
γ = 1, consensus partitions for all task conditions consisted of three communities with
the average size of 89.3± 13.2 nodes per community. Consensus partitions detected for
the finest topological scale, characterized by the highest structural resolution γ = 1.5,
consisted of 41.2 communities per partition (average across conditions). This prolifera-
tion of observed communities resulted from many singletons, i.e., communities with
one node. Each partition consisted of 27-37 singletons, which decreased the average
community size to 6.5± 16.1 nodes per community. A similar number of communities
and average community size characterized condition-independent consensus partitions.
For the “super-community” scale, the condition-independent consensus partition con-
sisted of two communities with 141 and 127 nodes per community. The intermediate
scale partition was composed of three communities of size 100, 94, and 74 nodes per
community. In the finest topological scale, the consensus partition divided the network
into 47 communities (38 singletons) with an average community size of 5.7± 15.2 nodes
per community.

In the coarsest topological scale, the functional network consisted of two major
“super-communities”: task-visual and sensory (Table 4.4 and Fig. A.3, top panel).
The task-visual community was composed of task-related networks (PE signaling, fronto-
parietal, memory, and salience networks), default mode network, and visual network.
The sensory community consisted of cerebellar, somatomotor, cingulo-opercular, dorsal
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Fig. 4.11 Consensus partitions for different topological scales. Sankey dia-
grams show composition of consensus partitions with reference to well-known LSNs.
First column corresponds to network organization dependent on PE sign, second column
shows partition specific to reward-seeking and punishment-avoiding task conditions.
Rows correspond to different topological scales characterized by structural resolution
parameter γ. Consensus communities: Task-Vis - task-visual; vmPFC - ventromedial
prefrontal cortex; DM - default mode; Vis - visual.
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Table 4.4 Consensus partition composition for structural resolution parameter γ = 0.5.
Cell values correspond to a percentage of reference network regions belonging to
the consensus module. Cell color intensity reflects the underlying percentage value.
Reference partition consists of 13 well-known LSN from Power atlas (Power et al.,
2011) and two prediction-error-signaling networks (see section 4.6.1). Third column
shows consensus module size. Task condition abbreviations: +PE - positive prediction
error trials, −PE - negative prediction error trials, RS - risk-seeking condition, PA -
punishment-avoiding condition. Reference LSNs abbreviations: DM - default mode, FP
- fronto-parietal, MEM - memory, SAL - salience, UNC - uncertain, SUB - subcortical,
VAT - ventral attention, CER - cerrebelar, SOM - somatomotor, CO - cingulo-opercular,
AUD - auditory, DAT - dorsal attention, VIS - visual.

Large-scale networks
Module Condition n

+PE DM −PE FP MEM SAL UNC SUB VAT CER SOM CO AUD DAT VIS

+PE 144 0,71 0,70 0,86 1,00 0,75 0,71 0,83 0,40 0,25 0,25 0,00 0,00 0,00 0,33 0,65

−PE 137 0,86 0,76 0,76 0,95 0,75 0,64 0,78 0,20 0,50 0,25 0,00 0,00 0,00 0,33 0,45

RS 128 1,00 0,83 0,71 0,95 0,75 0,71 0,74 0,50 0,50 0,00 0,00 0,00 0,00 0,00 0,06

PA 136 0,71 0,59 0,86 1,00 0,75 0,64 0,70 0,40 0,13 0,25 0,00 0,00 0,00 0,33 0,74

Task-Visual

all 141 0,86 0,70 0,86 1,00 0,75 0,71 0,83 0,30 0,25 0,25 0,00 0,00 0,00 0,33 0,55

+PE 118 0,14 0,24 0,14 0,00 0,25 0,29 0,13 0,60 0,63 0,75 1,00 1,00 1,00 0,67 0,35

−PE 131 0,14 0,24 0,24 0,05 0,25 0,36 0,22 0,80 0,50 0,75 1,00 1,00 1,00 0,67 0,55

RS 140 0,00 0,17 0,29 0,05 0,25 0,29 0,26 0,50 0,50 1,00 1,00 1,00 1,00 1,00 0,94

PA 132 0,29 0,41 0,14 0,00 0,25 0,36 0,30 0,60 0,88 0,75 1,00 1,00 1,00 0,67 0,26

Sensory

all 127 0,14 0,30 0,14 0,00 0,25 0,29 0,17 0,70 0,75 0,75 1,00 1,00 1,00 0,67 0,45

vmPFC +PE 6 0,14 0,06 0,00 0,00 0,00 0,00 0,04 0,00 0,13 0,00 0,00 0,00 0,00 0,00 0,00

attention, and auditory networks. Nodes from subcortical and ventral attention
networks were divided evenly between two “super-communities.” Intriguingly, in the
reward-seeking condition, the visual network was detached from the task-related
regions and contributed to the sensory community. Moreover, the positive prediction
error partition contained a third smaller subnetwork – ventromedial prefrontal cortex
community – unobserved for any other condition (Fig. 4.12, top panel). Four nodes
of this community were located within the ventromedial prefrontal cortex – an area
widely known for representing value information to drive choice (Hare et al., 2009;
Rangel et al., 2008). The vmPFC community consisted of six regions: three from the
default mode network, one from the +PE network, one from the uncertain network,
and one from the ventral attention network.

In the intermediate topological scale, a pattern of large-scale communities was
similar to the one observed in the “super-community” scale (Table 4.5 and Fig. A.3,
middle panel). One notable difference in network organization between these scales
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Table 4.5 Consensus partition composition for structural resolution parameter γ = 1.
For abbreviations and additional description see Table 4.4.

Large-scale networks
Module Condition n

+PE DM −PE FP MEM SAL UNC SUB VAT CER SOM CO AUD DAT VIS

+PE 96 0,57 0,06 0,71 0,86 0,75 0,64 0,52 0,10 0,00 0,00 0,03 0,00 0,00 0,44 0,84

−PE 98 0,57 0,06 0,76 0,90 0,75 0,71 0,57 0,10 0,00 0,25 0,00 0,00 0,00 0,33 0,81

RS 87 0,29 0,02 0,67 0,86 0,75 0,57 0,48 0,10 0,00 0,00 0,03 0,00 0,00 0,33 0,81

PA 107 0,57 0,07 0,81 1,00 0,75 0,71 0,57 0,10 0,00 0,25 0,03 0,00 0,00 0,33 0,94

Task-Visual

all 94 0,57 0,04 0,71 0,86 0,75 0,71 0,48 0,10 0,00 0,00 0,03 0,00 0,00 0,33 0,84

+PE 75 0,43 0,85 0,19 0,14 0,00 0,14 0,43 0,30 0,50 0,00 0,00 0,00 0,00 0,00 0,00

−PE 70 0,43 0,85 0,10 0,10 0,00 0,00 0,43 0,30 0,50 0,00 0,00 0,00 0,00 0,00 0,00

RS 76 0,71 0,87 0,19 0,14 0,00 0,14 0,43 0,10 0,50 0,00 0,00 0,00 0,00 0,00 0,00

PA 72 0,43 0,91 0,14 0,00 0,00 0,07 0,39 0,30 0,50 0,00 0,00 0,00 0,00 0,00 0,00

Default Mode

all 74 0,43 0,87 0,14 0,14 0,00 0,07 0,43 0,30 0,50 0,00 0,00 0,00 0,00 0,00 0,00

+PE 97 0,00 0,09 0,10 0,00 0,25 0,21 0,04 0,60 0,50 1,00 0,97 1,00 1,00 0,56 0,16

−PE 100 0,00 0,09 0,14 0,00 0,25 0,29 0,00 0,60 0,50 0,75 1,00 1,00 1,00 0,67 0,19

RS 105 0,00 0,11 0,14 0,00 0,25 0,29 0,09 0,80 0,50 1,00 0,97 1,00 1,00 0,67 0,19

PA 89 0,00 0,02 0,05 0,00 0,25 0,21 0,04 0,60 0,50 0,75 0,97 1,00 1,00 0,67 0,06

Sensory

all 100 0,00 0,09 0,14 0,00 0,25 0,21 0,09 0,60 0,50 1,00 0,97 1,00 1,00 0,67 0,16

was a separation of the default mode network and part of the +PE signaling network
from the task-visual community. The default mode community consisted of most
default mode network nodes (85-91%), around half of the +PE signaling, ventral-
attention, and uncertain networks nodes, around 10-30% subcortical and 10-20% of
−PE signaling and fronto-parietal network nodes. Interestingly, most −PE signaling
network nodes remained coupled with the task-visual community. In contrast to the
coarsest topological scale, the visual network was consistently coupled with task-related
networks for all task conditions.

The analysis of the network partitions for the highest structural resolution, γ =
1.5, showed the fine-grained division of the functional network into many smaller
communities. Regardless of experimental condition, the four largest communities –
visual, default mode, sensory, and task – formed the backbone of each consensus
partition (Table A.1 and Fig. A.3, bottom panel). Similar to the intermediate scale,
the default mode community consisted of most default mode network nodes and regions
from +PE signaling, ventral attention, and uncertain networks. Task community
consisted of regions from fronto-parietal, memory, −PE signaling, +PE signaling and
salience network. Interestingly, +PE signaling regions were split between default mode,
task, and reward communities, whereas −PE signaling regions resided within the task,
reward, and other minor communities. In addition to the backbone communities, a
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Fig. 4.12 Selected consensus partition communities. (Top panel) Ventrome-
dial prefrontal cortex community emerging during processing of positive prediction
errors observed for structural resolution γ = 0.5. (Bottom panel) Separate reward
community observed for condition-invariant consensus partition for structural resolution
γ = 1.5. It is comprised of PE signaling regions and subcortical network regions and
spatially restricted to the areas around striatum. Regional abbreviations: vmPFC -
ventromedial prefrontal cortex; VS - ventral striatum; PAL - pallidum.

small cerebellar community was consistently discovered for all experimental conditions.
Moreover, a stable reward community was a part of the consensus partition for +PE,
risk-seeking, and punishment-avoiding conditions. This community was also detected
in condition-independent consensus partition representing general network structure
during prediction error processing. The reward community consisted of 5-8 regions from
PE signaling and subcortical networks (Fig. 4.12, bottom panel). Specifically, the
condition-independent reward community consisted of bilateral ventral striatum and
pallidum, right striatum, and two regions within the thalamus. All regions constituting
the reward community were spatially bounded to subcortical areas located around
the striatum. The existence of a separate reward network was recently suggested by
Huckins et al. (2019) after examining resting-state connectivity patterns in a large
cohort of subjects.

4.6.9 Large-scale networks interactions

I explored condition-specific changes in large-scale networks agreement to test whether
modular network architecture fluctuates when subjects switch between processing
positive and negative prediction errors. I was also interested if such fluctuations



4.6 Analysis of functional brain networks 97

can be detected when changing between reward-seeking and punishment-avoiding
environments. I hypothesized that changes related to the PE sign should be more
pronounced than changes related to the task condition regardless of the structural
resolution. I also expected that processing negative prediction errors would increase
working memory load leading to an increased between-community agreement and
decreased within-community agreement, especially for default-mode, task, and reward
systems.

Functional networks in the coarsest topological scale consisted of task-visual and
sensory “super-communities”. Agreement between these “super-communities” was
higher during processing −PEs compared with +PEs (D+PE = 0.560, D−PE = 0.579,
t = −0.63, pFDR < 0.0001) and higher in reward-seeking compared with the punishment-
avoiding condition (DRS = 0.573, DPA = 0.563, t = 0.22, pFDR < 0.0001) (Fig. 4.13).
Significant change of within-community agreement was observed only for PE sign
dimension. Task-visual community was more segregated during processing +PEs as
indicated by increased within-community agreement (D+PE = 0.712, D−PE = 0.698,
t = 0.65, pFDR = 0.006).

The intermediate topological scale was characterized by three large-scale com-
munities discovered within the consensus partition: default-mode, task-visual and
sensory. Three out of six possible changes in the LSN agreement were significant
for the PE sign dimension. Agreement within the default mode network increased
during processing +PEs compared with −PEs (D+PE = 0.576, D−PE = 0.522, t = 3.34,
pFDR < 0.0001). Additionally, the sensory community displayed decreased agreement
during +PEs processing with both default-mode (D+PE = 0.183, D−PE = 0.217,
t = −2.66, pFDR < 0.0001) and task-visual communities (D+PE = 0.214, D−PE = 0.248,
t = −3.44, pFDR < 0.0001). Note that decrease in integration between task-visual
and sensory networks was significant for both “super-community” and intermediate
scales, whereas increased segregation of task-visual community was confined only to
the coarsest topological scale. In contrast to the PE sign effect, only one task-condition
change remained significant after correction for multiple comparisons. Agreement
within the task-visual community was higher in punishment-avoiding compared with
the reward-seeking condition (DRS = 0.514, DPA = 0.555, t = −2.19, pFDR < 0.0001).
Interestingly, similar effect was not observed for the topological scale characterized by
γ = 0.5. Increased agreement between default-mode and sensory communities during
punishment-avoiding condition was initially significant but did not survive multiple
comparison correction (DRS = 0.192, DPA = 0.208, t = −1.11, pUNC = 0.04).
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Fig. 4.13 Agreement between large-scale networks. Changes in within and
between-community agreement for prediction error sign and task condition. Within-
community agreement captures the extent of community segregation whereas between-
community agreement quantifies integration between communities. Left column shows
difference between agreement during +PE and −PE processing. Right column cor-
responds to the changes between reward-seeking and punishment-avoiding condition.
Rows correspond to topological scales. Reference communities come from condition-
independent consensus partitions. LSNs abbreviations: Task-Vis - task-visual; DM -
default mode.
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The consensus partition for the fine-grained topological scale characterized by
γ = 1.5 consisted of nine non-singleton communities. However, only five of these
non-singletons were comprised of more than three network nodes. Since minuscule
communities are likely byproducts of a reclustering algorithm without significant
biological meaning, they were excluded from further LSN agreement analysis. The
remaining communities were labeled as reward, default-mode, task, sensory and visual.
None of the 15 possible LSN agreement changes between reward-seeking and punishment-
avoiding conditions were significant. Contrary, more than half of PE-sign-related
changes turned out to be significant:

• Reward community increased its segregation and decreased its integration with
the sensory community with increasing PE. However, any of these changes did
not survive multiple comparison correction.

• Default mode community increased its segregation (D+PE = 0.549, D−PE = 0.503,
t = 2.04, pFDR < 0.05) and decreased its integration with sensory (D+PE = 0.061,
D−PE = 0.082, t = −3.59, pFDR < 0.0001) and visual communities (D+PE = 0.037,
D−PE = 0.061, t = −3.31, pFDR < 0.0001) when switching from negative to
positive PEs processing.

• Task community had a lower agreement with sensory community during +PE
processing (D+PE = 0.047, D−PE = 0.056, t = −3.54, pFDR < 0.0001).

• Sensory community increased within-community agreement with increasing PE
(D+PE = 0.483, D−PE = 0.434, t = 2.31, pFDR < 0.0001) and decreased its
integration with all remaining communities.

• Visual community increased segregation during +PE processing (D+PE = 0.530,
D−PE = 0.441, t = 3.41, pFDR < 0.001) and decreased integration with default-
mode and sensory communities.

Almost all changes related to PE sign switching followed a hypothesized pattern of
increased within-community agreement and decreased between-community agreement.
The only exceptions to that observation were increased agreement during +PE pro-
cessing between task community and reward/default mode communities for γ = 1.5
and decreased task-visual community agreement during +PE processing for γ = 0.5.
However, none of these changes reached the significance level, while all significant
effects followed the hypothesized pattern. Interestingly, the community separation
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effect reflected by increased segregation and decreased integration with other commu-
nities was more pronounced for sensory, default-mode, and visual communities and
less pronounced for task and reward networks.

PE sign effects were more evident than task condition effects for all topological scales,
as suggested by more significant changes observed for PE sign dimension regardless
of the topological scale. This observation was most apparent for the fine-grained
topological scale, where none of the task condition effects reached significance in
contrast to nine significant effects for the PE sign dimension. Moreover, almost all
changes related to switching between positive and negative prediction errors were scale-
invariant and spanned two or three scales. For example, a decreased agreement between
sensory and task/task-visual communities during +PE processing was significant for
all three structural resolutions. In contrast, two significant task-condition-related
changes were specific to a single structural resolution. Concretely, decreased task-visual
community agreement during reward-seeking condition was specific to intermediate
scale, and increased agreement between sensory and task-visual communities was
significant only for γ = 0.5.

4.7 Discussion

The overarching goal of my study was to provide a complete description of neural
correlates of prediction errors by taking into account three different perspectives on
behavioral and neural data. These perspectives included describing behavior, brain
activity, and brain connectivity during probabilistic reversal learning.

On the behavioral level, I found that learning speed depends only on the sign of
the prediction error and not on the outcome valence. In line with the dual system
hypothesis, activation analysis revealed two independent sets of brain regions signaling
positive-going and negative-going prediction errors. Contrary to the strict formulation
of the reference effect hypothesis, I found significant valence-related changes in PE
processing located outside the reward system, mainly in visual and parietal cortices.
Whole-brain network analysis did not show significant differences in network modularity.
Functional networks revealed a multi-scale community structure with a separate reward
network emerging at a finer topological scale. The agreement between detected large-
scale networks changed between positive and negative prediction error processing. These
changes were characterized by decreased within-network segregation and increased
between-network integration during negative prediction error processing. This pattern
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of changes, observed mainly for default mode, sensory and visual networks, aligned
with the Global Workspace hypothesis.

4.7.1 Opponent system for negative prediction errors process-
ing

From the computational perspective, negative prediction errors are simply negative
scalar values located on the same scale as positive prediction errors. This simple
observation raises the question - How does the brain represent negative prediction
errors? One possible answer to this question takes the form of the dual systems
hypothesis stating that negative PEs are signaled by a separate neural system outside
of the dopaminergic circuit. I used three independent data analysis perspectives to
investigates assumptions of the dual systems hypothesis. Using model-based activation
analysis, I observed a clear distinction between dopaminergic, striatal system signaling
positive prediction errors and insular-frontal system signaling negative prediction
errors. Network perspective revealed differential community membership profiles of
both systems with positive PE system linked with the DMN and negative PE system
coupled with the FPN. Behavioral data analysis also supported the duality of PE
signaling – the learning rate depended on the sign of prediction error.

An electrophysiological, lesion, and pharmacological studies in animals suggested
that the negative part of the prediction error signal is encoded in a set of brain regions
outside of the dopaminergic system, most notably in the insula and the amygdala
(Hayes et al., 2014; Namburi et al., 2016). Recent fMRI meta-analysis supported these
observations by showing a widespread network of areas signaling negative prediction
errors encompassing dorsomedial cingulate cortex, anterior insula, palladium, middle
frontal gyrus (Fouragnan et al., 2018). In line with these observations, I found significant
activity correlated with both increasing and decreasing prediction errors. I reported
negative PE signaling in the dorsomedial cingulate cortex, bilateral anterior insula,
pars opercularis, and a few other areas. The composition of the negative PE signaling
network was consistent with meta-analytic findings.

A separate community of reward-related regions was recently recognized as a stable
large-scale network at rest (Huckins et al., 2019). This finding suggests that prediction
error processing regions should be functionally coupled. Based on that, I expected that
the distinction between regions signaling positive and negative PEs would be reflected
by the separate community membership of these networks. I analyzed community
structure in three different topological scales. On the coarsest scale, I found that both
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prediction error systems were a part of a larger task-visual module. Both intermediate
and fine-grained topological scales revealed distinct community membership profiles
of positive and negative prediction error processing regions. On the intermediate
scale, positive PE regions split evenly between task-visual and default mode modules,
whereas negative PE regions retained their association with a task-visual module. The
fine-grained scale revealed even more complex structural patterns. I found a separate
reward module composed mainly of striatal regions belonging to both prediction error
networks. The rest of the prediction error signaling regions were divided between
default mode and task modules. The default mode module contained almost half of
the positive PE regions and no negative PE regions. On the other hand, the task
module consisted of both positive and negative PE regions. These findings partially
corroborate the dual system hypothesis by showing strong associations between the
dopaminergic system and DMN and the insular system and FPN. Interestingly, these
associations indicate that the opposition between positive and negative PE systems
may be related to the antagonism between task-negative DMN and task-positive FPN.
My results show a much more complicated picture of the network community structure
in the context of reward-related regions. Most notably, the existence of a separate
striatal network comprising both positive and negative PE processing regions suggests
a need to integrate information between the opponent systems. I have to note that
contrary to the initial hypothesis, I did not find pure modules composed of positive or
negative PE processing regions. There are two possible explanations – either some of
these regions are irreducibly functionally connected, or the distinction between them
exists, but the finer topological scale is needed to uncover them.

Many studies showed that temporal-difference learning models with asymmetric
value updates for positive and negative prediction errors are better at explaining
learning in humans (Frank et al., 2007; Gershman, 2015, 2016). These models were
introduced to take into account the observations supporting the dual systems hypothesis
(Frank et al., 2007). If separate neural circuits signal both types of prediction errors,
their influence on choice value should be independent. On the behavioral level, this
influence is operationalized as a scalar value – the learning rate. I hypothesized that
models with separate learning rates for positive and negative PEs should outperform
single learning rate models. In line with my prediction and existing literature, I found
moderate evidence in favor of this hypothesis. Moreover, the single most frequent
model was the model with PE-dependent learning rates. This finding further suggests
the separation between positive and negative PE systems on the behavioral level.
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4.7.2 Brain systems are organized along prediction error sign
axis

We can feel positive emotions in generally negative situations and negative emotions
when something good happens. For example, when our car breaks down but repair
cost is low, we feel relief, or when our boss praises us, but our colleagues get a raise, we
feel envy and frustration. These feelings can be interpreted in the light of the reference
effect hypothesis. The reference effect hypothesis states that values are not absolute
but are actively constructed based on our previous experience. It offers the solution to
the ongoing debate on the primary organizational axis of the brain systems. If values
were constructed in absolute terms, brain responses would be organized along the
outcome valence axis. However, suppose values are relative to the experienced context.
In that case, brain responses should only reflect the prediction error sign axis because
prediction mirrors the outcome modulated by expectations acting as a reference. To
verify the reference effect hypothesis, I investigated whether brain systems are invariant
to the outcome valence and prediction error sign. On the behavioral level, I found that
learning rates are invariant to the outcome valence but depend on the prediction error
sign. On the activation and connectivity level, I found that the prediction error sign
effect sizes are much stronger than the outcome valence effect sizes.

As mentioned in the previous section, temporal-difference learning models incorpo-
rating asymmetric learning rates for positive and negative prediction errors, tend to
outperform models with symmetric learning rates (Frank et al., 2007; Gershman, 2015,
2016). Although learning rate asymmetry was previously studied, it only reflected
the prediction error sign axis and not the outcome valence axis. The question of
whether the learning rate shifts between reward-seeking and punishment-avoiding
environments remained open. To answer this question, I built a hierarchical latent
mixture model with four competing submodels covering an entire space of possibilities
regarding outcome valence and prediction error sign asymmetry. Based on the reference
effect hypothesis, I expected that the model with separate learning rates for positive
and negative prediction errors but constant learning rates for reward-seeking and
punishment-avoiding conditions (PDCI model), would outperform other models. In
line with this assumption, I found that the PDCI model was the most likely model
across participants. This finding suggests that the opponent brain systems reflect
positive and negative prediction errors rather than absolute rewards and punishments.
Moreover, the learning system’s influence on the valuation system, measured as the
learning rate, is similar regardless of subjects seeking rewards or avoiding punishments.
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The strict version of the reference effect hypothesis states that prediction error
processing should be perfectly invariant to the outcome valence. From the activation
analysis perspective, this would imply that there should be no difference in BOLD re-
sponse to PEs between reward-seeking and punishment-avoidance conditions. Contrary
to this assumption, I found that visual areas V1, V3, and V4, right supramarginal
gyrus, right superior parietal lobule, right precuneus, and right precentral gyrus were
more sensitive to increasing prediction errors in reward-seeking compared with the
punishment-avoiding condition. The same effect was reported by Meder et al. (2016)
in V3, V4, inferior frontal gyrus, supplementary motor area, posterior cingulate, left
dorsomedial prefrontal cortex, and right thalamus. The authors suggested that the
effect is “congruent with the two-dimension hypothesis,” which states that both pre-
diction error sign and outcome valence axes influence learning signals in the brain.
Intriguingly, apart from visual areas, regions sensitive to outcome-valence reported by
Meder et al. (2016) do not overlap with four non-visual areas found in my study. This
divergence may be a result of differences in experimental design, i.e., Meder et al. (2016)
used abstract stimuli and no monetary incentives, whereas in my study, participants
played for points exchanged for real money. The difference in BOLD response to
PE in visual areas can be explained by the slight difference in stimulus presentation
during the outcome phase in both versions of the task used by Meder et al. (2016)
and in my study. Positive prediction errors are related to the same color of fixation
circle background and border in the reward-seeking condition. On the other hand,
in the punishment-avoiding condition, positive prediction errors are accompanied by
differential colors within the fixation circle. This systematic difference in fixation circle
contrast between experimental conditions is likely to influence the activation difference
in response to prediction error in visual areas.

Although my activation results do not directly support the strict formulation of
the reference effect hypothesis, they can corroborate a more relaxed version of this
hypothesis. When I used the same statistical threshold of p < 0.0001 for both context-
dependent and context-independent effects, the number of significant clusters for the
context-dependent effect dropped from seven to two, compared with twenty-eight
clusters for the context-independent effect. Two remaining clusters were located within
the right V3/V4 and the right supramarginal gyrus. This finding directly suggests
that the prediction error sign axis is related to more pronounced changes in the brain
activation than the outcome valence axis, supporting the general outcome valence
invariance of the reward system.
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The organization of large-scale brain systems constantly changes to meet the
demands of the environment (Shine et al., 2016). According to the reference effect
hypothesis, the functioning of these systems should be invariant to the outcome valence.
From the connectivity perspective, this should imply that changes in modular network
structure should be predominately associated with switching between positive and
negative prediction errors and not between reward-seeking and punishment-avoiding
conditions. In agreement with this assumption, I reported more significant tests for
the change in prediction error sign than the change in outcome valence regardless of
the topological scale. Specifically, I found seven significant PE sign effects for the
finer topological scale compared with no significant task condition effects. Moreover,
switching between different prediction error signs was associated with a topologically
stable pattern of large-scale network reorganization. In contrast, outcome valence
effects were less consistent and limited to the two coarsest topological scales. Similar to
the observed brain activations, these findings support a relaxed version of the reference
effect hypothesis – the prediction error axis is a dominant organizational axis for brain
systems except for a few subtle valence effects.

4.7.3 Negative prediction errors elicits stable pattern of net-
work reconfiguration

The higher cognitive effort associated with increased demands of the performed task
is thought to require long-distance connections integrating separate neural systems
(Dehaene et al., 1998). On the other hand, the brain can process lower cognitive
demands within a set of functionally specialized modules. From the network science
perspective, these two effects correspond to decreased modularity, increased within-
community integration, and decreased between-community segregation. Several studies
reported these changes in functional brain networks during cognition (Braun et al.,
2015; Finc et al., 2017; Shine et al., 2016; Vatansever et al., 2015). In a reversal
learning task, negative prediction errors signal either expected random fluctuations or
unexpected changes in reward contingencies. Therefore, negative PE processing may
be associated with increased attention and cognitive effort. Similar to previous studies,
I expected to observe decreased whole-brain modularity, within-community segregation
and increased between-community integration when switching from positive to negative
PE processing. In line with these expectations, I observed decreased segregation of
default mode, sensory and visual modules, and increased integration between default
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mode and sensory/visual modules during negative PE processing. However, overall
network modularity was stable across prediction error signs and task conditions.

Although modularity values were lower for negative PEs in all three topological
scales, none of these differences reached a significance level. There are two possible
explanations for that observation. First, in the case of probabilistic learning, cognitive
effort differences between positive and negative PEs could be much lower than similar
differences during working memory or attention tasks. Subtle differences in cognitive
effort would lead to a smaller modularity breakdown that cannot be detected with
the sample size used in my study. This explanation is consistent with the observation
of lower modularity for negative PEs in all topological scales and moderately small
p-value (p = 0.18) for PE effect in the “super-community” topological scale. Second,
the reorganization effect may be specific to changes in the composition of network
communities without altering the macroscopic level of global modularity (Sporns,
2014). Similar to my results, a recent study on number comparison reported significant
alterations of network community structure without changes in whole-brain network
modularity (Conrad et al., 2020).

In the coarsest topological scale, the default mode network was a part of the task-
visual module. This module decreased its segregation and increased integration with the
sensory module during negative PE processing. In intermediate and finer topological
scales, DMN formed a separate module. Similar to the task-visual module, this module
decreased segregation and increased integration with sensory and visual modules.
Recent work demonstrated that “DMN may play an essential role in the formation of
an integrated workspace” (Finc et al., 2017). In the context of reinforcement learning,
DMN contains a part of the prediction error signaling network, most notably the
ventromedial prefrontal cortex commonly associated with value representation (Frank
and Claus, 2006; Rangel et al., 2008). My findings suggest that DMN reorganization
patterns may reflect (1) Global Workspace formation and (2) enhanced communication
between the valuation circuit and other brain systems following negative PE processing.

The sensory network contains the motor cortex responsible for the movement
execution following the subject’s decision. Some studies suggest that motor regions
may implement a winner-take-all mechanism integrating values of different stimuli
(Cisek and Kalaska, 2005). Moreover, Horga et al. (2015) demonstrated the importance
of sensorimotor connectivity for reinforcement learning during gradual learning in a
virtual maze. Interestingly, my results show that the sensory network increases its
agreement during negative PE processing with all other systems regardless of the scale.
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This suggests a potential need for information integration between the choice and
valuation circuit and other large-scale networks.

I observed the separate reward network only for finer topological scale characterized
by resolution parameter γ = 1.5. The reward network consisted of a few striatal regions
signaling both types of prediction errors. Consistently with the reconfiguration pattern
of the Global Workspace formation, the reward network decreased its segregation
and increased its integration with the sensory network during negative PE processing.
Decreased segregation of striatal regions may reflect functional decoupling of positive
and negative PE processing regions during a more effortful type of prediction error
processing. This decoupling possibly allows reducing interference between antagonistic
areas when more cognitive resources are required. I have to note that reward system
effects did not survive multiple comparison corrections and need to be interpreted
with caution. A smaller effect size for the reward network may be related to a smaller
community size of only seven nodes.

Agreement analysis revealed only two changes in large-scale network integration
and segregation for the outcome valence axis. Both changes were related to the task-
visual module and were observed for the two coarser topological scales (γ = 0.5 and
γ = 1). This module increased its integration with the sensory module and decreased
its segregation during the reward-seeking condition. One possible explanation of this
effect is the influence of systematic differences in stimulus presentation during the
outcome phase described in the previous section. In the activation analysis, I observed
differences in PE processing in a large portion of the primary and secondary visual
cortex, a part of the task-visual module. It is also important to note that despite
statistical significance, both effects were scale-specific and were not present for other
topological resolutions, unlike PE-related changes.

4.7.4 Ventromedial prefrontal regions form separate network
during positive prediction error processing

The ventromedial prefrontal cortex is one of the main functional hubs of the default mode
network (Andrews-Hanna et al., 2014). From the reinforcement learning perspective,
vmPFC signals positive prediction errors (Daw et al., 2011; Van den Bos et al., 2012)
and represents a subjective value of various stimuli (Levy and Glimcher, 2012; Roy
et al., 2012). Using consensus partitioning, I found that regions spanning the vmPFC
area formed a separate network community during positive prediction error processing.
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Surprisingly, this community was present only for the coarsest topological scale
(γ = 1.5), which inherently favors larger “super-communities.” This may suggest
remarkably strong connections among vmPFC nodes during positive PE processing.
It has been previously suggested that value representation in vmPFC is updated by
striatal prediction errors through strong frontostriatal connections (Frank and Claus,
2006). Connectivity studies supported this claim by showing increased functional
coupling between ventral striatum and vmPFC during feedback processing (Camara
et al., 2009; Münte et al., 2008). Moreover, Van den Bos et al. (2012) showed that
connection strength between these two regions is enhanced during positive feedback
processing. This value update mechanism offers a possible explanation of my finding –
the dopaminergic system may communicate positive prediction errors with vmPFC
through frontostriatal connections evoking strong and coherent neural activity in
different parts of vmPFC. Strong coherent activity results in strong functional coupling,
which results in a separate vmPFC community observed during positive PE processing.
The other complementary mechanism for community formation is decreased connectivity
with non-community members. From the PE processing perspective, this would reflect
the need for the valuation circuit in vmPFC to reduce noise from other brain systems
during value updating. Only one or both of the suggested mechanisms may be
responsible for the vmPFC community formation. Therefore more studies and fine-
grained network structure analysis would be needed to understand this phenomenon
better. Since this result was unexpected, it should be treated as exploratory and
interpreted with caution.

4.8 Conclusions

Multiple neural systems are engaged to signal prediction errors enabling us to learn
through trial-and-error. The results of my study show that these systems are organized
along the prediction error sign axis, reflecting the distinction between positive and
negative prediction errors. Moreover, the activity and connectivity of these systems are
generally invariant to the outcome valence, supporting the idea that the brain adjusts
its reference point when the environment is predominantly rewarding or punishing. My
results also demonstrate a complex pattern of network interactions following switching
between positive and negative prediction errors. These interactions form the pattern
observed in studies on cognitive load, suggesting that negative prediction errors require
more cognitive resources as they are usually related to the conflict. Intriguingly, I
also found some unexpected network community structures. Ventromedial prefrontal
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regions formed a small community observed along two large “super-communities,”
suggesting increased integrity of the valuation system and decreased communication
with the rest of the brain during positive prediction error processing. Striatal areas
composed of both regions signaling positive and negative prediction errors formed
a stable reward network observed for higher topological resolutions supporting the
finding of a separate reward network observed at rest.

My findings provide a thorough description of neural correlates of prediction errors
from three different perspectives. They support and extend some existing observations
and shed new light on the network mechanism behind reinforcement learning. Some of
my results raise new fascinating questions and open avenues for future research.

4.9 Limitations

I would like to point out that this thesis has its limitations. I created prediction
error signaling regions of interest based on meta-analytic findings, which is less precise
than the individual delineation of these regions using anatomical scans. Moreover, I
neglected the valuable information about the magnitude of prediction errors by using
the beta-series correlation approach. This approach simplified the analysis but could
potentially eliminate subtler effects that would be detectable otherwise. Additionally,
I used only one brain parcellation to conduct the connectivity analysis. In the future,
it would be beneficial to replicate my results using other brain parcellations and
ideally other independent datasets. Finally, some hypotheses were not strictly tested
quantitively using statistical calculations but were qualitatively verbalized as observed
patterns of statistically significant results. This is a difficulty inherent to the approach
taken in this thesis, which tries to combine multiple perspectives to answer the same
questions.





Summary

Sophisticated methods of modern computational neuroscience and rapid progress in
neuroimaging techniques offer unique opportunities to study brain computations during
various cognitive processes. These advances provide an unprecedented chance to
discover actual algorithms implemented by the neurons and their connections. One of
the greatest successes of computational neuroscience were discoveries that led to the
formulation of the reward prediction error hypothesis. By many neuroscientists, it is
thought to be a deep and elegant explanation of reward-based learning. It links the
activity of dopaminergic neurons in the midbrain with computations required to update
the value of taken actions. Despite its tremendous success, the reward prediction
error hypothesis is relatively simple and, in its original form, fails to address some
fundamental questions about learning. One of these questions asks how punishments
are processed and how punishment-avoidance learning is biologically implemented.
Theorists proposed multiple solutions to this problem, but it is still debatable which
one offers the most accurate explanation of available observations.

In this thesis, I had a chance to expand on the reward prediction error hypothesis
and fill the gaps related to the brain’s implementation of punishment-avoidance learning.
The main goal of this thesis was to comprehensively describe all phenomena pertaining
to prediction error processing in the brain. To achieve this goal, I took the approach
of formulating and testing hypotheses independently using behavioral, activation,
and connectivity analysis. This strategy gave me insights into how different regions
broadcast prediction errors signals, communicate with other regions and how these
interactions manifest in observed behavior. Although finding the commonalities and
differences between fundamentally different perspectives on the brain can be challenging,
it is required to consolidate our knowledge about the brain.

To fulfill my goal, I designed and conducted an fMRI experiment with a reversal
learning task to elicit positive and negative prediction errors independently during
reward-seeking and punishment-avoiding conditions. I focused on disentangling the
prediction error sign and the outcome valence axes to avoid confusion about whether
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certain phenomena are characteristic or invariant to a specific axis. I planned and
performed my analyses around three central questions: Is the distinction between
signaling better-than-expected and worse-than-expected reflected by two opponent
brain systems? Does the brain adjust the reference point to use the same computations
in the rewarding and punishing environments? Are negative prediction errors associated
with increased integration between different brain systems? Different perspectives
allowed me to tackle these questions directly or indirectly and comprehensively describe
the neural and behavioral correlates of reward and punishment learning.

I found that learning from outcomes better-than-expected and worse-than-expected
is facilitated by two distinct brain systems: dopaminergic corticostriatal and insular-
frontal. I observed this distinction directly using activation analysis and indirectly
using the behavioral and network approaches. My findings supported the idea that both
systems are mainly invariant to the change between purely rewarding and punishing
environments. This mechanism is efficient from the brain’s perspective because by
adjusting the reference point, it can take advantage of two existing circuits regardless
of the environmental demands. The reference point reflects the expected number
of rewards and punishments in a given environment and allows accurate prediction
errors recalculation. Using network analysis, I showed that the interactions between
large-scale brain networks fluctuate during prediction error processing. Intriguingly, the
pattern of network reconfiguration when switching from positive to negative prediction
errors is strikingly similar to the pattern observed when switching from low-demand to
high-demand cognitive tasks. This observation suggests that processing worse-than-
expected outcomes is cognitively more demanding and evokes some degree of increased
integration between brain systems.

The contribution of this thesis to the neuroscience of human choice and learning is
twofold. First, it offers firm support for the dual systems hypothesis, demonstrating
a clear distinction between positive and negative prediction error signaling. It also
shows that the central organizational axis in the learning brain is the prediction error
sign axis. Second, it demonstrates that the network approach offers an essential
perspective for studying prediction error correlates. It also stimulates to ask novel
questions about prediction error processing in the brain, e.g., “What is the connection
between prediction error systems and large-scale networks, especially default mode
and fronto-parietal?” or “What network interactions facilitate updating values in the
ventromedial prefrontal cortex?”. Altogether, I believe that my work brings important
insights to the computational neuroscience and provides a comprehensive description
of neural correlates of prediction errors during reward and punishment learning.
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Fig. A.1 Simple behavioral measures. (A) Relationship between the difference in
punishment/reward magnitude and choice proportion for right box. Higher difference
between reward/punishment magnitudes led to higher probability of choosing more
profitable box. (B) Mean choice time (reaction time) in seconds for both task condition
and prediction error signs.
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Fig. A.2 Example beta maps summary for single subject and task condition.
Different characteristics of trial-wise beta maps in BSC analysis. The top panel shows
the timecourse of framewise displacement FD. The middle panel shows the carpet
plot of beta estimates – x-axis corresponds to 110 trials of the PRL task, y-axis
corresponds to all voxels within the brain mask, color indicates trial-evoked activation.
Two bottom-left panels show a coronal slice for z=9.5 for mean brain activation during
+PE and -PE trials. Two bottom-right panels show beta-values distributions averaged
across trials and voxels.
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Table A.1 Consensus partition composition for structural resolution parameter γ = 1.5.
For abbreviations see Table 4.4.

Large-scale networks
Module Condition n

+PE DM −PE FP MEM SAL UNC SUB VAT CER SOM CO AUD DAT VIS

+PE 54 0,43 0,80 0,00 0,00 0,00 0,00 0,26 0,00 0,25 0,00 0,00 0,00 0,00 0,00 0,00

−PE 52 0,43 0,76 0,00 0,00 0,00 0,00 0,26 0,00 0,25 0,00 0,00 0,00 0,00 0,00 0,00

RS 56 0,43 0,83 0,00 0,00 0,00 0,00 0,26 0,00 0,25 0,00 0,00 0,00 0,00 0,00 0,00

PA 57 0,43 0,85 0,00 0,00 0,00 0,00 0,26 0,00 0,25 0,00 0,00 0,00 0,00 0,00 0,00

Defualt mode

all 54 0,43 0,80 0,00 0,00 0,00 0,00 0,26 0,00 0,25 0,00 0,00 0,00 0,00 0,00 0,00

+PE 78 0,00 0,00 0,00 0,00 0,25 0,21 0,00 0,50 0,50 0,00 1,00 1,00 1,00 0,33 0,00

−PE 71 0,00 0,00 0,00 0,00 0,25 0,14 0,00 0,50 0,38 0,00 0,83 1,00 1,00 0,44 0,00

RS 75 0,00 0,00 0,00 0,00 0,25 0,14 0,00 0,50 0,25 0,00 1,00 1,00 1,00 0,33 0,00

PA 68 0,00 0,00 0,00 0,00 0,25 0,21 0,00 0,50 0,50 0,25 0,74 1,00 1,00 0,11 0,00

Sensory

all 76 0,00 0,00 0,00 0,00 0,25 0,14 0,00 0,50 0,38 0,00 1,00 1,00 1,00 0,33 0,00

+PE 43 0,00 0,00 0,05 0,05 0,00 0,00 0,22 0,00 0,00 0,00 0,00 0,00 0,00 0,56 1,00

−PE 40 0,00 0,00 0,05 0,05 0,00 0,00 0,22 0,00 0,00 0,00 0,00 0,00 0,00 0,22 1,00

RS 43 0,00 0,00 0,05 0,00 0,00 0,00 0,26 0,00 0,00 0,00 0,00 0,00 0,00 0,56 1,00

PA 40 0,00 0,00 0,05 0,05 0,00 0,00 0,22 0,00 0,00 0,00 0,00 0,00 0,00 0,22 1,00

Visual

all 39 0,00 0,00 0,05 0,00 0,00 0,00 0,22 0,00 0,00 0,00 0,00 0,00 0,00 0,22 1,00

+PE 45 0,29 0,04 0,48 0,86 0,75 0,36 0,22 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

−PE 53 0,57 0,09 0,67 0,81 0,75 0,21 0,22 0,20 0,00 0,00 0,00 0,00 0,00 0,00 0,00

RS 44 0,29 0,04 0,52 0,86 0,75 0,21 0,22 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

PA 45 0,29 0,04 0,57 0,86 0,75 0,36 0,13 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Task

all 43 0,29 0,04 0,43 0,86 0,75 0,29 0,22 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

+PE 8 0,29 0,00 0,14 0,00 0,00 0,00 0,00 0,30 0,00 0,00 0,00 0,00 0,00 0,00 0,00

RS 5 0,29 0,00 0,10 0,00 0,00 0,00 0,00 0,10 0,00 0,00 0,00 0,00 0,00 0,00 0,00

PA 7 0,29 0,00 0,14 0,00 0,00 0,00 0,00 0,20 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Reward

all 7 0,29 0,00 0,14 0,00 0,00 0,00 0,00 0,20 0,00 0,00 0,00 0,00 0,00 0,00 0,00

+PE 4 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00 0,00 0,00 0,00 0,00 0,00

−PE 2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,50 0,00 0,00 0,00 0,00 0,00

RS 3 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,75 0,00 0,00 0,00 0,00 0,00

PA 3 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,75 0,00 0,00 0,00 0,00 0,00

Cerebellar

all 3 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,75 0,00 0,00 0,00 0,00 0,00

+PE 3 0,00 0,00 0,05 0,00 0,00 0,14 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

−PE 6 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,17 0,00 0,00 0,00 0,00

−PE 3 0,00 0,06 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

RS 3 0,00 0,00 0,05 0,00 0,00 0,00 0,00 0,20 0,00 0,00 0,00 0,00 0,00 0,00 0,00

RS 3 0,00 0,00 0,05 0,00 0,00 0,14 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

PA 9 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,26 0,00 0,00 0,00 0,00

PA 5 0,00 0,00 0,05 0,00 0,00 0,29 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

PA 3 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,33 0,00

all 3 0,00 0,00 0,05 0,00 0,00 0,14 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Other

all 3 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,33 0,00
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Fig. A.3 Condition-independent consensus partitions. Data-driven network
division into large-scale networks for different topological scales. These divisions
represent stable community structure during prediction error processing regardless of
prediction error sign and task condition. For the “super-community” scale, characterized
by γ = 0.5, network is divided into task-visual and sensory communities. For the
intermediate scale, γ = 1, third default-mode community emerges. For the finest scale,
γ = 1.5, network is divided into nine non-singleton communities. Only five of them
with more than three nodes are shown: sensory, task, visual, reward and cerebellar.
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Fig. A.4 Agreement between large-scale networks for extended Power atlas.
Changes in within and between-community agreement for prediction error sign and
task condition. Reference communities come from extended Power partition described
in section 4.6.2. LSNs abbreviations: ±PE - networks signaling positive and negative
PEs; DM - default mode; FP - fronto-parietal; MEM - memory; SAL - salience; UNC
- uncertain; SUB - subcortical; VAT - ventral attention; CER - cerebellar; SOM -
somatomotor; CO - cingulo-opercular; AUD - auditory; DAT - dorsal attention; VIS -
visual.
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