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Preface

The dissertation which lies before you has been written in the course of my PhD studies at
the Faculty of Physics, Astronomy and Informatics at the Nicolaus Copernicus University
in Toruni. It contains a summary of results from the research project in which I was
engaged during the time of my PhD programme.

I have decided to write the text using the plural first person pronoun we. The moti-
vation is that the framework introduced in this thesis is due to a joint effort of several
people and a large part of the presented content is the result of discussions with my
supervisors and our co-workers from the Karlsruhe Institute of Technology (KIT) and
Donostia International Physics Center (DIPC).

My main responsibilities in the project involved topics related to quantum optics
and quantum dynamics. In particular, I investigated how to include the adatom into
the system and explored processes occurring in it (like Rabi oscillations or spontaneous
emission). I also devoted a lot of work to the numerical implementation of the framework,
as well as to code maintenance, refactoring and documentation, which I hope will make
it accessible and easy to extend for future users.

The framework presented in this thesis would not exist in this form without the help of
many people. First of all, I would like to thank my supervisors, Karolina and Marta, for
their help in formulating research questions, and for their guidance and support during the
entire course of my PhD studies. Furthermore, I thank dr Andrés Ayuela from DIPC for
all discussions and sharing his knowledge of graphene physics. I would also like to thank
prof. Carsten Rockstuhl and Marvin Miiller from KIT for their invaluable contributions
to the parts concerning classical optics, plasmonics and electromagnetism, especially on
including the external field and calculating the absorption spectra. Additionally, I would
like to thank Marvin for our close collaboration on the code implementation, which I

found very satisfying and fruitful.



Introduction

Since its discovery in 2004, graphene has been experiencing constant attention due to its
numerous unconventional physical properties, especially optical, electronic and plasmonic
ones. Graphene is able to sustain plasmon polaritons with relatively long lifetimes as
compared to those of noble metal nanostructures and offers the exceptional possibility to
tune their properties after the nanostructure has been fabricated, by means of doping or
electrostatic gating of the material. Cutting graphene into finite nano-sized flakes allows
to bring the resonant plasmonic frequencies into the optical range of the electromagnetic
spectrum, which can be especially interesting for applications, since this is the range
where many atoms and molecules are optically active.

Exciting plasmon polaritons in metallic nanostructures hugely impacts the electro-
magnetic density of states in their surroundings. Such modified density of states may
impact optical properties of adjacent atomic systems and can be used to enhance the
strength of their interaction with light. Since graphene plasmon polaritons show extraor-
dinary properties in terms of energy confinement, lifetime and tunability, they can be
used to bring light-matter interaction close to its extreme.

The aim of this thesis is to introduce a mathematical model, which describes hybrid
systems consisting of graphene nanoflakes coupled to adjacent atoms (adatoms). To
achieve this, one has to keep in mind several things. First of all, a proper description
of small graphene nanoflakes requires a quantum-mechanical approach. Additionally, the
extreme concentration of electromagnetic energy near plasmonic nanostructures suggests
that atomic systems coupled to plasmonic graphene flakes should be positioned extremely
close, at distances for which tunnelling effects might become meaningful. Moreover, the
physical properties of graphene are strongly determined by its honeycomb-like structure.
Hence, any impurity placed on the surface of a graphene sheet perturbs this regular

lattice, which gives rise to significant changes in the electronic, optical and transport



properties of this material.

The thesis will introduce a framework for modelling hybrid systems consisting of
graphene nanoflakes coupled to adatoms, which takes into account all the aspects men-
tioned above. The purpose of the model is to describe the adatom’s influence on the
optical properties and dynamics of a graphene nanoflake, as well as the back-action from
the latter. The presentation of the model will be supported by its exemplary application
to simple hybrid systems.

Rigorous quantum-mechanical description of electron dynamics in this case should
exploit many-body approaches. In the simplest but also the coarsest of them, each
electron is modelled in a Hilbert space of the size equal to the doubled number of atomic
sites in the graphene flake 2V (the factor 2 comes from the fact that spin is incorporated
and there are two available orbitals per site for each electron), while the space of all N,
electrons has the size of (?VN ) (we distribute N, electrons on 2N spin-orbitals). However,
graphene flakes which are active in the optical regime have sizes corresponding to a few
hundred atoms, making such straightforward approach difficult to use in practice. Let
us consider three nanoflakes without doping (N, = N) to demonstrate how badly the
dimension scales with the size of the system: for a simple benzene ring, the dimension
is (6) = 20, for an 18-atom triangular flake it already becomes (198) = 48620 and for a
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100-atom nanoflake it would be (') &~ 10%.

In the second-quantisation picture, the attempt to exactly specify which state is oc-
cupied by which particle is replaced by a less demanding one, evaluating the number of
particles occupying each site. Even though the Hilbert space size scaling is significantly
reduced, it is still exponential and reads as 2"V. A treatment of flakes with a few hundred
atoms remains computationally challenging.

To model the electron dynamics in such large structures, our framework has been
based on the single-particle density-matrix approach, in which the size of the Hilbert
space scales linearly with the number of atomic sites in the graphene nanoflake N. The
advantages and challenges of this approach are presented in Chapters |3| and 4] where the
model is introduced in detail.

The thesis is structured as follows: Chapter[I]contains fundamental facts from graphene

physics, Chapter [2] introduces the formalism used in quantum optics to describe the dy-

namics of two-level systems. Chapter |3| introduces the general model to describe optical



and electronic properties of finite graphene flakes and presents most important predictions
of physical properties of graphene nanoflakes obtained in this framework. In Chapter [4]
the model is extended to account also for the presence of adatoms near graphene flakes.
It is applied to an exemplary hybrid system to demonstrate canonical effects like Rabi
oscillations and spontaneous emission in the adatom. The summary and outlook of the
thesis lists problems which could be treated with the developed model as well as its

possible extensions.



Chapter 1

Electronic and optical properties of

graphene

Graphene is a one-atom-thick allotrope of carbon, which is increasingly gaining atten-
tion of scientists and technology developers due to its numerous unusual properties with
promising application potential. It is a gapless semiconductor and at the same time one
of the best conductors of electricity on Earth, which remains capable of conducting even
at the limit of zero temperature and zero carrier concentration with a finite conductivity
value of ~ 4e?/h [I]. It exhibits high carrier mobility of around 1332.4cm?/Vs and
low resistivity of 0.7k at room temperature [2]. Charge carriers in graphene obey lin-
ear dispersion relation, thus mimicking massless relativistic particles (so-called massless
Dirac fermions). This results in the observation of very peculiar electronic properties like
anomalous integer quantum Hall effect, the Klein paradox, absence of localisation [3].

Graphene has a remarkable intrinsic tensile strength of 130 GPa and a Young’s mod-
ulus close to 1 TPa [4], which means it has the tensile stiffness of diamond but at the
same time it is lighter than aluminium. Graphene is highly thermally conductive with a
thermal conductivity of around 4000 W/mK [5]. It is considered to be completely imper-
meable to gases and liquids, even a single helium atom cannot pass through a defect-free
monolayer graphene sheet [6]. Graphene also represents a conceptually new class of ma-
terials, so-called two-dimensional materials, and it is very attractive for the fabrication
of mixed-dimensional van der Waals heterostructures [7].

However, the wonderful properties cannot be effectively exploited without the means

to synthesise high-quality, large-area graphene. First stable samples of high-quality



graphene have been fabricated in 2004 [8], which was a big surprise considering the
common belief at that time, that truly two-dimensional crystals cannot exist in a stable
form [9]. The discovery led to a Nobel Prize in Physics for Andre Geim and Konstantin
Novoselov awarded in 2010 for groundbreaking experiments regarding the two-dimensional
material graphene. Since then, countless graphene production techniques have been in-
vented, amongst which the most prominent are: various variants of exfoliation [10] [11],
epitaxy [12], using a COs infrared laser [I3]|, nanotube slicing [14], hydrothermal self-
assembly [I5]. Nevertheless, the production of large sheets of high-quality defect-free
graphene still remains a challenge [16].

In this chapter, we present the chemical structure and fundamental properties of
graphene. In particular, we introduce the tight-binding approximation, which is later

used throughout the thesis for modelling graphene.

1.1 Structure

unhyhrdaed |

o) 0, ed R~
L '...; = -- '._‘j.lf".:n::hr.m:l:'ﬁ -

Figure 1.1: Two sp?-hybridised carbon atoms can bond via the sp? orbitals, which creates a
strong bond called o, and also very weakly via the unhybridised p, orbitals, which creates so

called m bonds. Adapted from Ref. [I7L

Carbon is a chemical element with an atomic number of six, meaning there are six
electrons in a neutral carbon atom. A free carbon atom in vacuum has its energy levels
determined by the ground-state electron configuration: 1s?2s%2p?. However, if we take
two or more carbon atoms and put them near each other, their atomic orbitals can mix
into new hybrid orbitals, which will be more energetically favourable. This process is
called hybridisation and it leads to the creation of chemical bonds. Carbon can exhibit
three types of hybridisation: sp, sp? and sp?>.

Graphene is built of sp>-hybridised carbon orbitals, which means that the s orbital in

the second shell mixes with two of the p orbitals and one p orbital remains unhybridised



(Fig. [1.1). The sp*hybridised orbitals can create strong bonds with other sp*-hybridised
carbon atoms. The bonds that are created this way are called o bonds. Three of the four
valence electrons in graphene are used to create these strong bonds with neighbouring
atoms in the plane.

The fourth valence electron is considered to be in the unhybridised 2p, state. The
overlap between the p, orbitals and the other orbitals is zero by symmetry. Therefore,
the p, electrons can be treated independently from the electrons that create the o bonds.
They can interact weakly with other p, electrons creating so called m bonds and therefore
they are also called 7 electrons.

The three electrons that constitute the o bonds do not play a role in the conductivity
of graphene because they are energetically distant by about 1 eV from the Fermi level.
The electrons that are responsible for the good conductivity of graphene are the highly
mobile 7 electrons in the p, orbitals. We treat graphene in the m-electron approximation,
meaning we take into account one conduction electron per atom.

The strong o bonds create a rhombic lattice with two atoms in the unit cell, which
results in a honeycomb-like atomic structure characteristic for graphene, as shown in
Fig. [[.2] The two atoms in the unit cell are shown in the figure as yellow and blue dots.
The colour of the dots distinguishes two sublattices, labelled with letters A and B. The

lattice constant @ = 2.46 A. The two lattice vectors can be written as:

a a
i = (\/3 1) i =5 <¢§ —1) . (1.1)
The vectors connecting nearest neighbours in real space read:
., a 1 ., a 1 . 1
0 == 1], bo==|—7—-1]1], og=a|l———+0]. (1.2)

The reciprocal lattice of graphene is also a rhombic lattice. The first Brillouin zone, which

is a thombus, is presented in Fig. [I.2b. The reciprocal lattice vectors are given by:

. 21 . 2T
b:—(l, 3) b:—<1,— 3). 1.3
' 34 V3 > 3a V3 (1.3)
Two high-symmetry points in the reciprocal space are the Dirac points K and K’, which

are located at the coordinates:
2T

3\/§a

27

R—) - —
3v/3a

(va1) & (vV3.-1). (1.4)
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Figure 1.2: a) Lattice structure of graphene. Blue and yellow dots represent atoms of two distinct
sublattices. The unit cell is marked as a grey rhombus. b) First Brillouin zone corresponding to

the lattice marked in grey. The Dirac cones are located at the K and K’ points.

1.2 Tight-binding model for graphene

In solid-state physics, the tight-binding model is an approach to the calculation of the
electronic band structure using energy eigenstates approximated as a superposition of
wave functions for isolated atoms located at each atomic site [I8]. The term "tight-
binding" comes from the assumption that the electrons are tightly bound to the atom
to which they belong, meaning they have limited interaction with states and potentials
on surrounding atoms of the solid. Graphene has been studied theoretically with the use
of the tight-binding model already in 1947 by P. R. Wallace, who used it as a starting
point for studying graphite. He predicted the electronic properties of a graphene layer and
calculated its band dispersion [19]. A nearest-neighbour tight-binding Hamiltonian, which
takes into account only the 7 orbital on each atom, is a simple model which describes well
the electronic properties of graphene. The 7 electrons are the ones that are conducting
and highly mobile, they determine graphene’s optical and electronic properties, therefore
it is sufficient to include only these in the model and neglect the influence of o electrons.
Besides the mathematical simplicity and intuitive interpretation, an additional advantage
of the approach is that it is computationally inexpensive and therefore is suitable for
simulating larger structures, such as large flakes of graphene.

If we consider only the nearest-neighbour interactions, the tight-binding Hamiltonian
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reads:

H=-t Z <aibj + b}ai> ; (1.5)

<i,j>

where a! (a;) is the creation (annihilation) operator of an electron at position r; (on site
i) of the sublattice A, and b; (b;) is the creation (annihilation) operator of an electron at
position r; (on site j) of the sublattice B, the triangular brackets denote summing over
nearest neighbours only and ¢ is the nearest-neighbour hopping energy. In the thesis,
t = 2.66eV is used as the value for the hopping parameter between the neighbouring
sites in graphene. This value is based on experiments on extended graphene sheets and
is commonly used in literature |18, 20].

Looking at the honeycomb graphene lattice, one can note that the three nearest
neighbours of an electron from sublattice A always belong to sublattice B and vice-versa.
Using this fact, we can rewrite the Hamiltonian as:

=—t Z Z (a;'[bi-i-(; + sz+5ai) : (1.6)

i€A
{51,52,53}

We need to diagonalise the Hamiltonian given by Eq. [I.5] Since we have a translation
invariant system, it is convenient to make a transformation to the Fourier space. The
electron creation operators can be expressed in the reciprocal Fourier space as:
Z elk“ak » Z ek bt (1.7)
J /— k>
keIBZ N eipz
where N is the number of unit cells in the lattice and IBZ denotes the first Brillouin zone.

The non-vanishing anticommutation relations are:

{ak,az/} = {bk,bzf} = Oppr (1.8)

and the rest are zero. Relations result from the fermionic nature of electrons and

account for the Pauli exclusion principle. Using this fact, we can rewrite the Hamiltonian

from Eq.

- _—Z 3 [ i(k—k)ry o= ik'3 ol +h.c.} =ty (e—ikéalbﬁe“"éb;ak), (1.9)
4,k

JEA 6,k K’

where we used the fact that

D eI = N (1.10)
i€A
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Defining ¥ = (ay, bk)T we can express the Hamiltonian as:

H=> ¥Hk)®,

where the matrix H called the Bloch Hamiltonian takes the form:

with
f(k) = —tz ek — ¢ (e_ik”“ + 92 e5ka (g (?l@a)) .
5

The eigenvalues of the Bloch Hamiltonian give the energies of the system:

Es =/ [(K)[*(k) = £[f(F)].

(1.11)

(1.12)

(1.13)

(1.14)

Figure 1.3: Electronic dispersion of single-layer graphene calculated within the nearest-neighbour

approximation. The two bands touch each other at Dirac points in the reciprocal space.

The resulting energy values form two symmetric bands, which touch at the high-

symmetry points (Fig. [L.3). Therefore, graphene has no band gap and it can be seen

as a semimetal. However, the density of states vanishes at these points and from this

perspective graphene is sometimes called a gapless semiconductor, depending on the

chosen convention.

1.3 Adding electrons: doping and gating

1.3.1 Controlling the conductivity of graphene

As one can see from the energy dispersion relation obtained from the tight-biding model,

pristine graphene has a zero-bandgap, since the two bands touch at Dirac points, which
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Figure 1.4: Theoretical prediction of the resistance as a function of gate voltage for graphene
on a SiOg substrate. Vp marks the point where the resistance reaches its maximum. If the
gate voltage is larger than Vp, the graphene is n-doped (electron doped) and if it is smaller, the

graphene is p-doped (hole doped). EFr denotes the Fermi energy. Adapted from Ref. 211

makes it behave like a metallic material. Since the early discovery of graphene, a minimum
conductivity at the neutrality point has been theoretically predicted for Dirac electrons
in graphene with a value of ~ 4¢*/h [I] and confirmed in charge transport experiments,
which revealed that even if the carrier density vanishes at the Dirac point, the conductivity
does not go to zero but it remains finite at zero temperature [22].

There are several ways that give reliable control of the type and density of the charge
carriers in graphene. By applying a gate voltage to graphene, it is possible to continuously
drive the Fermi level away from the Dirac point, thus controlling the type and amount of
carriers in the material [8 23], as shown in Fig. [L.4l Depending on the sign of the applied
voltage, graphene is doped with either electrons or with holes, which in both cases leads
to the strengthening of metallic properties.

Introducing additional electrons to the system by the means of atomic or molecular
doping allows to open a bandgap in single-layer [24] and in bilayer graphene [25] 26].
Another way to control conducting properties is the method of electrostatic field tuning,

presented in Fig. [I.5]
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Figure 1.5: Band structure of single layer graphene, band structure of bilayer graphene and band

gap opening in bilayer graphene caused by electrostatic field tuning. Figure from [27].

1.3.2 Exciting plasmons

Doping graphene has also proven to be a simple and effective way to excite plasmons in
this material. Modern plasmonics, which emerged at the turn of the twenty-first cen-
tury |28, 29], has experienced huge interest in the past two decades with a recent shift of
focus toward related quantum processes and applications at the nanoscale. The rapid de-
velopment of nanostructure fabrication techniques and experimental tools, together with
the implementation of powerful numerical modelling based on full-wave electromagnetic
simulations, caused an explosion of interest in the field, which was visible over the past
decade [30]. Graphene physics has also attracted growing attention in the last years and
the number of publications on this subject has escalated quickly during that period.

The link between both these areas of research was established in 2011. One of the
first accomplishments in the emerging field of graphene plasmonics was the experimental
realisation of surface plasmon-polaritons (SPPs) in engineered graphene micro-ribbon
arrays obtained by patterning a pristine graphene sheet. The experiment revealed that
graphene plasmon resonances can be tuned over a broad terahertz frequency range by
changing micro-ribbon width and in situ electrostatic doping [31]. This seminal work has
sparked a lot of interest in graphene nanoplasmonics, paving the way for the investigation
of graphene as a novel plasmonic material [32-34].

Doped graphene is capable of sustaining SPPs [33], 35], 36] and its layers have shown
similar surface plasmon effects to those of metallic thin films [34, 37]. Having said that,
graphene SPPs also exhibit some significant differences with respect to the noble metal
plasmons, some of which make them especially promising for applications.

An interesting property of the SPPs in graphene is their tunability - they can be dy-
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Figure 1.6: Snapshots present the real space induced charge distribution in a triangular 270-
atom graphene nanoflake with 20 doping electrons under vertically polarized CW illumination
of frequency 1.39 eV (a) and 2.03 €V (b). Snapshots were taken at the time of maximum dipole
moment. Adapted from Ref. [40].

namically controlled and tuned through doping or electrical gating [30]. Since the spectral
position of plasmonic resonances depends on the interaction energy of the electrons in
the system, they are sensitive to the number of doping electrons because the position of
the Fermi energy is modified and different states contribute to the resonance. This shift
of the absorption peak has been predicted in doped graphene nanoantennas for collective
resonances under varying doping conditions [38, B39]. Additionally, electrostatic doping
has been used to demonstrate plasmon-frequency tunability and induced optical modu-
lations in the THz and infrared response of graphene [38]. This stands in contrast to
traditional metal-based plasmonics, where the tunability of plasmons is usually limited -
it can be achieved by controlling the geometry of the metallic nanostructures and their
dielectric environment, or by exploring the thickness of thin films of noble-metals. After
the fabrication of a metallic nanostructure, it is challenging to control and tune the fre-
quency of its plasmons. Furthermore, graphene surface plasmon-polaritons enable higher
levels of spatial confinement than plasmons in noble metals and are predicted to suffer
from relatively low losses, therefore having larger lifetimes and propagation lengths, when
compared with traditional plasmonic materials [30)].

The plasmons in very large graphene sheets are typically located in the far or mid in-
frared region of the electromagnetic spectrum with energies up to 1 eV 33|, usually on the
order of tenths or hundredths of eV. A finite flake size allows to shift the plasmons energies
to visible energies [41], which is crucial for a wide variety of applications. Fig. presents

the charge distribution in two plasmonic excitations in triangular graphene nanoflakes.
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A vividly discussed topic is the possibility of exciting graphene plasmons in finite flakes
by single electrons [39]. This problem is closely related to the more fundamental issue of
how a plasmon should be defined and how to distinguish single-particle-like resonances
in nanostructures from plasmonic ones [40, [42H44]. Typically, collective charge density
oscillation in real space is considered as the basis to classify a specific resonance as plas-
monic in nature [44]. However, as we recently pointed out (using the tools presented
throughout this thesis), in plasmonic systems that are so small that they require quan-
tum description the real space analysis cannot be the sole basis for decisions on the nature
of a resonance [40]. In order to characterize resonances in such systems, one also needs
to look carefully at both the absorption spectra of the nanostructure and the coherence
dynamics in energy basis.

Early studies found that in graphene nanoantennas, adding a single extra electron can
switch on infrared plasmons that were absent from the structure before doping [39]. That
said, if we understand the plasmon predominantly as a resonance originating from long-
range electron—electron interactions, it seems that a single electron is not able to excite a
plasmonic resonance and one needs heavier doping to achieve it [40]. In any case, there
is no doubt that graphene, which supports intrinsic tunable plasmons, is a well-suited

platform for investigating plasmonic phenomena and it deserves further exploration.

1.4 Adatoms on graphene

The properties of graphene strongly depend on the shape and purity of its lattice. Some
predictions can be hard to verify in practice due to impurities and defects. As an example
let us take graphene ribbons. Although theoretical calculations for defectless graphene
ribbons predict that these should transmit electrons without scattering and their low-
temperature conductances should be quantised in integer multiples of €?/h [45], their
experimental realisation is often far from ballistic, meaning that it shows signs of scat-
terers that disturb the ideal propagation, and the experimentally measured conductance
is much smaller than expected [46].

Atoms adsorbed to a crystal lattice are called adatoms. Adatoms can be a nuisance
for transport properties, but they can also be seen as a tool for tailoring graphene.

The adsorption of atomic hydrogen on graphene opens a gap in the electronic density of
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states and therefore it can turn the material into a semiconductor [47]. Remarkably, after
dehydrogenation, the metallic properties can be recovered. This offers a reliable method
for controlling the electronic properties of this material [48]. Moreover, graphene offers
better control over adsorbate addition than ordinary three-dimensional (3D) materials.
In 3D metals adatoms are introduced into the material by alloying, which is a random
process. In graphene, which is an open surface, adatoms can be controlled with the use
of atomic force microscopy to obtain structures with greater precision [49].

Since working with defect- or impurity-free materials is not always possible, it is crit-
ical to investigate how defects and impurities affect the electronic properties of graphene
and to decide whether their existence in a particular system is desirable and how it can be
utilised [50, 5I]. A tight-binding model of graphene with adsorbates based on extended
Hiickel theory was developed in Ref. [46], where it was used to carry out quantum trans-
port calculations for graphene nanoribbons with adsorbates. Possible ways to adsorb an
adatom on the graphene lattice, which are based on these calculations, are presented in
Fig. [L.7]

In this thesis, we focus on graphene nanoflakes rather than infinite graphene sheets.
Moreover, we take an opposite perspective and focus also on how the graphene nanoflake
can affect typical processes in two-level systems. We look not only on stationary solutions

but also study the dynamics of the hybrid systems.

(a) (b) (c)

Figure 1.7: Relaxed geometries of adsorbates on graphene. Carbon, hydrogen, fluorine, and
oxygen atoms are black, blue, green, and red respectively. (a) Adsorbed hydrogen atom. (b)
Adsorbed fluorine. (c¢) Adsorbed hydroxyl group. (d) Adsorbed oxygen. Adapted from Ref. [46]

Adatoms can attach to graphene in three different positions with respect to the
graphene lattice - top, hollow or bridge [52], as shown in Fig. . If the adatom is
coupled to the flake in the top position, it affects only one sublattice. Hollow and bridge
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positions influence both sublattices. Throughout this work, we focus on the top position
of the adatom only, meaning that the adatom will be located over and coupled to one

particular graphene site.

Figure 1.8: Three possible adatom positions on an extended graphene sheet are marked with
crosses: top position (red) on top of a selected carbon site; bridge (green) in between a pair of

sites and hollow (blue) in the middle or above the middle of a hexagon.

1.5 Cutting graphene: edge types

Graphene can be cut into many different shapes. Depending on where the cutting lines
pass through, the resulting flakes can have various edge types. If we cut along an axis
which is connecting two nearest neighbours, the resulting edge type is called armchair,
and if we cut along a line perpendicular to this one, we get a zigzag edge, as presented
in Fig. [1.9

Armchair structures will prove to be of particular interest, since they are non-magnetic
and as we will see in further sections, they tend to have a bandgap around the Fermi level.
On the contrary, zigzag-edged nanoflakes generally have multiple degenerate levels at zero
Fermi energy and they support magnetic edge states [53, 54|, which significantly com-
plicates their description and modelling. In this thesis, we focus on graphene nanoflakes
of sizes up to 10 nm, since their HOMO-LUMO gaps have frequencies corresponding to

those of electromagnetic waves in the optical regime.
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Figure 1.9: Two ways to cut graphene and the resulting edge types: armchair (left) and zigrag
(right).
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Chapter 2

Interaction of light with atoms

This chapter contains a summary of basic processes which can occur when an atom
is irradiated with a light beam resonant with one of its natural frequencies. We will
present some commonly used approximations, such as the two-level approximation and
the rotating-wave approximation, which allow to find analytical solutions of the evolution
equations. With their help we will predict the behaviour of atoms interacting with an
external electromagnetic field, which will lead us to the phenomenon of Rabi oscillations.
Finally, to describe incoherent or dissipative processes, such as spontaneous emission,
we will introduce the density matrix formalism and the Gorini-Kossakowski-Sudarshan-
Lindblad equation. The reasoning in this chapter is based mostly on the excellent script
written by Daniel A. Steck [55] and on popular quantum optics textbooks by Fox [56],
Vogel and Welsch [57] and Haroche and Raimond [58].

Figure 2.1: A visualisation of the two-level atom approximation. When the illumination fre-
quency w coincides with one of the optical transitions of the atom, we speak about a resonant
interaction between the atomic levels involved in this transition and the light field. We can
therefore neglect the other atomic levels, which only weakly interact with the incoming light.

Figure from [56].
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2.1 Two-level atom

In order for a quantum of light to be absorbed or emitted by an atom, its angular
frequency w must be resonant to the energy difference between two quantised energy

levels of the atom, of which at least one has to be populated, here denoted as E, and E,:
E.— E, = hw. (2.1)

In general, an atom can have multiple quantised levels and there is a large number
of possible optical transitions between them. The quantum treatment of the interaction
between light and atoms, however, is often performed in terms of the two-level atom
approximation (Fig. . This approximation is applicable when the frequency of the
incoming light coincides with one of the optical transitions in the atom. In the two-
level atom approximation we only consider the pair of states whose energy difference is
resonant to the illumination frequency and neglect all the other levels. The atom is then
treated as a neutral particle with just two internal levels - the ground state |g) with
energy E, and the excited state |e) with energy E..

Mathematically speaking, the two-level atom is represented as a two-dimensional com-
plex Hilbert space. An arbitrary pure state of the system can be represented as a vector
in this space:

W) =cqlg) +cele) (2.2)
with the two energy eigenstates of the atom chosen as the basis vectors:

0 1
lg) = and |e) = . (2.3)
1 0

The coefficients ¢, and ¢, are probability amplitudes. The square of their modulus gives
the probability of measuring the system in the state |g) or |e), respectively. In this
two-dimensional complex space only four linearly independent operators are possible. A

common choice of the operators’ form which has a good physical interpretation is:

1=1e) (el +Ig) fal. (2.0
5. = 1) (el ~ Ig) {gl. (25)
b= 5 (6u i) = |6} (], (2.6)
6- = 5 (60— i3y) = lo) el (2.7
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where the operators ., 6,, . can be represented by the Pauli matrices, defined as:
Oy = oy = o, = . (2.8)

Note that there is a physical interpretation which can be attributed to these operators,
even though not all of them are Hermitian and therefore do not necessarily correspond to
physically measurable quantities. An example is the non-Hermitian &, operator, which
generates a transition from the ground to the excited state and the operator ¢_, which
does the opposite. Conversely to these two, &, is a Hermitian operator, so its expectation
value is an observable physical quantity. It is the difference between the probability of
the excited state being occupied and the probability of the ground state being occupied,
sometimes called the population inversion of the atom. Also the Hermitian &, operator
has an intuitive interpretation - it acts as a flip operator, which changes one basis state
into the other, since 6, |e) = |g) and . |g) = |e).

Using these fundamental operators as a basis, one can construct other operators which

carry physical information about the system. The Hamiltonian is given by:

. E. 0
Hyy = Ecle) (e| + Eylg) (9] = : (2.9)
0 E,

We can shift the energy scale as the only physically relevant information are the energy

differences and not absolute energy values. This will be useful for later calculations.

. E.—E, 0 hwy 0
Hat = = = hMOO'+O'_7 (210)
0 E, - E, 0 0
where we introduced the resonant frequency of the atom wy, defined such that £, — E, =
hwy holds.
An electric dipole operator in the one-electron case is defined via the position operator

A

r as:

d = —q.f, (2.11)

where ¢, is the elementary charge. The bold font highlights the fact that the elements of

d and # are vectors in R3. The expectation value for the state is given as:

(U1d W) = —qe (|eef* (e| E|e) + coc; (9] F le) + coei el Blg) + el (gl £19)) . (2.12)
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We can use a simple parity argument to derive the form of the dipole operator in
a spherically symmetric system. The parity operator P flips the sign of the position
operator: PPt = —#. Note that the parity operator is unitary and P? = 1 and also
that it anticommutes with the position operator. On the other hand, the parity operator

commutes with an atomic Hamiltonian with a spherically symmetric potential, which has
2

the form 2—6 — ﬂ7 therefore P and H have common eigenstates. Now let us consider
m r

a matrix element of the anticommutator {15, f'} between energy eigenstates |a) and |b).

Since these states are eigenstates of the Hamiltonian, they are also eigenstates of the

parity operator, such that P |a) = p,|a) and P [b) = p, |b) hold. On one hand, as we

already know, the anticommutator vanishes, so:

(al {P,f} b) = 0. (2.13)

But since the states |a) and |b) are also eigenstates of the parity operator, the following

holds as well:
(l {P,2} |6} = {a| (Pi+2P) b) = (pa + ps) {al £11) . (2.14)

Since P? = 1, the possible eigenvalues of the parity operator are +1. For both Eq. m
and Eq. to hold, either p, + p, = 0 or (a| T |b) = 0. If we take a look at the diagonal
elements of the dipole moment operator - (g|d |g) and (e|d |e) - we can notice that it is

impossible that 2p. = 0 or 2p, = 0 and therefore:
(gldlg) = (elde) = 0. (2.15)

This means that an atom or any spherically symmetric system which is in an energy
eigenstate has no permanent dipole moment.

Regarding the off-diagonal elements, it is reasonable to assume that |g) and |e) are
levels of opposite parities, and therefore these elements do not vanish. An atom only
exhibits a dipole moment if it is in a superposition of the basis states, i.e. c,c} # 0. Since

the diagonal elements vanish, the expectation value becomes:
(U]d[V) = —g. (Cecz (91T le) + coci (el £]g)) = (V| G-deg™ + G4deg [P) (2.16)
where we have introduced the notation:

deg = qe (9] T e) - (2.17)

24



And since this is true for an arbitrary state, the dipole moment can be represented as:

d=6_deg" +64deg = . (2.18)
deg” O

If we choose the phase of the dipole matrix element deg such that it is real, we obtain

the form:

(@)

= deg(6_ +6,). (2.19)

2.2 Light-matter interaction Hamiltonian

Now let us introduce a new element into the system - we add a monochromatic external
field with angular frequency w to model a laser field: E = Eqcos (wt + ¢). Note that we
ignore the spatial dependence of the field, only considering the field at the location of
the atom. This is appropriate in the long-wavelength approximation, where we assume
that the wavelength of the illumination is much larger than the size of the atom, which
is generally a reasonable assumption [56].

It is convenient to decompose the field into its positive- and negative-frequency com-

ponents:

E(t) = E{Ve ™ + E{ et = B (1) + EC) (1), (2.20)
where E() and E() are electric field amplitudes which fulfil the relation (E(F))T = E().
The interaction between the atom and the field ]:[L-m is given by:

H,, = —dE. (2.21)

In this way the field induces the off-diagonal elements of the Hamiltonian, which is consis-
tent with the experimentally known fact that laser illumination causes transitions between
the eigenstates of an atom.

Just as we decomposed the electric field into positive- and negative-frequency parts,

we can decompose the dipole operator as:
d=deg(6_ +06,)=dP +d), (2.22)

where for a monochromatic beam illumination the expectation values of the negative and

positive components of the dipole moment operator depend on time as <El(i)> ~ et
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The interaction Hamiltonian becomes:

A A~

B = — (A9 +d9)) - (B9 (1)) + EO) (1) =

— —dD . E® =) . gO) —gd® . g G) g L EW. (2.23)

If we assume that the external field is weak or moderately strong, the atom’s response

is linear, meaning that a field with time dependence |E| oc e/

will result in the dipole
moment oscillations with the same time dependence. Then, recalling that (a(i)) ~ Tt
and E®) ~ eF“t e see that the expectation values of first two terms in Eq. oscillate

+20t while the last two terms depend on time very weakly. We can drop the

rapidly as e
first two terms, which are rapidly oscillating at optical frequencies and replace them by
their zero average value, which amounts to a coarse-graining on femtosecond scale. This
step is referred to as making the rotating-wave approximation (RWA). After performing

the RWA, the atom-field Hamiltonian becomes:

~

Haip = —dPDEC) - gOE®. (2.24)

Using the explicit time-dependence for the field and expression for the dipole moment

operator, we can write:

h$2

5 (o_e“" +oe7™"),  (2.25)

A~

fap = — (gl dle) (Bo o + By emit) =

(+

where we assume Eo™ to be real and we have defined the Rabi frequency as:

2 (g|d |e) Eo™ (g|de) Eq
0= . - (2.26)

2.3 Rabi oscillations

In order to trace the dynamics of the system, we investigate the time-independent Schrédinger
equation:

d N
ih - [¥) = H V) (2.27)

and find its solutions. Our atomic state is a superposition of the two basis states:

(W) =cylg) +cele), (2.28)
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where ¢, and ¢, carry all the time-dependence of the state |U). The Hamiltonian consists

of two parts: the atomic part H,, (Eq. ) and the atom-field interaction H (Eq.[2.25)):

. Y A ,
H = hwyoo_ + > (o_e™ +ope™™"). (2.29)
Substituting these into Eq. gives:
d d Q . Q .
i lg) + 7 Ce le) = —iwopce |e) — Z'Ee“"tce lg) — ige_mcg le) . (2.30)

Projecting the equation onto the states (g| and (e| gives a pair of coupled differential

equations:
d Q .
<Gy = —igcee“"t (2.31)
d . . —iwt
ECG = —lWyCe — zgcge

Without the time-dependent factor e this set of equations would be easily solvable.

Fortunately, we can remove this factor by a unitary transformation:
U = ewtleel (2.32)
which transforms the state from Eq. into:
[B) = U [9) = ¢, lg) + e |e) = ¢, |g) + . |e) (2.33)
The Hamiltonian is transformed according to:
H=UHU" +in(8,U) U, (2.34)

which results in the following atom-field interaction Hamiltonian in the new frame of

reference:

H=—hAo,o_ +hQ(0y +0_), (2.35)

where A = w —wy is the detuning from resonance. Such a time-independent Hamiltonian
is only possible in the rotating-wave approximation. The counter-rotating terms would
still depend on time after the transformation given by Eq. After the transformation,

the Schrodinger equation gives the coupled equations:

d Q

%cg = —Z'Eée, (236)
d
Eée = —iAée - iECg.

27



Solving them allows to trace the driven atomic dynamics. First, we look at the case of

exact resonance (A = w — wy = 0), where the set of equations reduces to:

d Q

acg = —Z.Eée, (237)
d . RY/

dile = Tigt

These can be easily decoupled by differentiating each equation and substituting the deriva-

tives in the original equations, which gives:

d2 0\ 2
ﬁcg = — (5) Cyg, (238)

a2 . O\?_
@Ce = — (5) Ce.

We can see that both equations have the form of an undamped harmonic oscillator of
frequency % and therefore the general solutions for ¢, and ¢, are linear combinations of

trigonometric functions:
Q Q
¢y (t) = ¢4(0) cos (§t> — iC(0) sin <§t> : (2.39)
Q Q
Ce (t) = ¢.(0) cos <§t) — icy(0) sin (Et) .

For an atom which is initially in the ground state, i.e. ¢,(0) = 1, &(0) = 0, the probabil-
ities of the ground and excited states being occupied are then:

1

P, (t) = |c,(t)]* = cos? (&;t) =5 (14 cos (£2t)), (2.40)

1
P, (t) = |co(t)]* = |G.(t)]* = sin® ) = 5 (1 —cos (02t)).
Here, we explicitly see the meaning of the Rabi frequency. It is the frequency, at which
the population in a two-level system oscillates between the ground state and the excited
state, as shown in Fig. In the case when A = w — wy # 0 we speak about detuning

from resonance. To find solutions of the set of Eqs. we start again with differentiating

the equations and eliminating appropriate variables, which yields:

e da
LN 2.41
2 Bt e=0 (2.41)
&2 da @

A e =
a2 Byt
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Figure 2.2: Rabi oscillations in a two-level system, which is subject to external illumination with
a frequency perfectly resonant to the atomic transition, i.e. A = w —wg = 0. The probability of
the ground and excited states being occupied oscillates in time with frequency 2. Figure from

Ref. 551

These can be rewritten in the form:

i A O\[a A @

Cos i (L2 i) = 9.49
(dt Z2“2) i g iy e=0 (2.42)
d_ A 0\ (a_a Q)

aw o T\ Ty Ty e

where we introduced the generalised Rabi frequency Q = v/Q2 + A2. Any function which

causes either factor to vanish will solve the equation, therefore the solutions are linear

combinations of functions of the form e®2t/2£€/2 and they read:

¢, (t) = eiat? {CQ(O) cos (%t) - é (A cy(0) + Q6. (0)) sin (%t) } : (2.43)

. int/2 ) ~ 0 Lo s Y
Ce (t) = €AY {ce(O) cos <§t> + 8 (A E.(0) — Qc,y(0)) sin <§t> } :

For an initially unexcited atom with ¢,(0) = 1 and é(0) = 0 the solution becomes:

. Q A [Q
¢, (t) = A2 {cos <§t> —ig sin (525) } , (2.44)
ap (O
Ce (t) = —ie A2 _sin (—t) :
Q 2

The excited state population is given by:

02 Qt Q2 /1 1 -
P.(t) = §s1n2 <7> =3 (5 — 5 cos (Qt>> : (2.45)
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As compared to the case without detuning, the detuned oscillations occur at a higher

frequency (since Q> ) and their amplitude is reduced, as shown in Fig.

A=)

Figure 2.3: Oscillations of the excited state in a two-level system, which is subject to external
illumination with a frequency nearly but not exactly resonant to the atomic transition, i.e.
A = w —wp # 0. The probability of excited state being occupied oscillates in time with higher

frequency and a smaller amplitude than in the resonant case. Figure from Ref. [55l

2.4 Spontaneous emission

Spontaneous emission is a process in which a quantum system emits a photon, while
simultaneously making a transition from an excited state to a lower energy state. Ac-
cording to quantum electrodynamics, spontaneous emission happens due the fluctuations
of photonic vacuum, explained by the Heisenberg uncertainty principle [59]. In order to
account for vacuum fluctuations, we employ the fully quantum-mechanical description,
where both the field and the emitter are treated as quantum entities.

Our ultimate goal is to find the formula for the spontaneous emission rate from an
emitter, which is located near a plasmonic nanostructure, in particular in the vicinity
of a graphene nanoflake. To achieve this, the derived formulas will be expressed using
the Green’s tensor formalism. The first step will be to define the total Hamiltonian of
the system, then we will find Heisenberg equations of motion for the atom and fields
operators. For any operator O:

0
h

Afterwards, we will eliminate the field variables from atomic equations making use of

O=— [O, H] . (2.46)

the Markovian approximation. This will allow to identify two contributions in the atomic
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equations - one which describes the exponential decay of the excited state (spontaneous
emission) and another, which is responsible for its energy shift. If we insert into these
equations the Green’s function for vacuum, the first term gives us the same result as
Weisskopf-Wigner theory of spontaneous emission [59].

The derivation in this section is performed within the electric-dipole approximation.
The reasoning is based on the field quantisation in dispersive media scheme proposed in
Ref. (60 followed by the spontaneous emission rate derivation by Dzsotjan et al. [61]. Please
note that it can be generalised to include terms beyond the electric-dipole approximation,
as done by the author of this thesis et al. in Ref. [62.

The field operator at a given position can be expressed as an integral over all frequen-
cies [57]:

oo
E(r) = /0 E(r,w) dw. (2.47)
Note that in the Schrodinger picture the field operator is time-independent. The fre-
quency components can be expressed via bosonic creation and annihilations operators

which fulfil the commutation rules:

a; (r,w),al (r’,w')] =00 (r—1') 6 (w—w) (2.48)
i (r,w),a; (r',w’)] = 0. (2.49)

The indices ¢ and j stand for the variables x, y, z and the operator a; annihilates a
photon of frequency w polarised in the i direction at position r. We also use vector
notation a = [y, Gy, G

The electric field E (rw) will be expressed via the electromagnetic Green’s tensor
G (r,r’,w) and bosonic annihilation operators a;. The Green’s tensor connects the source
located at r’ with the field at position r. A detailed derivation of the relation is given

in [57] and leads to the formula:

A 2
E(r,w) =14/ _w_2 /d3r’\/1me(r’,w) G(r,r,w)a(r,w), (2.50)
Tey €

where ¢ is the vacuum permittivity, € is the permittivity of the environment, ¢ - speed
of light. Now, let us by define the Hamiltonian of the total system, which consists of
three parts - the Hamiltonian of the electromagnetic field, the atomic Hamiltonian and

the Hamiltonian describing the light-matter interaction:
H = Hgoa + Ha + Hap. (2.51)
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We also assume that the atom-field coupling is rather weak, so that we can work in the

rotating-wave approximation, where H ,r takes the form

Har = — [04dEM) (rg) + dyEC) (rg) 0] (2.52)

with
E® (r) = /OOO dwE (r,w), (2.53)
EC) (r) = /OOO dwE' (r,w). (2.54)

Making use of Eq. and the Heisenberg equation of motion (Eq. , we calculate
the evolution of the annihilation operator a,(r,w) and atomic operator o_. The evolution

of the annihilation operator gives:
a; (r,w) = L {dj, / dgr/ dwhwa’ (r,w)a (r,w) — 0, d BT (1) — d ,E7) (rg) 0| =

— lwa; (r,w) \/ — \/Ime (r,w)e;G' (ro,r,w) deyo_, (2.55)
ey €

where we used the equal-time relations [oc_,0.]| = —0,, [0_,0.] =20_, [04,0.] = =20
and commutation relations for annihilation and creation operators. Now we formally

integrate the last equation over time:

Ime (r,w) w?

t
aj (r,w) = al (r,w) + —e;G' (ry,r,w) degei”t/ dt'o_ (t'") ™" (2.56)
0

hrey 2

where afr (

r,w) corresponds to the free evolution of the annihilation operator, i.e. the
evolution due to free-field Hamiltonian Hgeyq.

Now we can write the Heisenberg equation (Eq. [2.46)) for the atomic operator o_:
0 = —iwyo_ — %azdegE(+) (ro)

7
= — Zu)()O'_ UzdegEfree ( )

t
/ dw / d>r’ —Ima I‘ ,w)de G (ro, r, w) el (ro, v, W) d.,o. () / e (t’) efiw(tft’)J
0

(2.57)

ﬁweo

where in the last line we used result and E
due to the field Hamiltonian _[:Iﬁe]d:

free / dwu/m = d*r'\/Ime (', w)G (1o, v, w) & (v’ w). (2.58)
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To find the spontaneous emission rate, one has to deal with the integral over time, which
appears in Eq. This requires making several assumptions. First, please note that in
the case of a free atom the operator oscillates freely in line with o_(t) = o_(0)e~“°t. If
one assumes that the photonic environment introduces only relatively small modifications
to this evolution, it is reasonable to see the influence of the environment as a certain
envelope upon the free oscillations. Let us define 6_(t) = o_(t)e™°! which in this case
can be assumed to change very little over the time interval where the rest of the integral
is non-zero and which, therefore, can be taken out of the integral at a fixed time t.
An interpretation of this step is that the evolution of the system is affected only by
its present state (the system has no memory). This step is known as the Markovian

approximation [63].

t t t
/ dt'o (t/) e—iw(t—t’) %e—iwot/ dt'e. (t/) e—i(w—wo)(t—t/) ~ & (t) e—iwot/ dt/e—i(w—wo)(t—t/)
0 0 0

=o_(t) /0 t dt'e7 im0t — 5 (¢) {ﬂé (w—wp) +iP (w —lwo)l : (2.59)

where P denotes the principal value of an integral. Using the Sokhotski-Plemelj theorem

we arrive at:

/ dt' '@t — 9565(w — wy) + 20 P ( ) : (2.60)
0

With respect to the integral in [2.59] the upper integration limit is modified from ¢ to oco.

W — Wy

The delta function has a peak at ¢t = ¢/, so we can assume that the correct result of the
integral up to ¢ is only a half of the integral value with the upper limit far above ¢ [63].
Also, we assume that frequencies smaller than zero have no significant contribution to
the integral and we go to —oo with the lower limit in the integral over frequencies in [2.57}

The final equation for evolution of operator o_ reads:

h free

where we introduced the Lamb shift dw and the spontaneous emission rate I':

1 )
o_ = — (in + 20w + §F> o_ — zazdegE(H (r,w) )

ow = P dw deg Im G (I'(), Iy, w) d€g7
0

hﬂ 6002 W — Wo
eg 11 o, T, eg- .
hGoCQ 0,70 0

Using Eq. with the Green’s tensor for vacuum we get the familiar Weisskopf-Wigner

spontaneous emission rate in free space:
372
wodz,

e ——— 2.62
3meghc? ( )

1—‘I/VI/V =

33



However, please note that the expression [2.61]contains much more than just the free-space
value of spontaneous emission, since it allows one to quantify the spontaneous emission

in arbitrarily complicated environments, once their Green’s tensor is known.

2.5 Density matrix

To study incoherent or dissipative processes it is necessary to switch to a statistical
description. Instead of describing the state of the system with a wave function and the
interaction of the atoms with the light field via the Schrédinger equation, one needs to
use the density operator and the master equation.
For a state that can be represented by a state vector |W), the density operator is
defined as:
p=[¥) (Y. (2.63)

Such a state is called a pure state and the information contained in the density matrix
p is equivalent to the one in the state vector . However, the density operator can also
represent an ensemble of identical systems described by statistical mixtures of states. A
state that cannot be represented in the form of a pure state is called a mixed state and

is described in the general form:
p=> PalWa) (T, (2.64)

which reflects the fact that we do not know which of the states |¥,) the system is in and
we assign a probability (weight) P, to each of the |¥,) states in the mixture. Note that
>, Po =1 for proper normalisation.

The physical content of the density operator is more apparent when we compute the
elements p,q of the corresponding density matrix with respect to a complete orthonormal

basis. The density matrix elements are given by:
pacr = (| pla). (2.65)

The diagonal elements p,, are referred to as populations and they give the measurement

probability of the system in the state |«):

paa = {al pla) =] (o] V) *. (2.66)
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The off-diagonal elements p,. (a0 # ') are referred to as coherences, since they give
information about the relative phase of different components of the superposition. If we
write the state vector as a superposition with explicit phases:
U) = Jeale™® |a), (2.67)
(03

then the coherences are:

Paa’ = ’Caco/‘ei(q)ai(ba/)' (268)

2.6 Time-evolution of density operators

The time evolution of a density operator can be described with the Schrodinger-von

Neumann equation:
1
h

However, the point of using density operators is to describe more general evolution pro-

Oip = —= [H, p]. (2.69)

cesses than only those implied by state-vector dynamics. To achieve this, one can use the
more general master equation:

Op = Lp, (2.70)

where L is called the Liouvillian superoperator, which acts on the Hilbert space of density
matrices. The explicit form of the most general Liouvillian operator which preserves the

properties of density matrices during the evolution reads:
1
eolt) = =it po] + X (L] - {LlLp)}). (271)

where H is a Hermitian Hamiltonian, which describes the reversible Schrodinger-like part
of the evolution and L; are so-called Lindblad operators. Inserting this superoperator into

Eq. we arrive at the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) equation:
. 1
() = =ilt.p0)+ 3 (L)} - 5 {2l 00} ). (2.72)

A detailed derivation and discussion of the GKLS equation can be found in Ref. [64L
To fully describe dissipation processes occurring in two-level systems, commonly two

types of Lindblad operator are used:
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e jump operators o;; = |i) (j| describe population transfer from the eigenstate j to
the eigenstate ¢ at some corresponding rate; transfer from higher to lower energy

states is called decay or relazation and from lower to higher is often described as

pumping,

e decoherence operators o; = [i) (7] which lead to the decay of coherences (off-
diagonal elements of the density matrix) without influencing the populations of

the eigenstates.
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Chapter 3

Properties of graphene nanoflakes

3.1 Hamiltonian of pristine graphene nanoflakes

In this Section, we proceed to present the components of the framework, which we use
for modelling graphene nanoflakes. In this Chapter we do not include any adatoms but
instead we start with the description of pristine graphene nanoflakes. The adatoms will
be added to the system in Chapter [4]. Here, we use the second-quantisation Hamiltonian

(Eq. in the simpler single-particle form:

Hrp ==ty () {1+ 1)), (3.1)
(L)

where the Hilbert space spans over sites |[) which can be occupied by an electron. The
Hamiltonian is constructed within the tight-binding approximation, where each carbon
atom corresponds to one site associated with a p, orbital. We assume that an electron can
be exchanged between nearest carbon-atom neighbours with the rate ¢, and (,1’) means
summation over nearest neighbour atomic sites [ and I’. Again, we use t = 2.66¢eV.
Having constructed the Hamiltonian, we can diagonalise it, which gives us the energies
E; and eigenvectors |¢;) of the system. This already provides a lot of information about
a nanoflake - the eigenvalues of equation determine its resonant frequencies. The
eigenvectors let one construct the ground-state density matrix pAau of a flake filled

with a given number of electrons N, according to the Aufbau principle:

Au{bau = Z f] |¢J | (3~2)
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where f; (N.) € [0, 1] is the Fermi-Dirac distribution, which determines how many elec-
trons per spin occupy the state |¢;). Thus defined density matrix is normalised as Trp = 1.

Please note that from now on we can operate in two different bases, in which we can
describe our system. On one hand, we speak about the real-space basis of sites |I), in
which we construct the tight-binding Hamiltonian. On the other hand, we have the basis
of eigenstates |¢;) obtained from the diagonalisation of the Hamiltonian, which we will
also call the energy basis. The two bases are related via a linear transformation with
coefficients aj;:

6 = 3 ault). (3.3)
The coefficients aj; explain how much of a given eigenstate in energy basis can be at-
tributed to charge located on a given site in real space.

The Hamiltonian in Eq. describes connections between the carbon atoms and
in this way contains information about the shape of the graphene flake and its edges.
Now we can investigate how the edge type of a graphene nanoflake can influence its
energy spectrum, which will lead to some interesting conclusions. We focus on triangular
flakes, since they can have a homogenous edge of both entirely armchair or entirely zigzag
character (Fig. . Other flake shapes such as a hexagon or a circle always cause the
flake to have mixed character of the edges (see Fig. . A short overview of possible
triangular flake geometries is shown in table The energy spectra are presented in
Figs. and The energy levels in both cases originate from the quantisation of the
graphene spectrum and thus are contained within +3¢ ~ £8 eV. In the case of armchair-
edged flakes there is always a gap around the zero energy. The gap decreases with the
size of the flake but nonetheless it is always present. In zigzag-edged flakes the opposite
is true - there are always some energy levels present at the zero energy, hence there is no

gap around the Fermi level.
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Figure 3.1: Graphene nanoflakes that have edges of only one type - purely armchair (left panel)

or purely zigzag (middle and right panels).
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Figure 3.2: Graphene nanoflakes that have edges of mixed type. An arbitrary flake shape most
likely has mixed-type edges.
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Figure 3.3: Energies of three armchair-edged triangular graphene nanoflakes of various sizes.
Note that there is always a gap around the Fermi energy, which decreases with the size of the

flake. The energy values are contained in the range between -8 and 8 eV.
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Armchair edge

Number of hexagons on side | Number of atoms in flake | Side length (nm)

2 18 0.71
3 36 1.14
4 60 1.56
5 90 1.99
6 126 2.41
7 168 2.84
8 216 3.27
9 270 3.69
10 330 412
n 3n(n+ 1) 0.426n — 0.142

Zigzag edge

Number of hexagons on side | Number of atoms in flake | Side length (nm)

2 13 0.49
22 0.74
4 33 0.98
5 46 1.23
6 61 1.48
7 78 1.72
8 97 1.97
9 118 2.21
10 141 2.46
n n?+4n +1 0.246n

Table 3.1: Possible sizes and numbers of atoms in armchair and zigzag edge triangular graphene

nanoflakes.
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Figure 3.4: Energies of three zigzag-edged triangular graphene nanoflakes of various sizes. Note

the presence of states located at the Fermi energy.
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3.2 Coulomb interaction in the flake

Knowing the eigenvalues obtained from the diagonalisation of equation allows us to
construct the density matrix of a flake filled with a given number of electrons according

to Eq. 3.2l For a bare nanoflake without doping or adatoms, the resulting ground state

uniform) _ Owl
kKl — N>

in zero temperature gives a uniform charge distribution across the flake (p
where N is the number of sites. In this case, the number of electrons in the system is
equal to the number of sites: N, = N. Note that this does not hold in general - we may
consider electron or hole doping, and later the adatom may introduce a different number
of orbitals and electrons.

The ground state exhibits a uniform charge distribution across the flake only in pristine
graphene flakes. If we add doping electrons, the ground state charge distribution that
follows from the ground state density matrix calculated from the tight-binding states
is no longer uniform. In this case, we expect some Coulomb repulsion in the initially
prepared state, pushing the electrons towards a uniform distribution. On the other hand,
the uniform distribution does not necessarily need to be the lowest-energy state. The
equilibrium state of the system is a result of a trade-off between the two effects, such
that the energy minimisation in the non-interacting system and the Coulomb repulsion
balance each other. This equilibrium state can be found iteratively in a self-consistency

procedure. The procedure described below additionally provides a new basis set, which

is dressed in the Coulomb interaction. It consists of the following steps [65]:

1. For a given graphene flake, diagonalise the free Hamiltonian (3.1]).

2. With the specified number of electrons N, (equal to the sum of the number of
atoms in flake and the number of doping electrons), calculate the density matrix
prubat aecording to the Aufbau principle (Eq. . For an undoped flake at adatom
absence and at zero temperature, the density matrix calculated in this way corre-
sponds to a uniform distribution of electrons among all N sites with, in general,

non-zero off-diagonal elements.

3. Calculate the potential induced by the non-uniformity of charge distribution on the
[-th site:
((I)charge>ll/ = —eNeél,, Z Uik (pAUfbaU»kk _ puniform,kk)
k
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Here, indices k,1,I" correspond to different sites (i.e. carbon sites or later adatom
orbitals). The symbol vy, stands for the Coulomb interaction matrix element be-
tween sites [ and k. For carbon-carbon interactions we employ the values evaluated

in Ref. [66.

4. Construct a Hamiltonian including the induced charge H = Hrp — e®Pcharge- In
practice, to ensure the convergence of the procedure, at each iteration we only

include a fraction of the new induced potential and combine it with the induced

potential from the previous iteration, i.e.. H™Y = Hrp — e(1 — ppiy) ®£ﬁ;;l -
€Prmix @Eﬁ;rge, where ppix € [0,1]. Usually a good choice for pni is in the range
0.1 —0.5.

Steps 1-4 can now be repeated with the new Hamiltonian from step 4, and a new pAufPau

built based on the new Hamiltonian eigenstates. The procedure should be repeated until
self-consistency is reached, i.e. the evaluated charge-nonuniformity induced potential
D charge and the equilibrium density matrix p* from steps 2 and 3 are stable. The "sc"
superscript stands here for "self-consistency".

For flakes which are doped with additional electrons, the energies obtained by using the
above-mentioned procedure differ from the energies of the pure tight-binding Hamiltonian

given by Eq. however the difference is very small (Fig. B.5]). A slight impact of the
self-consistency procedure can also be seen in the real-space charge distribution (Fig. .

3.3 Including external illumination
The external electric field is coupled to the nanoflake using the following coupling scheme:
H (p(t),t) = Hrg — €Peharge — €@ (t) = Hrp — ePcharge + [e(IJEXt(t) — edd (p(t))} . (3.4)

Here,

ON(t) == 1 - B, t) [1) (1] (3.5)

l

is the energy of the external field that arises due to the illumination E(r,t) polarised
in the plane of the graphene flake. In the case of a laser illumination we can use the
quasistatic limit and neglect the spatial dependence of the external field. The summation

goes over all carbon sites [. The Hamiltonian in Eq. depends explicitly on the density
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Figure 3.5: Left: Energy spectrum of a 36-atom (1.14 nm) armchair-edged triangular graphene
flake doped with an increasing number of electrons. Right: Energy spectrum of a 33-atom (0.98
nm) zigzag-edged triangular graphene flake doped with an increasing number of electrons. The
navy lines present the energies after the self-consistency procedure. The red dashed lines in
the background correspond to the undoped case and serve for comparison. In flakes of both
edge types, the self-consistency procedure shifts the states’ energies slightly with respect to the

undoped case.

matrix p. Usually in quantum mechanics we deal with Hamiltonians that do not depend
on p and their evolution equation is linear. The non-linearity in our case is the price which
we pay for including the Coulomb interactions and at the same time keeping a single-
particle Hilbert-space dimension. This allows us to investigate much larger systems than
we would be able to using a many-particle approach with a much larger Hilbert space
size.
As the electric field moves the electrons away from their equilibrium positions, Coulomb
interactions arise, which are accounted for by the field-induced potential:
" (t) = —eNebu > v (prw(t) — i) | (3.6)
7
where the summation goes over the all carbon sites I’. The induced potential is between

one and two orders of magnitude smaller than the external one and has an opposite sign.
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Figure 3.6: Real-space charge distribution in triangular graphene flake of size 2.41 nm doped
with 0, 10, 20, 30 electrons: before the self-consistency pA™Pa" (left), after the self-consistency
p°¢ (middle) and the difference p*¢ — pAt2% (right). Naturally, when there is no doping, the

distribution is uniform and the self-consistent procedure has no effect on the charge distribution.

3.4 Time evolution and dissipative processes

The dynamics of the system is described via the single-electron master equation

9 plt) =~ [H (p(1),1).,p(t)] — D o(1)]. (3.7)

The Hermitian Hamiltonian described in previous sections accounts for the reversible
processes in the system, with the non-linearity related to the inclusion of the Coulomb
interactions. Dissipation effects can be taken into account in the term D [p(t)], which we
consider in one of the two forms described below and refer to as phenomenological and

Lindblad-based approaches. In the following, we discuss their form, underlying approxi-
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mations and compare their advantages and drawbacks.

3.4.1 Phenomenological approach

The phenomenological damping term has a relatively simple form and interpretation [67]:

Dlp(t)] = 5= (p(t) = p*). (3-8)

The model characterises the whole dissipative process with one parameter only: the
decoherence lifetime 7, where the advantage of simplicity comes for the price of several
approximations. Its value can be found from the relation A7~! = 10meV, which is known
from experiments in bulk graphene, being a very good approximation for large flakes [67].
An important advantage of the phenomenological approach is that it forces the system
back into its equilibrium state. By construction, that state includes the information on
the many-electron character of the system: p*@ is built according to the Aufbau principle
which takes the Pauli principle into account so that no more than two electrons are put
in one state.

However, this approach does not indicate how to modify the damping rates for small
flakes of graphene, where the bulk value of 7 does not necessarily have to be the correct
one. Moreover, the stationary state of perturbed dissipative quantum systems results
from a trade off between the excitation strength (here, proportional to the electric field)
and the loss rates. For strong perturbations, saturation effects occur [68]. The field
influence on the equilibrium state is beyond the scope of this approach, which is a good
approximation for strongly dissipative systems, in particular for large flakes, as well as
in the case of moderately strong illumination in the form of pulses shorter than the
relaxation time 7. Another drawback of the phenomenological approach is the fact that
it describes a very specific situation of all transition and decoherence rates being equal,
even for transitions which should be forbidden in flakes with inversion symmetry. Later,
when we include the adatom, this approach will not allow us to modify the dissipation
on the adatom, therefore being a rather coarse description from the atomic perspective

and for weak atom-flake coupling rates t. ,.
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3.4.2 Lindblad-based formalism

A fully quantum-mechanical description of dissipative processes can be achieved through
the use of the GKLS equation (Eq.[2.72)) which involves the superoperator in the form:

N2-1

DIp(0)] = 3 o (LpOL — 5 {1410} ). (3.9)

k=1
L;, are Lindblad operators and to fully describe dissipation in a system of several energy
levels two types of these operators are used: N(N — 1) jump operators o;; = |i) (j| and
N — 1 independent decoherence operators o;; = |i) (i|. In this work we usually consider
transfer from higher to lower energy states and disregard incoherent pumping effects.
Note that each of these dissipation channels is described with an independent rate vy,
that provides us with the possibility to assign different rates to different processes, in
particular to treat the adatom individually, to turn selected channels off, or even to
include pumping with L, — o;; = |9) (j| for i > j. For multilevel systems it was shown
that there are additional, nontrivial constraints on the pure dephasing rates, which can
be found in Ref. |69l

However, there is a strong drawback of the rigorous approach. In the proper quantum-
mechanical form of Eq. we simply have p = p. The equation could then describe
a many-body problem under the condition that it is described in a many-body Hilbert
space. Here, we approach the problem with the single-particle formalism, which has the
great advantage of ability to approximately tackle relatively large systems with hundreds
of electrons. The price to pay is that the Pauli principle is not accounted for in the
master equation. The extreme manifestation of this fact is that the dissipation term
(3.9) without optical pumping pushes all electrons into the lowest-energy eigenstate of
the system, severely breaking the Pauli principle, as shown in the left panel in Fig.[3.7] To
overcome this problem, we have tried several correction methods, which are presented in
detail in Appendix A. Finally, we decided to set p = p— p*“. This choice leads to a similar
type of dissipation as the phenomenological approach described in the previous subsection
but it has some advantages. With the new approach we can separately modify transition
rates between pairs of eigenstates, in particular for the adatom. In practice, we can set
them to the values obtained from dipole moment calculations with the Weisskopf-Wigner
formula. We have tested this method numerically for a great deal of flakes of different

shapes and sizes for various initial states in presence of weak and moderate electric fields,
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i.e. up to 10 V/m and have not encountered any example breaking the Pauli exclusion
principle or cause any problems with the normalisation or positive-definiteness of the

density matrix.
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Figure 3.7: Comparison of the dissipation in a benzene ring (6 atoms) which initially has the
HOMO-LUMO transition excited using the a) uncorrected Lindblad method (p = p) and b) the
corrected Lindblad method (p = p — p®¢). The energy levels of the benzene ring are labelled
with colours, as shown in the small plot in the upper-left corner of the subfigures. There is no

external field nor doping.

3.4.3 Dissipation rates in small systems

Using the large decoherence rate of bulk graphene is justified for large flakes. However,
in general the decoherence rate scales with the size of a quantum system and we ex-
pect it should be reduced for small flakes to prevent unphysically large damping. In this
subsection, we investigate conditions in which the two approaches described in the pre-
vious subsections converge to the same dynamics, both on the analytical and numerical
grounds. This will help us to understand how the decoherence rate 7!, which is known
from bulk graphene, should be modified for small flakes of graphene.

The phenomenological approach describes a specific situation in which all transition
and decoherence rates are equal. The second approach is more complex, as the model
contains many more adjustable parameters. We compare just the dissipative part and
omit the Hamiltonian-evolution term which is equal in both methods. The first approach,

given by Eq. [3.8] is very straightforward to analyse and yields:
1

Pij =5 Pij- (3.10)
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Figure 3.8: A graphical demonstration of transitions which will be modelled in a system of
several energy levels. We only include transitions from higher energy levels to lower energy

levels, which are driven by jump operators |i) (k| and |7) (i].

In the second case, let us first consider only jump operators:

pu =i [Z v () 413160 U1 = 5 18) (k17 = 510 <k|)] i) =
=3 (3 (6 1K) = 30 (h1 1) = 5 €118} 6] =

j?k

. 1 P | G oAt
:Z%k (k| plk) — 52%‘1 (1 pli) — QZ%" (il pli) =
k J J
:Z%kﬁkk - Z’inﬁii~ (3.11)

k>i j<i
If we assume that all emission rates in the equations above are equal, i.e. v, = 7 for
any pair of states |k) and |l) where Ej > E; (for spontaneous emission we only include
transitions from higher energy states to lower energy states as shown in Fig. , this
result can be written in the form:
N
pii === Vpa+7 > prk. (3.12)
k=i+1
Similarly, one can obtain evolution equations for the off-diagonal density matrix terms:
. v .
pig = =5+ = 2)pij. (3.13)
An analogous calculation for the decoherence operators shows that they do not influ-

ence the diagonal elements of the density matrix:
pii =0 (3.14)
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and the off-diagonal terms are modified similarly as in the case of spontaneous emission:

) v .
pij = —5(1 + 7 = 2)pij- (3.15)

If we restrict ourselves to the case of undoped or weakly doped flakes, we can assume

that the majority of the dynamics happens around the HOMO-LUMO gap, hence the

N
important case is 7, j ~ 5" If the flake is sufficiently large we have i, j > 1 and therefore

14+ j—2~ i+ 7~ N. The diagonal elements above the LUMO state are most likely not
occupied. Then, we can approximate Eq. with:

. Ny
Pii = =5 Pii (3.16)
and Eq. gives approximately:
. Ny

From the comparison of Eqs. and one can then find the relation between 7 and

v:
1

T:m.

(3.18)

In general, we expect similar evolution from the phenomenological and Lindblad ap-
proaches if we set the rates 7 and ~, such that they satisfy Eq.

Note that the number N is limited by the coherence length [.,, in graphene. In

2

low temperatures, leon ~ lpm |70, [7I]. Only atoms which are located in the area wlZ

contribute here, such that the number of atoms contributing to the emission N, o Tl2, .
Assuming that the transition rate in bulk is a sum of the contributions on particular
atoms, we get that the emission rate on one atom 7, = 7/Nen. These single atom
contributions sum up to the collective decoherence rate v in bulk. In smaller flakes with

: 2
sizes below 72, ,

where N < Ngon, the value of 7 should be then rescaled linearly with
the number of atoms N/Ncop.

Now we will verify formula for small flakes prepared in a state with the HOMO-
LUMO transition excited (i.e. one electron transferred from HOMO to LUMO as com-
pared to the ground state). We investigate the spontaneous emission and decoherence

by changing corresponding ~ values. The decoherence rate is given relatively to the
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spontaneous emission rate. In Fig. the results obtained numerically from the phe-
nomenological dissipation method are compared to results obtained using the adjusted
Lindblad dissipation. The difference between two evolutions was estimated using the

following formula:

1
A= th Z |pii,Lindblad(tm) - pii,phenom.(tm)| . (tm—H - tm)a (319)
where t,, denotes the m-th time step and T the total propagation time.
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Figure 3.9: The plots show the difference between the phenomenological dissipation and the
Lindblad dissipation calculated from the occupations in the energy basis (left panel) and in
the site basis (right panel). In subfigures a) and b) the results are shown for a 6-atom flake -
benzene ring. In subfigures ¢) and d) the results are shown for a 18-atom flake. The decoherence
rate is given relative to the chosen spontaneous emission rate (so decoherence rate = 1 means

decoherence rate is the same as the spontaneous emission rate).

One can see that the best v value to reproduce the phenomenological evolution for a
benzene ring lies around 6% (Fig. [3.9), which would agree with the prediction in Eq.[3.18
Similarly, for the flake which contains 18 atoms, the optimal v seems to lie in the range
% - ﬁ This relation does not depend on the choice of 7. In this way we have verified
that formula [3.18| provides a fair estimate of the relation between v and 7 also for small
flakes. The assessments made in this section confirm the intuitions that decoherence rates

are smaller in smaller systems and gives an idea about their orders of magnitude.

3.5 Absorption spectra

At this stage we are able to calculate absorption spectra of graphene nanoflakes. This
is of high importance, since the absorption spectrum is a quantity which can be directly
measured in experiments. There are two ways in which we can calculate the absorption

spectrum of a graphene nanoflake:
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1. Based on the possible transitions between eigenstates [72, [73]:

0" (W) o< Y (Ep = E) | (f|x|i) [ 6 (By — B — hw), (3.20)
if
where (E; — E;) | (f|r]i) |* is the oscillator strength of the transition from state |¢)
to | f) and the summation goes over indices i € [1, #HOMO] and f € [#LUMO, N].
nonint

This method neglects the Coulomb interactions in the system, therefore o is

also called the non-interacting absorption cross-section.

2. By illuminating the structure with a short spectrally broad pulse E(t) = E(t)é;
(i € [z,y]). In the extreme case of E(t) ~ d(t) this corresponds to exciting the
nanoflake with all possible frequencies simultaneously. Then one can record the
resulting dipole moment P(¢) and after taking the Fourier transform of E(t) and

P(t) calculate the frequency-dependent polarizabilities «; ;(w) according to [74]:

Py(w)
(W) = 7 3.21
where i, j € [z, y]. The absorption cross-section is then proportional to:
J}Ht(w) x wlm (o ;(w) + ay j(w)) - (3.22)

The numerical implementation of these equations has been performed by our co-workers
from the Institute of Theoretical Solid State Physics at Karlsruhe Institute of Technol-
ogy (special thanks to prof. Carsten Rockstuhl and to Marvin Miiller). The analysis of
absorption spectra has proven to be an important tool for classifying resonances in nanos-
tructures. The framework which is presented in this section has been used to explore the
problem of distinguishing between plasmonic (or more generally interaction-mediated)
and single-particle-like resonances in graphene nanostructures. It has been an important
tool in the creation of the energy-based plasmonicity index, which is one of the measures
for resonance classification in nanostructures. More details on this subject can be found
in Refs. |40, [75.

Figure presents the absorption spectra for triangular graphene nanoflakes of
varying size. Both for armchair- and zigzag-edged flake we observe that as the size of the
nanoflake grows, the energies of its resonant absorption peaks decrease and their intensity

increases. This result is in agreement with the energy plots presented in Figs. [3.3]and [3.4]
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Figure 3.10: Exemplary non-interacting absorption spectra for triangular graphene nanoflakes
of various sizes and edge-type character. Upper panel: armchair-edged nanoflakes. Lower panel:

zigzag-edged nanoflakes.

In the non-interacting approach, the absorption peaks correspond to transitions between
pairs of eigenstates, therefore the decreasing energy gap around the Fermi level directly
leads to lower resonant energies in larger flakes. Figure [3.11] presents a comparison of
the interacting and non-interacting spectrum for a triangular armchair-edge graphene
nanoflake with 18 atoms (size 0.71 nm). The left subfigure shows the interacting spectrum,
which takes into account Coulomb interactions in the system, and the non-interacting
spectrum, in which the Coulomb interaction is neglected. The relation between these
two spectra is explained in the right subfigure. It shows how the absorption spectra vary
as the Coulomb interaction strength in the system is gradually scaled by a factor in the
range from 0 to 1. This reveals a continuous transition from the non-interacting (scaling

factor = 0) to the interacting (scaling factor = 1) case.
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Chapter 4

Properties of graphene nanoflakes with

adatoms

The most general form of our model describes the dynamics of a graphene nanoflake with
an adatom, illuminated with external electromagnetic field. In this Section, we will follow
a similar path as in Chapter 3] this time concentrating on how to incorporate the adatom
(modelled as a two-level system) into our framework. We start with the tight-binding
Hamiltonian of the hybrid system consisting of the flake and the adatom. The adatom
introduces charge inhomogeneity and modifies Coulomb forces in the system, which proves
the self-consistency procedure especially useful in this case. After including the external
illumination in the Hamiltonian, we look closely at the time evolution, exploring both
processes in the two-level system, such as Rabi oscillations and spontaneous emission,
and properties of the entire system, like absorption spectra and their dependence on the

adatom position.

4.1 Hamiltonian of graphene nanoflakes with adatoms

The field-independent part of the Hamiltonian
Hrg ==t (1) U1+ 1) )+ D Eala) (al + > tay (D) (] +]a) (1)) (4.1)
@) o ol
is constructed in the tight-binding approximation, similarly as in Chapter |3| for stand-

alone graphene nanoflakes. Again, we assume that an electron can be exchanged between

nearest carbon-atom neighbours with the rate ¢t and (l,{’) means summation over nearest
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neighbour atomic sites [ and I’. The adatom introduces several orbitals labelled by «,
whose energies F, are evaluated with respect to the on-site energy in graphene, e.g., by
comparison of ionisation energies in graphene and of a given atom orbital. Electrons can
be exchanged between the adatom orbitals and selected flake sites, and the corresponding
hopping rate is denoted as t,;. We keep ¢t = 2.66eV as the hopping parameter between
the neighbouring sites in graphene. We consider adatoms bonded to graphene in the top
position, as shown in Fig. [L.§

The hopping rates between the adatom orbitals and carbon sites ¢,; generally depend
on the adatom parameters. We leave these parameters unspecified in order to keep the
approach general and characterise the scope of possible physical effects achievable within
the model, rather than investigate specific adatoms. However, in the next section we
investigate the relation of the hopping rates with the distance to the coupling site, to
provide intuitions about the orders of magnitude for relevant distances. Adatom - flake
hopping rates set to zero t,; = 0 correspond to an infinite distance and the absence of

coupling.

4.2 Relation of model parameters and adatom distance

Throughout this thesis, we do not specify the adatom type exactly but rather study the
scaling of effects with the hopping parameters between its energy levels and the graphene
flake. Here, we provide an estimate of adatom distances to the coupling site of the
graphene flake that correspond to given hopping rates.

If we take pristine graphene and shift one particular carbon atom by some distance,
we can model the hopping rate value as following a quadratic relation of the form: ¢’ =
t-(ac/1)?, where t' is the hopping rate between the shifted atom and its nearest neighbour,

ac. is the carbon-carbon distance in graphene (which is related to the lattice constant as

Qe = ﬁ ~ 1.42A) and [ is the distance from the shifted atom to the nearest carbon
atom in the modified lattice [76].
We assume that the hopping rates between the graphene sites and the adatom states

follow a similar relation which is a good approximation for small distances. This allows
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has carbon-type orbitals, i.e. 8 =1 and a = ac,.

us to estimate the distance between the adatom and flake based on the hopping value:

l = ﬁCL E, (42)

where a is the distance, at which the hopping parameter t, = ¢ for a carbon atom and
[ is a constant, which accounts for the choice of a different adatom type than carbon,
in particular with a different orbital type than p,. For carbon 5 = 1. The left panel in
Fig. [.1] shows the relation of the distance [ to the hopping parameter ¢, for an adatom

with carbon-like orbitals, such that 5 =1 and a = a..

4.3 Coulomb interaction on the adatom

Since the Coulomb interaction is inversely proportional to distance, it depends on the
hopping rate ¢, in the following way: v o aL %‘* We include the Coulomb interaction
modification in the matrix v by scaling the elements corresponding to the adatom sites

by a coupling-dependent term:
_ Unn la
=3 s

Upn = 8.64eV denotes the equilibrium Coulomb interaction value for nearest

Val

(4.3)
where e?

neighbours in graphene [66]. The resulting relation of the coupling constant ¢, on distance
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and its relation with the Coulomb interaction strength is shown in the right panel of
Fig. [4.1]

Another noteworthy fact is that the adatom introduces two sites at the exact same
location. So the on-site influence on these sites should arise from both of them, contrary
to the situation on the rest of the flake where the on-site element only arises from one site.
Therefore, on the diagonal of v, we impose the on-site value e*v,s = 16.52¢eV [66] on the
entire 2 x 2 part which corresponds to the adatom sites, s.t. vy = Vee = Veg = Vge = Vos.

Note that the proposed scaling guarantees that the Coulomb interaction between the
adatom and a graphene flake disappears as the flake is moved to infinity (i.e. when

to — 0).

4.4 Enmergy spectra of nanoflakes with adatoms

In this section, we look at the possible energies of graphene nanoflakes with adatoms.
We also investigate how the energy spectra change while the flake and the adatom are
coupled to each other with increasing coupling strength. We focus on armchair-edged
triangular nanoflakes and adatoms with two energy levels: an excited state with energy
E, = 0.5eV and a ground state with energy I/, = —0.5eV.

Knowing the Coulomb interaction between the adatom and the flake, we can now
proceed to perform the self-consistent procedure described in which gives us a new
dressed basis set, that includes the initial Coulomb interaction. Note that the Coulomb
interaction values on the adatom need to be modified accordingly, as described in the
previous section. The resulting energy spectra and real-space charge distributions are
shown in Figs. [4.2] and In Fig. we present the dependence of the energy
spectra on the hopping parameters t., t, (here assumed to be equal) for two different
nanoflakes. As expected, we can explicitly see that the eigenstates of the nanoflake which
mix with the adatom eigenstates most strongly are also the ones which change their
energies the most when we increasingly couple the adatom to the nanoflake. Moreover,
the same figure shows that the presence of a strongly coupled adatom can produce states
that have energies outside of the [—8,8] eV range. Shifting up or down the excited and
ground adatom levels breaks the electron-hole symmetry in the energy spectrum of the

system, as shown in Fig. In particular, the energy differences between the energy

o8



levels are not symmetric around the zero energy anymore. This causes a splitting of the
originally degenerate peaks in the optical absorption spectrum, leading to a more complex
optical response. For the zig-zag triangle and an adatom with symmetrical energy levels
+0.5 eV, there are two degenerate eigenstates corresponding to the energy 0 eV that do
not move with increasing ¢, and t,. One of these states, however, couples to the adatom,
whereas the other does not, hence the multi-coloured line at 0 eV. When the adatom
energies are not symmetrical around zero, the degeneracy of these states is lifted. Then,
one of the zero-energy states lowers its energy with increasing coupling to the adatom
and the other remains in place.

In Fig we can see that a pristine graphene flake has uniform charge distribution.
As expected, when the coupling between the graphene flake and adatom is increased,
a higher fraction of the charge becomes exchanged between the two subsystems. The
biggest perturbation is located in the vicinity of the adatom and the influence on the
carbon atom located further than 1 nm away from the adatom is negligible.

In Fig. we present energy spectra of a nanoflake with an adatom and doping.
Again, the adatom has a dominant impact on atoms which are located near it. However,
now the perturbation is extended across the entire nanoflake, which can be clearly seen
in the case of 30 doping electrons. Although the adatom adds only one new electron
into the system, the symmetry breaking is enough to affect the charge distribution in the

entire nanoflake.
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where e and g denote the excited and ground adatom sites, and aj; is defined via Eq. @
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4.5 Eigenstate symmetry breaking due to the adatom

The real-space distribution of eigenstates of a free triangular armchair-edged flake consist-
ing of 60 atoms (1.56 nm) is presented in Fig.[1.6] Each subfigure presents one particular
eigenstate ¢; with the energy F; indicated in the upper-left corner. The quantity which
is shown for each eigenstate ¢; is the absolute value of the amplitude |a;;| as defined in
Eq. In general, states with energies +F; have the same probability distribution |a?|
but the exact amplitudes aj can vary by a phase factor. In Figs. to the phase
factor is omitted for the sake of clarity. Figures which contain the full information about
the amplitude, including the sign, can be found in Appendix B (Figs. [B.6).

First, let us look at eigenstates of the 60-atom nanoflake without the adatom attached.
It is worth noting that not all eigenstates have threefold symmetry. Even though it might
seem wrong at the first glance, it is not a problem. In fact, after a careful examination
one can see that only states that correspond to degenerate energy levels do not manifest
this symmetry. For any chosen energy value a superposition of corresponding eigenstates
can be constructed which is symmetric with respect to 120° rotations and, therefore, no
particular direction is preferred in the real world.

Locating the adatom near the flake causes a perturbation in the symmetry of the
system and leads to symmetry breaking in the eigenstates. The distribution of charge in
the eigenstates in real space for triangular graphene nanoflakes with a coupled adatom is
shown in Figs. 1.7 and

The adatom introduces two new eigenstates, namely the states which appear at
+0.34eV for t. = t;, = 2eV and at +£0.18¢V for t. = t, = 5eV. These states origin
at the ground and excited adatom states with energies +0.5€eV at the absence of coupling
and gradually hybridise with flake states as ¢, and ?, increase, which correspondingly
shifts their energies. These states become the new HOMO and LUMO of the system and
therefore are crucial for the optical properties of the system. The states which are located
directly below HOMO (—1.11¢V) and directly above LUMO (1.11eV) do not couple to
the adatom states and consequently, their energies remain unchanged when the adatom
is present. Here, we only present visually the results for a 1.56 nm nanoflake, since the
number of eigenstates is not too large and it is convenient to analyse with the bare eye.
This finding, however, is a general observation which is true for HOMO-1 and LUMO+1

states in graphene nanoflakes of various sizes and shapes.
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Figure 4.8: Distribution on sites in real space of eigenstates of a 60-atom (1.56 nm) armchair-
edged triangular graphene nanoflake with an adatom attached in the lower-left corner of the
nanoflake (location denoted with an X mark) with coupling strengths ¢, = t; = 5eV. The phase

factor is neglected for clarity.

We can also note that in the states which are initially degenerate attaching the adatom
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causes one state of the pair to couple to the adatom states and change its energy, while
the other state remains unaffected. Hence, attaching the adatom lifts the degeneracy of
states. States which in the solo graphene flake correspond to degenerate energy values
and can be combined to form three-fold symmetric states with the adatom become non-
degenerate states with approximate two-fold symmetry, e.g. for the case of the coupling
strength t. = t, = 2eV the states at £5.41eV, £5.29¢eV and £2.32eV. This finding is
also true in zigzag-edged nanoflakes. Moreover, the investigation of zigzag-edged flakes
suggests that when there are multiply degenerate states (more than two eigenstates per

energy), still only one eigenstate couples to the adatom states and the other states remain

unchanged (see Figs. B.1] [B.2|and [B.3|in Appendix B).

4.6 Including external illumination
The external electric field is coupled to the nanoflake, similarly as in Chapter
H (p(t),t) = Hrp — €@charge — €@ (t) = Hrp — ePeharge + [H™(t) — e@™ ()] . (4.4)

Here,

H™ () = =) ery-B(r,t) [L) (L] = dey - E(r,2) (le) {g] + |9) (¢]) (4.5)

is the energy of the external field that arises due to the illumination with an electric field
E(r,t) assumed to be polarised in the plane of the graphene flake. The capital letter L
denotes a joint summation index L = {[,a} going over the carbon sites [ and over the
adatom orbitals a. The graphene flake and the adatom are treated at the same level
of approximation. We explicitly take the flake’s spatial structure into account through
the summation over the sites. Each carbon atom site is, however, approximated as a
point, and so is the adatom. The internal structure of the adatom is taken into account
through the transition dipole moment operator d.,. The last Hamiltonian term describes
transitions induced by the external field between the ground and excited states of the
adatom.

As the electric field moves the electrons away from their equilibrium positions, Coulomb

interactions arise which are accounted for by the field-induced potential:

dd (1) = —eN, k1 Z oLy (pr(t) — P (4.6)
L
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Figure 4.9: Distribution of the z-components (left) and y-components (right) of the electric field
that is induced around an 18-atom graphene nanoflake due to an external illumination polarised
either in z-direction (upper panels) or in y-direction (lower panels). The locations of graphene

sites are marked in the figures as thin green circles.

where the summation goes over the all carbon and adatom sites L = {l, a}.
Finally, we add to our Hamiltonian a term coming from the fact that when the exter-
nal electromagnetic field excites the electronic charge density, the electrons respond by

oscillating and thus generate an induced electric field [77]:

1 Qlt rr—r
Eind (t7r):M Z L:

leflake

4.
E—F (4.7)

where Q;(t) = N, (pu(t) — pjf) is the charge induced on the [-th site at time ¢. This field
is added to the illumination in the Hamiltonian.
Depending on the location of the adatom with respect to the flake, the induced field

can either enhance the effect of the external field or be opposite in phase and reduce
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its impact. The distributions of the induced fields for an 18-atom graphene nanoflake
illuminated at the frequency 1 €V are shown in Fig. [£.9 The colorbar is centred such
that white colour indicates spots where the induced field is equal in amplitude to the
external field, and blue regions show where the induced field is weaker than the external
one. The induced field dominates the external field in the red and pink regions, i.e.
at distances up to 3 A from the flake. The dominant component of the induced field
is always the one whose orientation is in agreement with the external field orientation.
However, since we show the near field, also the perpendicular component of the induced

field is present.

4.7 Time evolution

The local enhancement of the electromagnetic field around nanostructures, such as graphene
nanoflakes, produces extremely strong light-matter interactions, on the order of hundreds
of THz. Because of this, placing a two-level system near a graphene nanoflake will greatly
enhance the intensity of its spontaneous emission. This is an optical channel for the
interaction of the graphene flake with an adatom. On the other hand, the extreme elec-
tromagnetic fields are strongly localised and the emitter has to be located at a very small
distance from the nanoflake to experience the effects of its presence. At distances below
0.5nm the tunnelling effects become important |78, meaning the hopping of electrons ¢,
between subsystems has to be taken into account. In this Section, we explore the impact
of the electron hopping effect between the adatom and the nanoflake on coherent (Rabi
oscillations) and incoherent (spontaneous emission) processes in the two-level system, and

compare it to the influence of the optical mechanism.

4.7.1 Modification of Rabi oscillations

We will apply the formalism presented above to the case of a single two-level adatom
coupled to a selected site of a graphene flake, illuminated with an external laser beam.
First, we study how the coherent Rabi oscillations between the adatom eigenstates are
modified by the presence of the carbon flake. The time evolution of the density matrix
is again described via the master equation similarly as in Section [3.4 In this section,

we focus only on reversible Hamiltonian dynamics, assuming that there is no dissipation,
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i.e. Dp(t)] =0.

One of the canonical systems discussed in quantum optics is an atomic two-level
system subject to external illumination. Its population undergoes sinusoidal Rabi oscil-
lations between the ground and excited states, as described in Chapter |2l The population

oscillation amplitude is equal to 1 in the case of resonance, and the oscillation frequency

1
(called Rabi frequency) reads as §2 = ﬁE - dgy, where E is the external and induced

field amplitude at the position of the two-level system and d., is the transition dipole
moment between the ground and excited adatom states. Below we study how the generic
Rabi oscillations are modified for different coupling strengths between the adatom and
the flake. We focus on armchair-edged triangular nanoflakes of sizes 0.71 nm and 2.41
nm, respectively with 18 and 126 carbon atoms. The adatom is a two-level system with
energy states 0.5 eV and -0.5 eV and a dipole moment of 7.5D. The value of the dipole
moment has been chosen such that for moderately strong fields we can observe the Rabi
oscillations happening on a similar time-scale as the dissipation in bulk graphene (which
happens with a lifetime 7 = 100 i/eV). We assume for simplicity that both adatom levels
are coupled to the graphene flake equally strongly, i.e. t. = ¢, for all simulations presented
in this section. The investigated hopping parameters ¢, and t, are in the range from 0 to
5 ¢V, which corresponds to distances starting from 1 A according to the selected model

(see Fig. . The external field has an amplitude of 0.05% and is vertically polarised.

Dipole moment change due to state mixing

At first, we neglect the electron-electron Coulomb interactions in the system for the sake
of clarity. This allows us to see the basic effect happening in the adatom as it is coupled
to the flake with increasing strength - the change of frequency of the Rabi oscillations
between the HOMO and LUMO states.

For the parameters given above, we find that the stronger we couple the adatom to
the graphene flake, the lower frequency of Rabi oscillations it exhibits when illuminated
resonantly (Fig. [£.11). This can be explained by the fact that the dipole moment of the
adatom has been set to a relatively large value. In the graphene flake, the transitions
between its eigenstates have lower dipole moments, up to 5 Debye or none at all. When we
move the adatom closer to the graphene flake, the eigenstates of both systems mix and the

dipole moment between HOMO and LUMO states is decreased with respect to the original
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dipole moment in the adatom. In Fig. [1.10] we present the change of the transition dipole
moment between the HOMO and LUMO states in an 18-atom armchair-edged triangular
nanoflake due to the coupling of an adatom with increasing strength. Since the Rabi
frequency of oscillations depends on the transition dipole moment between the states
which exchange population, it will also decrease with increasing coupling of the adatom.
This is presented in Fig.[4.11] The energies of the HOMO and LUMO states in the hybrid
system consisting of a nanoflake and an adatom change with increasing coupling of the
adatom, as was shown in Fig. We chose the right illumination frequency for each
value of t. and t,, so that it is resonant to the HOMO-LUMO transition.
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Figure 4.10: Change of the dipole moment in an 18-atom armchair-edged triangular nanoflake
due to the coupling of an adatom with increasing strength ¢, = ¢, and the resulting eigenstate

mixing of both subsystems.
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Figure 4.11: Rabi oscillations. Occupations in energy basis in an 18-atom flake with an adatom
coupled with a) t. =t, =0.5eV b) t. =t, =2.0eV ¢) t. =t;, = 3.5eV. The HOMO and LUMO
states exchange population. The population of other states remains nearly constant in time.
Here, the Coulomb interaction is neglected. The illumination frequency is always resonant to

the HOMO-LUMO transition frequency.
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Now, let us fix the illumination frequency to be constant and equal to the energy
difference between the ground and excited level of an uncoupled two-level system. As the
adatom is increasingly coupled to the flake, the energy structure of the system is modified
but the illumination frequency does not adjust to it, so that in this case detuned behaviour
is expected. In fact, we observe increased Rabi frequency and lowered amplitude of

oscillations, as shown in Fig.

d te=t,=05eV e t.=1;=20eV f o le=tg=35eV
g 2 oif-resonant HOMO (-0.48 ¢¥] off-resonant HOMED (-0.33 e L si-ressaand  HOMO (-0.25 eV)
= dluminatian Wl {0 e} Wlumination LUMD [0 15 e Hiwmination UMD {025 &
al L e L] ] et
G
'E:JD 0 i, B sie O . W [ =T
0 20 40 0 20 40 0 20 40
time [h/eV] time [h/eV] time [A/eV]

Figure 4.12: Rabi oscillations. Occupations in the energy basis in time for a 18-atom flake with
an adatom coupled with a) t. =t, = 0.5eV b) t. =t;, =2.0eV ¢) t. =t,; = 3.5eV. Here, the
Coulomb interaction is neglected. The illumination frequency is fixed and equal 1 €V in each

case.

Finally, we include the electron-electron interaction and look again at the time evo-
lution of the hybrid system consisting of the triangular armchair graphene flake and the
two-level adatom. The Coulomb interactions depend on time and modify the Hamil-
tonian differently at each timestep. Therefore, the energy levels change accordingly in
time and there is no particular illumination frequency, which would be resonant to the
HOMO-LUMO transition at all times. We thus expect a detuned and more irregular be-
haviour than without the Coulomb interactions. However, we are still able to reproduce
Rabi oscillations when illuminating the system with a frequency which corresponds to
the HOMO-LUMO transition in the system without any external illumination. As com-
pared to the previous cases, these oscillations are modified by the Coulomb interaction,

especially in the case of stronger coupling of the adatom (Fig. [4.13)).

Change of field amplitude due to the field induced by the flake

Under external illumination, the electric charge in the flake oscillates and generates an

additional induced electric field, which should be included in the time evolution. Since
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Figure 4.13: Rabi oscillations. Occupations in the energy basis in time of an 18-atom flake a)
te =t; =0.5eVDb)t. =t; =20¢eV c) t. =t; = 3.5eV. The illumination frequency is resonant
to the transition frequency between HOMO and LUMO states of the system before illumination.

the Rabi frequency depends on the field amplitude, it will change due to the change of
the field amplitude by the flake. Depending on the sign of the induced field, it can either
increase or decrease the Rabi frequency. For the chosen position of the adatom, the optical
effect (induced field impact) is negligible compared to the effect of the electron exchange
between the flake and the adatom. The effect would be stronger if one positioned the
adatom in regions where the induced field is equally strong or stronger than the external
field (like in the reddish regions in Fig.[4.9). However, then the evolution becomes erratic

and a much smaller integration step is required to perform calculations.

Evolution in larger flakes

In general, the shift of Rabi frequency with increasing adatom coupling strength looks
similarly in larger flakes. First, we look at two adatom positions - near the centre of the
flake and near one corner of the flake - and find in both cases that the Rabi oscillations
are distorted in a similar manner as for the 18-atom case. The dynamics in energy basis
for both adatom locations and HOMO state distributions are presented in Figs.
and

Even though the details of the evolution are different, the three distinct cases are
similar as for the smaller flakes. For small values of ¢, and ¢, we can see slightly mod-
ified Rabi oscillations, large values of t. and ¢, cause detuning and the evolution in the
intermediate regime is irregular.

A natural question which arises in larger flakes is whether the position of the adatom
affects the behaviour of the system. To investigate this, twelve different adatom coupling

sites were chosen along two axes and labelled with letters A-I., as shown in Fig. [£.17]
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Figure 4.15: Rabi oscillations in a 126-atom flake with the adatom attached near the centre of

the flake with a coupling strength of a) t. =t;, =0.5eV b) t, =t; =2.0eV ¢) t. =t,; = 3.5€V.
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Figure 4.16: Real-space distribution of the HOMO state in a 126-atom flake with the adatom
attached with a coupling strength of t. =t, = 2.0€V a) near the edge of the flake, b) near the
centre of the flake. The occupation on adatom sites is marked by the two dots on the left (upper
dot - excited state, lower dot - ground state). The location of the adatom is denoted by the
black X mark.

We focus on the case of t. = t, = 2eV, since this is a coupling strength which lies in
the intermediate regime between the resonant and detuned Rabi oscillations. The energy

basis dynamics is presented in Figs. One can note that the time evolution depends
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Figure 4.17: Atom labelling.

to some extent on the adatom’s position but further research is required to precisely

determine the impact of the adatom’s location on the evolution of the system.

4.7.2 Spontaneous emission

An excited atomic system can spontaneously decay from an excited state into a lower-
energy state, while simultaneously releasing energy into the surrounding environment.
The rate of this emission depends on the properties of the environment. The enhance-
ment of spontaneous emission rates of atoms upon coupling to environment was discovered
by Edward Purcell and is hence called the Purcell effect [79]. A strong Purcell effect can
be observed in atoms in weakly coupled cavities and in emitters located near plasmonic
nanostructures, which are able to confine the electromagnetic field into very small vol-
umes [80]. In this section, we investigate how the graphene nanoflakes influence the
emission rates in adatoms which they are coupled to.

We exploit the Green’s tensor formalism, with the decay rate given by Eq. The
Green’s tensor can be decomposed into the homogeneous part GGy and the scattered part
Gs: G = Gg + G, which in turn allow us to rewrite the decay rate as a sum of two
corresponding contributions I' = Ty + Ty, involving either Gy or Gy in Eq. 2.61] In free
space, the scattered part of the Greens tensor vanishes and so does the scattered emission
rate. The homogeneous part of the tensor leads to the Weisskopf-Wigner formula [2.62]
describing the spontaneous decay of a system with a given transition frequency and
dipole moment. Below, we investigate the influence of electronic interactions between the

adatom and the flake on the homogenous spontaneous emission rate which occurs due
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Figure 4.18: Occupation of energy states in time in a 126-atom graphene nanoflake with the

adatom attached at sites A-L (see Fig. .
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to modification of these two parameters, as w4 is replaced by wrg being the frequency
difference between the LUMO and HOMO states, and similarly as the dipole moment dg4
is replaced by the gradually modified dg.

On top of that, the field of our dipole emitter, to a good approximation localised at
the adatom position, is scattered by the flake giving rise to the scattered Green’s tensor
component G4 and the corresponding emission rate component ['.

Below, we analyse these effects one by one. First, we investigate the electronic mech-
anism by first attaching the adatom to the nanoflake and calculating new eigenstates
of the combined system, whose energies are changed with respect to the energies in a
pristine graphene nanoflake without adatoms (conf. Fig due to the exchange of elec-
trons between the two subsystems. The next step is the evaluation of transition dipole
moments and frequencies between pairs of eigenstates in the system and then using the
Weisskopt-Wigner formula for spontaneous emission.

The optical enhancement of emission rates can be calculated based on the evaluation
of the scattered Green’s tensor arising in the dipole illumination scheme. We perform
this calculation twice. First, we neglect the effects of electronic coupling by setting
te =ty = 0 and keeping the adatom dipole moment and frequency unmodified regardless
of the distance to the flake. Please note that this calculation reflects the classical approach
widely used in plasmonics, where the Purcell enhancement is quantified via the scattered
field intensity at the emitter’s position.

The final calculation extends this approach and includes both the optical and the
electronic effects: the scattered Green’s tensor is evaluated for a system with the modified
transition dipole d g and frequency wr . This step-by-step method allows us to compare

different contributions and estimate their impact for different adatom-flake distances.

Electronic influence on the spontaneous emission rate

To calculate the spontaneous emission rate modification caused by the electronic mech-
anism we start by evaluating transition dipole moments between energy states from the

formula:

d;; = (¢ilr[¢;) . (4.8)
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Putting Eq. [3.3]into Eq. [4.8 we obtain:

d; = (Z ag <l|> er (Z ajk |/€>> = apaz (I er|k) =) eajazdn =Y aja;.
l k Lk Lk 1
(4.9)
As before, the resonant frequency w;; is evaluated by diagonalisation of the tight-binding
Hamiltonian which describes the adatom and flake. Now we have all the quantities which
are necessary to evaluate the spontaneous emission rate in the system with the use of the

Weisskopf-Wigner formula [2.62

wi;dy;
L'(¢; — ¢i) = Srechd (4.10)

where I' (¢; — ¢;) is the transition rate from state |¢;) to |¢;). The dependence of the
spontaneous emission rate on the distance between the nanoflake and adatom is shown
for two triangular nanoflakes in Fig. f.19} The coupling strengths ¢, and t, have been
evaluated based on the distance using Eq. with § = 1.

4
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Figure 4.19: Dependence of the spontaneous emission on the distance from two triangular
armchair-edged graphene nanoflakes consisting of 36 atoms (left panel) and 126 atoms (right
panel) computed from the transition dipole moment and frequency modification of the HOMO-
LUMO transition due to the electronic coupling of the adatom with the flake. The dipole moment
in the uncoupled adatom was set to dey = 0.01 eA= 0.05D.

Optical influence on the spontaneous emission rate

To evaluate the spontaneous emission rate arising from the optical mechanism, we illu-
minate the nanostructure with a dipole field source of a given orientation located at the

position of the adatom r,q and propagate the entire system in time. Next, we calculate
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the scattered part of the field which is induced from the nanoflake at the position of the
adatom using formula [4.7 We continue by performing a Fourier transform of the induced
field:

Eing(raq,t) — Eing(raq, w). (4.11)

Next, we construct the scattered part of the Green’s tensor of the graphene nanoflake as

defined by the following relation:

1
G’s (rad7 Taq, w) d= WQ—,UOEind (rada W) y (412)

Finally, the spontaneous emission rate can be evaluated from the expression:

2
2wy

hegc?

I, d Im G, (raq, Tag, wo) d, (4.13)

where d = [d,,d,, d,] describes the dipole moment of the adatom and wy is its resonant
frequency. To obtain a more accurate prediction of the spontaneous emission rate, one
might go beyond the dipole approximation and add further multipolar terms in equa-
tion [4.13] as we have described in Ref. [62L

The dependence of the spontaneous emission rate on the distance between the nanoflake
and adatom is shown for two adatom dipole orientations in Fig. We observe that
for small distances the optical mechanism dominates the electronic influence by several
orders of magnitude. However, when we go far away from the flake, the spontaneous
emission rate evaluated with the Green’s tensor goes to zero, whereas the electronic part

remains constant on the order of 106 Hz.

4.8 Absorption spectra with adatom

Here, we investigate the influence of the adatom’s position on the absorption spectra
of the nanoflakes with adatoms (Fig. [1.21)). Generally, in hybrid systems consisting of
a nanoflake and adatom increasing the coupling strength ¢, and t, causes a splitting of
resonances. When the adatom is attached to sites near the centre of a flake (D, E, F, G,
H, I), the resonances of the hybrid system get more affected than resonances in systems
with an adatom located near the edge of the flake.

The influence of the adatom is seen strongest in small nanoflakes, especially in the

armchair-edges ones (Fig. [4.22). The most pronounced resonance (at 2.84 ¢V in the
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Figure 4.21: Non-interacting absorption spectra and their dependence on the adatom coupling
strength t. = ¢, for a triangular nanoflake with 126 atoms and an adatom attached at positions

A-L, as labelled in Fig The spectra are shown in arbitrary units.

smallest armchair triangle) corresponds to the HOMO-LUMO transition in the pristine
nanoflake. With the adatom, new HOMO and LUMO states arise which consist mostly

of adatom levels. The resonance corresponding to there states is the one with the lowest
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edged.

energy (at 1 eV for t. = t, = 0). The intensity of this resonance grows with ¢. and %,
since for this calculation we assumed the transition dipole moment element in the adatom
d.y to be equal zero. The energy of this resonance decreases with growing ¢. and ¢, since
the adatom levels shift their energies closer to the zero-point energy, as shown in Fig. [4.3]
The influence of the adatom is more pronounced in armchair-edge flakes.

In Fig. we present absorption spectra for a triangular armchair-edge graphene
flake with 18 atoms (side length 0.71 nm) with an adatom attached near its tip (at
the coordinates [3, 7.5/A). On the left we show the dependence of the non-interacting
absorption spectrum on the hopping rate t. and ¢,, on the right - the same but for
the interacting absorption spectrum, and in the middle panel we show the continuous
transition from one case to the other for a fixed value of the hopping rate t. =t, = 2 eV

by scaling the Coulomb interaction strength in the system.
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Figure 4.23: Absorption spectra for an 18-atom triangular graphene nanoflake with an adatom
attached at the coordinates |3, 7.5]A. Left: Non-interacting absorption spectrum dependence on
the flake-adatom hopping rate ¢, = t,. Middle: Absorption spectrum for fixed hopping rates
te = ty = 2t in the function of Coulomb interaction strength in the system. The Coulomb
interaction is scaled by a factor continuously changing from 0 (which corresponds to a non-
interacting spectrum) to 2. Right: Interacting absorption spectrum dependence on the flake-

adatom hopping rate t. = t,.
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Final remarks

The thesis introduces tools for describing and predicting the behaviour of graphene
nanoflakes coupled to two-level atoms subject to illumination with electromagnetic fields.
The presented framework combines concepts from solid-state physics, like the tight-
binding approximation, with methods from quantum optics and quantum dynamics, such
as the master equation. This required a consolidation of various distinct ways to describe
the same phenomena, e.g. different ways of modelling a dipole moment, either calculated
from the charge distribution or seen just as a parameter.

The proposed method allows to describe many-body systems with hundreds of elec-
trons using a simple one-electron Hamiltonian, which gives a large computational ad-
vantage. The many-body character of the problem is included as a non-linearity in the
Hamiltonian. A similar approach has been used before to pristine graphene nanoflakes
but in this thesis it has been extended to systems with adatoms. In dissipative systems,
this kind of description leads to problems with the Pauli exclusion principle. A solution
that allows to overcome this problem has also been proposed in the thesis.

The entire framework has been implemented numerically in Python and the thesis
presents a large number of results obtained using this code. In particular, we show
for various hybrid systems consisting of nanoflakes with adatoms: their energy levels,
charge distribution of eigenstates, symmetry breaking due to the adatom presence, ab-
sorption spectra, change of time evolution caused by increasing the adatom-flake inter-
action strength, spontaneous emission in the adatom and its dependence on the flake-
adatom distance. The implemented model has also been used to explore subjects which
are not contained in the thesis, such as the investigation of the resonance character in
graphene nanostructures [40].

The presented framework is quite general and contains many tunable parameters to

characterize both the flake and the adatom. In the thesis, the phenomena were presented
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only for specific systems and many of them require a more systematic investigation. A
potential area for further research is the examination of the influence of the adatom
position on the optical properties of the nanoflakes. This would allow to define optimal
locations for attaching the adatom such that it affects the measurable quantities in a
controlled way. Another topic worth studying would be a systematic study of how the
properties of the nanoflakes affect spontaneous emission in the adatoms which they are
coupled to.

There are many ways in which this work can be extended to further investigate similar
systems. Using only the equations and methods presented in this thesis, one could proceed
by adding multiple adatoms in the system to find if and how they can interact with each
other via the graphene nanoflake. The next step could be to replace the graphene by
a different type of 2-D material, e.g. hBN or transition metal dichalcogenides. This
would require several changes in the model but can still be achieved relatively easily
by adjusting the hopping parameters, onsite energies and geometrical properties of the
2D material. Finally, throughout the thesis we focused only on systems that do not
exhibit magnetic properties, therefore it was rather superfluous to include this kind of
effects in the description. However, to make the tool even more general and applicable
to any arbitrary nanoflake shape and adatom type, magnetic effects could be included.
This would probably require a significant amount of work, since it demands adding new

components to the system and consequently modifying nearly all presented equations.
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Appendix A

Including Pauli exclusion principle in

the model

The dissipation with use of the Lindblad operators as described in Eq. [3.9should normally
be performed using p = p. However, as was mentioned in Section in the main body of
the thesis, in our case such choice leads to severe breaking of the Pauli exclusion principle,
as shown in the left panel in Fig. This appendix presents several approaches which
we have tried to overcome this problem.

The first attempt consisted in evolving the system in time and at each timestep:
1. Converting Coulomb interaction matrix and density matrix into energy basis.

2. Tterating over all diagonal elements of the density matrix in energy basis. If a given
energy state has occupation higher than or equal 2: Set on-site values of Coulomb
matrix elements corresponding to the states that have occupations exceeding 2 to

a very large value to induced depopulation of these states.
3. Converting the new Coulomb back to site basis and continue evolution in site basis.

Unfortunately, this method led to a very irregular evolution and did not solve the problem,
as presented in Fig.

The second approach we have tried to prevent breaking the Pauli principle involved
modifying the emission rates «;; while evolving the system in time. During the time
evolution, when the occupation on some energy state |j) reached 2, we shut down all

decay rates into this state by setting V;7,; = 0. This approach works well for evolution
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Figure A.1: Demonstration of attempts to prevent breaking the Pauli principle while evolving
with a Lindblad decoherence term. The system under consideration is a benzene ring with an
adatom with energies -1 eV attached to one carbon atom with coupling strengths t. = 4¢, t, = 0.
The dissipation is included using the Lindblad propagation as described in Eq. 3.9 with p = p.
Subfigure A shows the evolution without using the correction mechanism. In Subfigures B and
C the Coulomb matrix elements corresponding to states with occupations exceeding 2 were set
to: 1000 eV (B), 10000 eV (C). This method causes very irregular evolution, and still does not

enforce the Pauli exclusion principle.
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without external illumination. However, occupations were sometimes still exceeding 2
when we included external electromagnetic field. Therefore, it is not sufficient for all the
cases we wanted to explore and we continued to look for another solution of the problem.

Finally, we took the attempt which is mentioned in the main part of the thesis, in
Section It consists in choosing a particular expression for p in Eq. Normally,
one should use just p = p. We tried to substitute the usual formula with one which
leads to a similar type of dissipation as the phenomenological approach, i.e. p = p — p*.
This method has solved the problem of occupations which exceed the value of 2, while
still working well to model spontaneous emission in the system. We tested this solution
numerically for a great deal of hybrid systems and did not encounter any case which

would break the Pauli principle.
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Appendix B

Eigenstate distribution for zigzag-edged
nanoflakes and with phase factor

included

This Appendix contains figures which present the probability amplitudes that the electron
of a given eigenstate (energy) is located at given sites in real space. In the main text, in
Figs. to absolute values of the amplitudes are shown for armchair-edged triangles.
Here, we present absolute values of the probability amplitudes for zigzag-edged nanoflakes.

We also show the armchair-edged amplitudes including their sign.
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Figure B.1: Distribution on sites in real space of eigenstates of a 78-atom (1.48 nm) zigzag-edged

triangular graphene nanoflake. The phase factor is neglected for clarity.
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Figure B.2: Distribution on sites in real space of eigenstates of a 78-atom (1.48 nm) zigzag-edged
triangular graphene nanoflake with an adatom attached in the lower-left corner of the nanoflake
(location denoted with an X mark) with coupling strengths ¢, = t, = 2eV. The phase factor is

neglected for clarity.
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Figure B.3: Distribution on sites in real space of eigenstates of a 78-atom (1.48 nm) zigzag-edged
triangular graphene nanoflake with an adatom attached in the lower-left corner of the nanoflake
(location denoted with an X mark) with coupling strengths ¢, = t, = 5eV. The phase factor is

neglected for clarity.
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Figure B.4: Distribution on sites in real space of eigenstates of a 60-atom (1.56 nm) armchair-

edged triangular graphene nanoflake.
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Figure B.5: Distribution on sites in real space of eigenstates of a 60-atom (1.56 nm) armchair-
edged triangular graphene nanoflake with an adatom attached in the lower-left corner of the

nanoflake (location denoted with an X mark) with coupling strengths t. =t, = 2eV.
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Figure B.6: Distribution on sites in real space of eigenstates of a 60-atom (1.56 nm) armchair-
edged triangular graphene nanoflake with an adatom attached in the lower-left corner of the

nanoflake (location denoted with an X mark) with coupling strengths t. =t, = 5eV.
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Appendix C

Numerical implementation of the

framework: GRANAD toolbox manual

The entire framework presented in the thesis has been implemented in the Python pro-
gramming language as a scientific toolbox. The code is freely available upon request from
the author of this thesis. Figure contains a diagram which presents all modules of the
toolbox together with the information about the classes and functions that are stored in
each of them. Further below, we provide a manual in the form of simple usage examples.
Each example consists of a short description of the used modules, code snippets with

comments and a presentation of the expected results.
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G0t

plot_energy occupations
plot_charge_distribution
plot_induced_field
plot_density matrix

hex_to_rgb

rgb_to_dec

get_continuous_cmap
_plot_energy_spectrum_soclo
_plot_energy_spectrum_with_adatom
_plot CW_or_pulse illumination
_plot_dipole illumination

plotting.py flake.py
plot_flake class Flake
plot_energy spectrum

plot_electric_field ;:.;:etm
plot_eigenstates hopp:nq

adatom.py

class Adatom

coordinates
dipole_moment
energy_levels

hopping rates
no_of_coupling_sites

get_cecuplings from positien

evolution.py

class Evolution

time axis

ule_ma

initial state
stationary state
equilibrium state
is_induced on adatom

width in_nm
length_in_nm
center_of_ circle
is_adatom
number_of_electrons
adatem
coupling_atom_no
atom_coordinates
energies
hamiltonian_solo_flake
hamiltonian_with_adatom
_chains_atom_no
_diameter_in_angstrom
_length_in_hex
_width_in_hex
_unit_cell

_vector_al

_vector_a2

|add_adatom

add doping
get_coulomb matrix
get_eigensystem
get_flake_coordinates
get_flake hamiltonian
go_to_self consistent basis -~
|propagate_in_time ———
remove_adatom
_creatu_hamiltuniﬁ
_get_chain coordinates_and numbers
_get coupling_atom number
_get_extended_coulomb_matrix
_get_extended_hamiltonian
_get_flake_coordinates_and_numbers
_get_flake coulomb matrix
_get_graphene_lattice
_get_lattice size

_get_lattice vectors
_get_number_of_atoms_in_chain
_get_number of hexagons_on_side
_get_self consistent hamiltonian
_get_size_in_angstrom
_get_unit_cell

I Enum (categories) I

Shape Illumination || DissipationType
TRIANGLE CW OFF
PARALLELOGRAM PULSE GLOBAL
[RIBBON DIPOLE SP_mISSIUII
HEXAGON WITH_DECOHERENCE
CIRCLE

CHATN

DIMER_CHAIN

TOPOLOGICAL INSULATOR

LEGEND / EXPLANATION

field.py

field.py dissipation.py
class Field | | class Dissipation
amplitude ‘ type B
coordinates_to_evaluate tau

dipole_location

dipole ocrientation
electric_field

frequency

fhwm |
illumination_type

is_ramp

peak

polarization_angle
ramp_duration

get_electric_field

_get CW_illumination
_get_dipole_illumination |
_get_pulse_illumination

get_induced field

gamma_array
decoherence_gamma_array
jump_array
decoherence_array

|_create_jump_array
| create_deccherence_array

class Field
amplitude
coordinates_to_evaluate
dipole_location
dipole_orientation
electric_field
frequency

Fhwm
illumination_type
is_ramp

peak
polarization_angle
ramp_duration

get_electric_field
_get_CW_illumination
_get_dipole illumination
_get pulse illumination

get_induced field

create_gamma_array
create_decoherence_gamma_array
calculate weisskopf wigner_rates

name of module

name of a class in the module

list of attributes (variables)
that are stored in the class

list of methods (functions)
that are stored in the class

other functions
that are stored
in the module

Figure C.1: A schematic representation of the GRANAD toolbox showing all of its modules, together with the information about classes and

functions that are stored in each of them.



from utils.flake import Flake
from utils.categories import Shape
from utils.plotting import plot_flake

Example 1: Setting up graphene nanoflakes

Exarngde 1.1. Initialize a graphene flakoe
Exarmple 1.2. Adding doping to the graghens flakoe

W will start with constructing a graphene flakoe,
First, you need to specify the parameters of the graphene flake you want fo construct.
The shape ard width_in_na arguments ase mandatory, others have default values as follows:

length_in_fe = Nond,
adge_type = "BE",
center_of circle = "¢_b°,
hopping = -2,66,

virbase = Trud

Most shapes (the triangle, hexagon, circle, ribbon, chain, dimer chain, topological insulator) are parametrized only by one sioe
parameter, width_in_ns

If you choose one of these shapes, the value of length_in_na will be ignored,

For a parallelogram you have to provide both the width_in_ns and the length_in_ne .

For a hexegon, please note that integer values of width_in_na work best (other values might give distorted hexegons),

For a circle, you can choose the center of circle to positioned in the center of a hexagon [ h ). between two neighbouring atoms | c-
c | or over &n stom of & chosen sublattice [ c_a or ¢ B ).

Thee shape has to be & member of the Shaps enum class, Available thapes and corresponding available arguments for sach ane;

Shage, TRIANGLE - width_in_mm, edge_type

Shape, PARALLELOGRAM - width_in_nm, length_in_me, edge_type
Shape., RIBBON - width_in_mm, edge_type

Shape, HEXAGON - width_im_nm, edge_type

Shape CIRCLE - width_in_ns, center_of circle

Shape, CHAIN - width_in_nm

Shape, DINER_CHAIN - width_in_nm

Shape, TOPOLOGICAL_INSULATOR - width_in_nn

and they can also be found in futils/categonies py

Example 1.1. Initialize a graphene flake

Calling Flake() , will create the geometry, Hamiltonian of the flake and caloulate the eigenvectors and cormesponding energies,
At initialization the flake will have the following properties:

shape, length_in_rm, width_in_nm, hopping, edpe_type, center_of clrcle, is_adatom,
aton_coordinates, atom_nusbers, atom_types, number_of_electrons,
hamiltonian_solo_flake, energies, eigenvectors, degendracies

To see the curent properties of a flake stored under Flake_1 , execute:
print{vars(flake_1).keys{))

Thee recommended use of the programme is to only use these properties to read values, not to set them manually. i you want o
madity the state of the flake, it i recommended to use commespanding built-in methods. For esample, instesd of manually changing
flake.number_of_electrons oneshould run flake, sdd_doping(1@) to increase the number of electrons by 10 (negative
walues for lowering the member of electrons are also allowed). Similarly, to include the adatom, you should not mamually change the



property flake,is sdatos o Troe, but rather use the “lake.add_adatomi]’ methad. This will be demonstrated in the next notebook
(exampled2_indhude_adatom.ipynib].

flake_params = {'shape': Shape.TRIANGLE, 'width_in_nm': 1.5,
‘edge_type': 'ac', 'center_of_circle': '
‘hopping':-2.66, 'verbose':True }

flake_1 = Flake(**flake_params)

ca',

print(f'\nThe properties of the flake at initializaiton are {vars(flake_1).keys()}.")

plot_flake(flake_1)

& grlangulas flake has Been ol from the lattice, The ssasured sideleagth i 15,61 Angetros,
Thiere are 6B avoss in the flake. Husber of atoss of Type A = § and type B = 34,
In the Hamiltonlam, 156 cut of 3588 ¢ledEnts are nomZoro.

Thie propecties of the flake st indtializsiton sre dict_keys([ "shape', 'length_in_ra", “width_in_re', "hopping’, “edge_
type”, "center_of circle”, "is_sdatem’, '_unit_cell’, '_wector_al", '_vector_al", '_length_in_hex”, "_width_in_hex",
'atem_coordinates', "atos_susbers', "atos_types', “hamiltoalan_sole_flake', ‘susber_of _slectroms’, energles', elgenv
ectors’, degenerscies’]).

15.0

12.5

10.0

1.5

5.0

2.5

0.0

You can alio call Flake() by specyfing the arguments directly in the function call,

flake_2 = Flake(Shape.HEXAGON, 2)
plot_flake(flake_2)

& hexagonal flake has been fut from the lattice. The maxisus width §5 J1.30 Angstros,
There are 133 atoss in the flake, Wumber of atoss of type A = 67 and Type B = &6,
In the Hamiltonlam, 386 cut of 17589 @ledents afe noAZEro.



If you want to suppress printing the text information, use the verbose = False option.

flake_3 = Flake(Shape.PARALLELOGRAM, 1, 2,
edge_type = 'only_zz', verbose = False)
plot_flake(flake_3)

15

GAgLradias L 5o SLE2Ho
120 e e E0 8 e
BRSO
2 7 le gadoR o8 S

10 20
x [4]

in dimeer chains and topological insulators we have two different hopping values: torony, = 1.3¢ = 3.468 oV and

twear = 0.71 = 1.862 &y

In the plots of these structures, one can see lines connecting pairs of atoms,

The thickness of these lines cormesponds to the hopping strength between the atoms (thicker line means a langer hopping value).

flake_4 = Flake(Shape.TOPOLOGICAL_INSULATOR, 2, verbose = False)
plot_flake(flake_4, font_size=100)



1.3

5.0
2.5

o1l 23 4 5 868 7 8 9
0.0 10— =mi— =mi— =mi- =i
-2.5
~5.01
-7.5

0 5 10 15

x [4]

You can customize the flake plots with additonal argumenits:

¢ color,

¢ shaow labels [detenmines i the numbers of stoms are thown],
o grid,

o figsize,

¢ fontsize,

®  hoim_size,

flake_6 = Flake(Shape.TRIANGLE, 1.5)
plot_flake(

flake_6,

color="#154360",

show_labels=False,

grid=False,

figsize=(5,5),

font_size = 16,

atom_size = 1100)

& triangulas Flake has Been ¢yt from the lattice, The seasured sidelemgth §s 15,62 Angstros,
Thire are 6 aboss in the Flake. Nusber of atoss of Type A = 30 and Type B = 34,
In the Hamiltonlam, 156 out of 3588 elesents are noAzoro.

e
e o
e
10 e eo@
e o9 @
e eo@
ee oo o8
5 e o9 o8 @
ee o8 o8
ee o9 o0 oo
e o9 o9® o® @
nojlee e® ee e
0 5 10 15
x [A]

Example 1.2. Adding doping to the graphene flake



Maorey, we will demonsirate how to add or remove elecirons from the llake.
You can add electrons (positive number means we increase the number of electrons) or remowe ebectron: from the flake.

Mote that the total number of electrons should not exceed 2 electrons per site,
50 if you try 1o add to many electrons, the code will throw an exception.

flake_2 = Flake(Shape.HEXAGON, 1)

print(f'\nThe number of electrons in the flake initially is {flake_2.number_of_electrons}.")
flake_2.add_doping(20)

print(f'The number of electrons in the flake after adding 20 electrons is {flake_2.number_of_electrons}.")
flake_2.add_doping(-10)

print(f'The number of electrons in the flake after removing 10 electrons is {flake_2.number_of_electrons}.")
flake_2.add_doping(100)

& hexagonal flake has been cut from the lattice. The maxisum width §s 9,94 Angstrom,
Thire are 34 aboss in the Flake. Nusber of atoss of Type A = 17 and type B = 37,
In the Hamiltomlan, 86 out of 1156 slesents are noMmZEro.

The nusber of elecirons in the Flake Imitially 1s 3,
The nusber of electrens In the Flake after adding 30 electrons B8 54,
Thee nusber of electrons in the flake after ressving 18 electrons is 44,



from utils.flake import Flake

from utils.adatom import Adatom, get_couplings_from_position
from utils.categories import Shape

from utils.plotting import plot_flake

Example 2: Attaching an adatom

Example 2.1. Attaching an adatom to the graphens flake (fiwed hopping rates)
Exarmipde 2.2, Attaching the adatom with hoppings determined from its position

In this examiple, we will see how to attach an adatom to the graphene flajkoe.
First, we need to initialize a graphene flake, as shown in Example 1.1,

flake_params = {'shape': Shape.TRIANGLE, 'width_in_nm': 1.5,
‘edge_type': 'ac', 'hopping':-2.66, 'verbose': False }
flake_1 = Flake(**flake_params)

Next, we need fo create an adatom object using the Adatos class.
To couphe the adatom to the flake, use the flake’s &dd_sdatos method. The parameters of the adatom are:

¢ @nergy_levels - list of the energies of the adatom's states (levels) inoeV

s hipping_rates - hopping values between the flake and the energy bevels in e happlag rFates[@] contains the hopping
rate betaseen the flake and the adatom state which has enengy  energy_levels[@] . The hopping_rates can be defined manually
to some constant value as shown in Example 2.1. or they can be determined from the adatom’s position using the function

get_couplings from positlen (this is demonstrated in Examgle 2.2).

o podrdinates - the coordinates of the adatom in the XY plane, in our model we assume that the adatom lies in the same plane
# the graphene flake, however please note that this is just and approximation and in general not true. in reality, the adatom is
located close to the flake's surface but slightly abowe it.

¢ dipole_mosent - transition dipole moment beteeen the two adatom states.

Please note that after adding an adatom, some of the properties will generalize o describe the entine system, whereas others remain
the properties of the flake. Mew properties will also get created. Specifically:

o is_adatosm will become True when the adatom is present

¢ coupling atos_no will store the member of the carbon atom in graphene which is the nearest neighbour of the adatom, in ouwr
model we sheays assume that the adatom only couples to OMNE particular graphene site (bo the nearest one)

¢ hamiltonian_sola flake will contain the Hamiltonian of the solo flake, whereas hamiltonian with_adatos will contain
the Hamiltonian of the entire hybeid flake + adatom system

o pnergles, elgenvectors, degeneracies, nusber_of electrons will contain the values for the entire hybrid
flake +adatom system

o atom_coordinates, atom nusbers, ates_types will contain the coordinates, atom numbers and atom types of the sobo
flake only

Example 2.1. Attaching an adatom to the graphene flake (fixed hopping rates)

adatom_params = {
‘energy_levels': [1,-1],
‘hopping_rates': [2.0, 2.0],
‘coordinates': [3,8],
‘dipole_moment' : (0,1,0)}
adatom_1 = Adatom(**adatom_params)
flake_1.add_adatom(adatom_1)
plot_flake(flake_1)
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To remewe the adatom, you can use the  Fescve_sdatos method. This will set:

5.0

2.5

0.0

self,is_sdatom = False

self.adatom = Kone

self. coupling_atom_nd = Mone

self. hamfltonian_with_adatom = Kone

and revert the values of energies, elgenvectors, degeneracies, number_of_electrons to the values for the solo flake.

To obtain the same effect, you can also just re-initialize the flakoe.

flake_1.remove_adatom()
plot_flake(flake_1)
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Example 2.2. Attaching the adatom with hoppings determined from its position

To obtain hopping rates based on the distance beteseen the adatom and the nearest carbon atom in the flake, we first need to
construct the geosmetry of the system,
Therefore, the first step is to oreate a Flake and an Adatom (with arbitrary hopping rates in the first place).



Then, we can determing the hopping rates from position using the function get_couplings from positicn .
Finally, we recreate the Adatom object using the newly obtained hopping rates and attach this adatom to the flake.

flake_params = {'shape': Shape.TRIANGLE, 'width_in_nm': 1.5, 'edge_type':
flake_2 = Flake(**flake_params)

ac'}

# First create the geometry of the system using some arbitrary values

# for the hopping rates, e.g. [0, 0]:

adatom_params = {'energy_levels': [1,-1], 'hopping_rates': [0, @],
'coordinates': [3,8], 'dipole_moment' : (0,1,0)}

adatom_2 = Adatom(**adatom_params)

flake_2.add_adatom(adatom_2)

print('Hopping rates at initialization: ')

print(adatom_2.hopping_rates)

# Now, calculate the hopping rates based on the distance

# between the adatom and the nearest carbon atom in the flake.

atom_carbon_couplings = get_couplings_from_position(
flake_2.coupling_ atom_no, adatom_2.coordinates,
flake_2.atom_coordinates, flake_2.hopping)

# Finally, create an adatom with the distance-based hopping rates.

adatom_params = {'energy_levels': [1,-1], 'hopping_rates': atom_carbon_couplings,
'coordinates': adatom_2.coordinates, 'dipole_moment': (0,1,0)}

adatom_2 = Adatom(**adatom_params)

flake_2.add_adatom(adatom_2)

print('Hopping rates found based on the flake-adatom distance: ")

print(adatom_2.hopping_rates)

& trlanpulas Flake has Been ¢yt from the lattice, The sesdured sidelesgih §s 15,62 Angitros,
There aré 68 atoms in the Flake. Wasber of atoss of Type &4 = 3 and type B = 38,

Im the Hamiltonlan, 1%6 out of 3608 elesments are mONZEero.

Hepping rates &t Initialization:

[@, @]

Happing ratés found baded on the Flake-adbton distance:

[-1, 4481 PS4 TRATHOIAZ, -1, 4481704 TERTEDLAT]



import numpy as np

from utils.categories import Illumination, Shape
from utils.field import Field

from utils.flake import Flake

from utils.plotting import plot_electric_field

Example 3: Setting up external electric field (illumination)

To define an external illemination, you have to provide four mandatory arguments tise_axis, illusinaticn_type, frequency,
anplitude .

The time_axis can be created as 8 numpy  linspace or by defining an Evelution object. The unit of time is AfeV = 0658 fs.

The illumination_tywpe has to be a member of the [llumination enum and can be:

e continuoud wave [ Illusination. Ok )
o Gauszian pulse [ Illumination. PULSE )
¢ dipolar source [ I11lusimation. DIPOLE )

The variables fréqeency and asplitisde should contain real numbers. The amplitede unit & eV Angstrom,
Depending on the chosen illumination type, there are many additional parameters which one can specify.

* For the continuous wave you have to provide a palarizaticn_angle [by default set to 900, the angle is defined such that
pelarlzation_snglé=8 cormesponds fo x-polarized illumination and polarization_sngle=98 io y-polanzed Sumiation.
For the CW you also can proside additional arguments to make the field ramg up slowly instead of tuming it on suddenly. This
can be achieved by setting 18 _ramp = Trie and then providing the poant in time when the field starts to ramp up
( time_ramp | and the ramp_duration .

¢ |f you choose the Gaussian pulse you hawe to provide additional arguments, Le. the point in time when the pulse should ooowr
{ peak ] and the full width at half magimum of the Gaussian pulse [ Ffwha ).

¢ For the dipole illumination you also have to provide additional arguments dipale_orientation , dipale_location and

cogrdinates_to_evaluate .

time_axis = np.linspace(90,20,1000)
field_1 = Field(time_axis, Illumination.PULSE, 5, 0.01, peak = 2, fwhm = 2)
plot_electric_field(field_1)
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Similarly as before, you can provide the field parameters as a dictionary.

field_params = {
'illumination_type':Illumination.CW,
‘frequency': 2,
‘amplitude': ©0.01,
‘polarization_angle': 90}

field_2 = Field(time_axis, **field_params, is_ramp=True, time_ramp=3, ramp_duration=3)
plot_electric_field(field_2)

0.010] ¥
oposp ReEEs 2% ff o PL
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To demonstrate the dipode illumination, we need 1o first get a set of coordinates whene the field will be evaluated, since in this case
the elecinc field depends nat anly on time but also on the location in real-space. Thus, s will first construct a flake and then use its
coordinates as the coordinates where the field should be evaluated.

In the plots, the black X mark indicates the locaticn of the dipole source,

field_params = {'illumination_type':I1lumination.DIPOLE,
'frequency': 2, 'amplitude': @.01,
‘dipole_orientation':'x"', 'dipole_location':[2,4,0]}

flake_1 = Flake(Shape.HEXAGON, 3)
field_3 = Field(
time_axis, **field_params, coordinates_to_evaluate=flake_1.atom_coordinates)
plot_electric_field(field_3)
plot_electric_field(field_3, at_timestep = 100)

& hexagonal Flake has Been ot from the lagtice, The saximus width §5 31,67 Angitrosm,
There are J96 atoms in the flake. Wamber of atoms of type A = 148 amd type B = 148,
In the Hamilteniam, 838 out of BTELE eleménts ard NoAZEra.
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from utils.flake import Flake

from utils.adatom import Adatom

from utils.categories import Shape

from utils.plotting import plot_energy_ spectrum, get_continuous_cmap

import numpy as np
import matplotlib.pyplot as plt

Example 4: Plotting eigenenergies of graphene nanaflakes and hybrid systems

Exarmple 4.1, Enrgy ypectrum of & pristing graphene renaflake and a graphens nanoflake with an adatom
Exarngle 4.2, Shilt of enengy liveld 0 o graphens nanoflake doe 1o gradual couphing of an adatom

Example 4.1. Energy spectrum of a pristine graphene nanoflake and a graphene nanoflake with an
adatom.

Fardt, weir will €riabe Bevdr icdendical Naked {Make_1 and flake_ 25 a8 described in Example 1
i, weir wll gBach ar sdatcom 1o Rake 1 a4 dhewn in Example 2
Lt v il kit thee @nerdgy dpsctum of Both Naked to compane the Nake withaut 1he aditam and with the sdatsm

flake_params = {'shape': Shape.TRIANGLE, 'width_in_nm': 0.7,
'length_in_nm': None, 'edge_type': 'ac’,
‘center_of_circle': 'c_a', 'hopping':-2.66, 'verbose': False}
adatom_params = {'energy_levels': [1,-1], 'hopping rates': [4.0, 4.0],
‘coordinates': [3,8], 'dipole_moment' : (0,1,0)}

flake_1 = Flake(**flake_params)
flake_2 = Flake(**flake_params)

adatom_1 = Adatom(**adatom_params)
flake_1.add_adatom(adatom_1)

plot_energy_spectrum(flake_2)
plot_energy_spectrum(flake_1)
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Example 4.2. Shift of energy states due to gradual coupling of an adatom

fig = plt.figure(figsize=[5.5,6])
iter_range = 200
discr = 0.02

flake_params = {'shape': Shape.TRIANGLE, ‘width_in_nm': 0.7,
'edge_type': 'zz', 'verbose': False }

for ratio in range(iter_range):
atom_carbon_couplings = [discr*ratio, discr*ratio]
adatom_params = {
‘energy_levels': [0.25, -0.75],

"hopping_rates': atom_carbon_couplings,
‘coordinates': [3,7.5],
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‘dipole_moment' : (0,1,0)}
flake_4 = Flake(**flake_params)
adatom_4 = Adatom(**adatom_params)
flake_4.add_adatom(adatom_4)

adatom_contribution = np.zeros((len(flake_4.energies)))
for i in range(len(flake_4.energies)):
adatom_contribution[i] = np.abs(
flake_4.eigenvectors[i][-2])**2 + np.abs(flake_4.eigenvectors[i][-1])**2

hex_list = ['#154360', '#2874A6', '#1ABCOC', '#58D68D', '#F4DO3F', '#CB4335']
data_to_plot = flake_4.energies
plt.scatter([atom_carbon_couplings[0]]*len(data_to_plot), data_to_plot,
s = 2, marker='D', c = adatom_contribution,
cmap=get_continuous_cmap(
hex_list, float_list=[0, ©.02, 0.05, 0.1, 0.3, 1]),
linewidths = 2, vmin=0, vmax=1)

.xticks([®0,1,2,3,4,5,6])
.yticks([-8, -6, -4, -2, 0, 2, 4, 6, 8])
vlines(
0.5, np.min(data_to_plot), np.max(data_to_plot),
linestyles = ‘dotted', colors = 'k',linewidth = 2)
vlines(
2.0, np.min(data_to_plot), np.max(data_to_plot),
linestyles = ‘dotted', colors = 'k',linewidth = 2)
vlines(
3.5, np.min(data_to_plot), np.max(data_to_plot),
linestyles = 'dotted', colors = 'k',linewidth = 2)
xlabel('coupling $t_e=t_g$ (eVv)')
.ylabel('energy (eV)')
grid()
colorbar()
tight_layout()
show( )
close(fig)
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from
from
from
from

utils.flake import Flake

utils.adatom import Adatom
utils.categories import Shape
utils.plotting import plot_eigenstates

Example 5: Distribution of eigenstates on the

sites in real space

Here, we will create plots which show the distribution of sigenstates on the sites in real space,

First, wee willl create a triangular graphene flake as described in Example 1.

Mext, we will attach an adatom to flakoe_1 as shown in Example 2.
Last, we will plot the eigenstate distribution in real space.

The adatom bevels are abvays shown on the left side from the flake,

If you specify a filenams , all the eigenstates of the flake will be saved under this filename with comesponding state numbers,

To determine how many plots will be printed out on screen, set the

flake_params = {'shape':

adatom_params = {
‘energy_levels': [0.5,-0.5],
‘hopping_rates': [2.0, 2.0],
‘coordinates': [11,22],
‘dipole_moment' : (0,1,0)}

flake_1 = Flake(**flake_params)
adatom_1 = Adatom(**adatom_params)
flake_1.add_adatom(adatom_1)

plot_eigenstates(flake_1, states_to_show = [62,63])

parameter anount_to_show .

Shape.TRIANGLE, 'width_in_nm': 2.4}

& triangulas Flake has Been dut from the lattice, The ssadured sideléngth i 24,14 Angitros,
Thiere are 116 atoss in the flake, Kusber of atoss of type A = 63 and type B = &5,

Im thi Hamiltonlan, 342 out of 15876 clesents are PONDERO0.
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from utils.adatom import Adatom

from utils.categories import Shape, Illumination
from utils.evolution import Evolution

from utils.field import Field

from utils.flake import Flake

from utils.plotting import plot_energy_occupations
from utils import maths

Example &: Time evelution of the graphene nanoflake + adatom system.

Mow we willl look at the time evolution of a graghene nanoflake coupled to an adatom with two energy bevels.
Again, the parameters of both subsystems can be specified in the dictionaries below,

For the evolution, you have to specify

o the total simulation tirme [ end_tise ] and in how many imesteps the total evolution shoald be divided
{ number_of tisesteps ) for integration efc.

e imitial_state ; the initial state for time evolution, by default *0° {the ground state of the system],

o gtationary_state : the stationary state for dissipation, by default *0° (the ground state of the system),

o equilibrive_state  the equilibrium state with respect to which the induced potential at sach timestep is caloulated by default
*0° the ground state of the system)],

e use_rwa : whether the Aotating-Wasve Approximation should be used,

o i _induced_on_adatos | whether the feld induced (tcattensd back) from the flake should be added on the sdatom site. This
option will be important for calculating the spontaneous emission with the Green'’s tensor method,

The indtial, stationary and equilibrium state can be chosen from the integers -9, which are defined as presented below,
Ot ground state, no transition excited
1: HORAD - LMD acibed

2 HOMD - (LUMO+ 1) excited

3 HOMO - (LUMO +2) excited

d; (HOMO-1) - LMD eacited

5S¢ (HOBAC-1) - (LMD + 1) excited

G (HOBS0-1) - (LUMO+2) excited

T2 HOMO-2) - LMD excited

B HOMO-2) - (LUMO+1) excited

9 (HOMO-2) - (LLAD+ 2) eccitied

flake_params = {'shape': Shape.TRIANGLE, 'width_in_nm': 0.7,

‘length_in_nm': ©.7, 'edge_type': 'ac', 'verbose': False}

adatom_params = {'energy levels': [0.5,-0.5], 'hopping_rates': [2.0, 2.0],
'coordinates': [3, 7.5], 'dipole_moment' : (0,7.5,0)}

field_params = {'illumination_type' : Illumination.CW, 'frequency': 2,
‘amplitude': 0.05, 'polarization_angle': 90}

evolution_params = {'end_time': 50, 'number_of_ timesteps': 500_000,
‘initial_state': @, 'stationary_state': @, ‘'equilibrium_state': o,
‘use_rwa': True, 'is_induced_on_adatom': True}

To see Rabi cacillations between the two adatom levels, we have 1o make sure that we iluminate the structure with a resonant
frequency, i.e. with a freguency which is equal to the energy difference between the two levels which have the largest contribution on
the adatom sites. This is made by first getting the adatom levels' indices | excited_ldxs and ground_ldx ) and then setting the
frequency to the difference of corresponding energies:

excited ide, ground_ldx = maths,get_sdatom states_index{flake_1.energles, flake l.elgenvectors)
Fleld_params[ "Freguendy'] = Flake_l.erergics[excited fdx] - flake_1.emergies[ground_ids]



flake_1 = Flake(**flake_params)
adatom_1 = Adatom(**adatom_params)
flake_1.add_adatom(adatom_1)

excited_idx, ground_idx = maths.get_adatom_states_index(
flake_1.energies, flake_l.eigenvectors)
field_params['frequency'] = flake_1.energies[excited_idx] - flake_1.energies[ground_idx]

evolution_1 = Evolution(**evolution_params)
field_1 = Field(evolution_1.time_axis, **field_params)

site_occupation, energy_occupation, *_ = flake_1.propagate_in_time(
evolution_1, field_1, print_iterations = 100_000)

wessns TIME: /500008
Warking fine, tisestep: 1@,

weesks TIME: 100000 500008

mEeske TIME: JOMBH SO0

EEsEEs TIME: TOOGHGSSEH0E
EEEEEE TIME: DO0GH0SMH0E
This rin took XS58.ETS017ETI110E seconmds

plot_energy_occupations(
energy_occupation, evolution_1.time_axis, flake_1.energies,
ground_index = ground_idx, excited_index = excited_idx,
plotting_threshold=0.025, figsize=(8,5))
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To obtain & simpder picture, we could look at the case whene the Coulomb interaction is neglected by setting the argurment

coulomb_strengthe=0 , This will allow us to see just “pure” Rabi oscillations, without the beating (some additional frequencies],
which are caused by Coulomb interactions in the flake. We could also fix the frequency to an off-resonant value to see detuned
behasiour.



from utils.adatom import Adatom

from utils.categories import Shape, Illumination, DissipationType

from utils.dissipation import Dissipation, create_gamma_array, create_decoherence_gamma_array
from utils.evolution import Evolution

from utils.flake import Flake

from utils.plotting import plot_energy_occupations

from utils import maths

Example 7: Dissipation in the graphene nanoflake+adatom system.

Example 7.1. Indhuding dissipation with a phenomenalogical damping term.
Example 7.2. Including dissipation with Lindblad operators.

The dynamics of the hybrid system is described via the single-electron master eqguation

o0(t) = [ (p(t), 1) p(8)] ~ D [o(1) (1)

The Hermitian Hamilionian accounts for the reversible processes in the systerm, with the nonlinearity related to the inclusion of the
Coulomb interactions. Dissipation effects can be taken into account in the term T [p(t)], which we consider in one of the teo forms
described below and refer to as phenomenodogical and Lindbled approaches.

This notebook presents how one can indlude dissipation in the modeéed system. There are two ways inoour model in which one can
describe decay in the system:

1. The phenomenclogical approach [ DissipationType, GLOBAL | : It is a smple robust way to generate dissipation in the system,
It only needs two parameeters. For more details, see example 7.1 below.

2. The Lindblad method; & mone complex treatrment of dissipation with the use of guantum=mechanical Lindblad operators. We can
use ondy jump operators, which will cause spontaneous emission { DissipationType,5P_EMISSION ) or we can include both
Jjump and decoherence operators, which will generate both spontaneous emission and decoherence of the disgonal elements
( DissipationType.WITH_DECOHERENCE ). For more details, see example 7.2 below,

Example 7.1. Including dissipation with a phenomenclogical damping term.

The phenomenological damping term has a relatively simple form and interpretation:

Dp(t)] = 5 (plt) — ). (2)

First, we need to create a flake (see notebook exaspledl_initialize_flakes, ipynd ).

Wext, wa will create an adatom and couple it to the flake (see notebook  exasmpled?_include adatos, Ipynb ).

Ther, we will define an external field (see notebook exaspledd_set_up_and_plot_electric_field, ipynb ).

Finally, we need to define the parameters of the time evolution (see notebook  exaspledd_rabl_osclllations, ipynb ).

In the four dictionaries in the next cell, we can specify all the parameters of the Aake, adatom, field and evolution,

flake_params = {'shape': Shape.TRIANGLE, 'width_in_nm': ©.7,
‘edge_type': 'ac', 'verbose': False}

adatom_params = {'energy levels': [0.5,-0.5], 'hopping_rates': [2.0, 2.0],
'coordinates': [@,1], 'dipole_moment' : (0,7.5,0)}

field_params = {'illumination_type' : Illumination.CW, 'frequency': 2,
‘amplitude': 0.05, 'polarization_angle': 90}

evolution_params = {'end_time': 0.1, 'number_of_timesteps': 1_000,
‘initial_state': 1, 'stationary_state': O, 'equilibrium_state': o,
‘use_rwa': True, 'is_induced_on_adatom': True}



Mext, we will need to specify parameters of the dissipatian. in the case of phenomenological dissipation we only need to specify cne
paramseLe

¢ tau - mandatory, the rate of decay.

dissipation_params = {
'type': DissipationType.GLOBAL,
‘tau': 0.2
¥

Mext we run an evolution without external field but with the defined dissipation.

flake_1 = Flake(**flake_params)
adatom_1 = Adatom(**adatom_params)
flake_1.add_adatom(adatom_1)

evolution_1 = Evolution(**evolution_params)
dissipation_1 = Dissipation(flake_1, **dissipation_params)

site_occupation, energy_occupation, *_ = flake_1.propagate_in_time(
evolution_1, None, dissipation_1, print_iterations = 1_000)
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This rish took 8. 4397139549255371 secomnds

excited_idx, ground_idx = maths.get_adatom_states_index(
flake_1.energies, flake_1.eigenvectors)

plot_energy_occupations(
energy_occupation, evolution_1.time_axis, flake_1.energies,
ground_index = ground_idx, excited_index = excited_idx,
plotting_threshold=0.025, figsize=(6,4.5))
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Example 7.2. Including dissipation with Lindblad operators.

Again, we need fo create a flake, create an adatom and couple it to the flake,
define an external field and define the parameters of the time evolution,

flake_params = {'shape': Shape.TRIANGLE, 'width_in_nm': 0.7,

'edge_type': 'ac', 'verbose': False}

adatom_params = {'energy_levels': [0.5,-0.5], 'hopping_rates': [2.0, 2.0],
'coordinates': [@,1], 'dipole_moment' : (0,7.5,0)}

field_params = {'illumination_type' : Illumination.CW, 'frequency': 2,
‘amplitude': 0.05, 'polarization_angle': 90}



evolution_params = {'end_time': 0.1, 'number_of_timesteps': 1_000,
‘initial_state': 1, 'stationary_state': 0, 'equilibrium_state': o,
‘use_rwa': True, 'is_induced_on_adatom': True}

flake_1 = Flake(**flake_params)
adatom_1 = Adatom(**adatom_params)
flake_1.add_adatom(adatom_1)

Mext, we will need to specify parameters of the Lindblad-based dissipation.
We can choose to use only jump operators [ DissipaticnType, 50 EAISSION )
or bath jumip and decoherence operators [ DissipaticnType ., WITH_DECOHEREMCE ).

In the caze of DissipatichType. S0 EMISSION we need to specify one parameter:
* gamma_array : a 2D array that at position (4, 7] stores the transition rate for the jump operator between states @ and j
In the caze of DissipaticaType . WITH_DECOHEREMCE we need to specify teo paramefers:

s gomma_prray ; a 20 amay that at position (1,7] stores the transition rate for the jump operator between states @ and j§
¢ decoherance_ganma_array | 10 array which at position @ stores the value of the decoherence rate for state §

gamma_array = create_gamma_array(flake_1, 0.3, "all")
decoherence_gamma_array = create_decoherence_gamma_array(flake_1, 0.3)

dissipation_params = {
'type': DissipationType.WITH_DECOHERENCE,
'gamma_array': gamma_array,
‘decoherence_gamma_array': decoherence_gamma_array}

Meaxt we run an evolution without external field but with the defined dissipation,

evolution_1 = Evolution(**evolution_params)
dissipation_1 = Dissipation(flake_1, **dissipation_params)

site_occupation, energy_occupation, *_ = flake_1.propagate_in_time(
evolution_1, None, dissipation_1, print_iterations = 1_000)

BEEEEE TTHE: @153
Barking Fime, tiseitep: 14,
This rin Took 17. 8785258152588 seconds

plot_energy_occupations(
energy_occupation, evolution_1.time_axis, flake_1.energies,
ground_index = ground_idx, excited_index = excited_idx,
plotting_threshold=0.025, figsize=(6,4.5))
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