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Preface

The dissertation which lies before you has been written in the course of my PhD studies at

the Faculty of Physics, Astronomy and Informatics at the Nicolaus Copernicus University

in Toru«. It contains a summary of results from the research project in which I was

engaged during the time of my PhD programme.

I have decided to write the text using the plural �rst person pronoun we. The moti-

vation is that the framework introduced in this thesis is due to a joint e�ort of several

people and a large part of the presented content is the result of discussions with my

supervisors and our co-workers from the Karlsruhe Institute of Technology (KIT) and

Donostia International Physics Center (DIPC).

My main responsibilities in the project involved topics related to quantum optics

and quantum dynamics. In particular, I investigated how to include the adatom into

the system and explored processes occurring in it (like Rabi oscillations or spontaneous

emission). I also devoted a lot of work to the numerical implementation of the framework,

as well as to code maintenance, refactoring and documentation, which I hope will make

it accessible and easy to extend for future users.

The framework presented in this thesis would not exist in this form without the help of

many people. First of all, I would like to thank my supervisors, Karolina and Marta, for

their help in formulating research questions, and for their guidance and support during the

entire course of my PhD studies. Furthermore, I thank dr Andrés Ayuela from DIPC for

all discussions and sharing his knowledge of graphene physics. I would also like to thank

prof. Carsten Rockstuhl and Marvin Müller from KIT for their invaluable contributions

to the parts concerning classical optics, plasmonics and electromagnetism, especially on

including the external �eld and calculating the absorption spectra. Additionally, I would

like to thank Marvin for our close collaboration on the code implementation, which I

found very satisfying and fruitful.
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Introduction

Since its discovery in 2004, graphene has been experiencing constant attention due to its

numerous unconventional physical properties, especially optical, electronic and plasmonic

ones. Graphene is able to sustain plasmon polaritons with relatively long lifetimes as

compared to those of noble metal nanostructures and o�ers the exceptional possibility to

tune their properties after the nanostructure has been fabricated, by means of doping or

electrostatic gating of the material. Cutting graphene into �nite nano-sized �akes allows

to bring the resonant plasmonic frequencies into the optical range of the electromagnetic

spectrum, which can be especially interesting for applications, since this is the range

where many atoms and molecules are optically active.

Exciting plasmon polaritons in metallic nanostructures hugely impacts the electro-

magnetic density of states in their surroundings. Such modi�ed density of states may

impact optical properties of adjacent atomic systems and can be used to enhance the

strength of their interaction with light. Since graphene plasmon polaritons show extraor-

dinary properties in terms of energy con�nement, lifetime and tunability, they can be

used to bring light-matter interaction close to its extreme.

The aim of this thesis is to introduce a mathematical model, which describes hybrid

systems consisting of graphene nano�akes coupled to adjacent atoms (adatoms). To

achieve this, one has to keep in mind several things. First of all, a proper description

of small graphene nano�akes requires a quantum-mechanical approach. Additionally, the

extreme concentration of electromagnetic energy near plasmonic nanostructures suggests

that atomic systems coupled to plasmonic graphene �akes should be positioned extremely

close, at distances for which tunnelling e�ects might become meaningful. Moreover, the

physical properties of graphene are strongly determined by its honeycomb-like structure.

Hence, any impurity placed on the surface of a graphene sheet perturbs this regular

lattice, which gives rise to signi�cant changes in the electronic, optical and transport
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properties of this material.

The thesis will introduce a framework for modelling hybrid systems consisting of

graphene nano�akes coupled to adatoms, which takes into account all the aspects men-

tioned above. The purpose of the model is to describe the adatom's in�uence on the

optical properties and dynamics of a graphene nano�ake, as well as the back-action from

the latter. The presentation of the model will be supported by its exemplary application

to simple hybrid systems.

Rigorous quantum-mechanical description of electron dynamics in this case should

exploit many-body approaches. In the simplest but also the coarsest of them, each

electron is modelled in a Hilbert space of the size equal to the doubled number of atomic

sites in the graphene �ake 2N (the factor 2 comes from the fact that spin is incorporated

and there are two available orbitals per site for each electron), while the space of all Ne

electrons has the size of
(
2N
Ne

)
(we distribute Ne electrons on 2N spin-orbitals). However,

graphene �akes which are active in the optical regime have sizes corresponding to a few

hundred atoms, making such straightforward approach di�cult to use in practice. Let

us consider three nano�akes without doping (Ne = N) to demonstrate how badly the

dimension scales with the size of the system: for a simple benzene ring, the dimension

is
(
6
3

)
= 20, for an 18-atom triangular �ake it already becomes

(
18
9

)
= 48620 and for a

100-atom nano�ake it would be
(
100
50

)
≈ 1029.

In the second-quantisation picture, the attempt to exactly specify which state is oc-

cupied by which particle is replaced by a less demanding one, evaluating the number of

particles occupying each site. Even though the Hilbert space size scaling is signi�cantly

reduced, it is still exponential and reads as 2N . A treatment of �akes with a few hundred

atoms remains computationally challenging.

To model the electron dynamics in such large structures, our framework has been

based on the single-particle density-matrix approach, in which the size of the Hilbert

space scales linearly with the number of atomic sites in the graphene nano�ake N . The

advantages and challenges of this approach are presented in Chapters 3 and 4, where the

model is introduced in detail.

The thesis is structured as follows: Chapter 1 contains fundamental facts from graphene

physics, Chapter 2 introduces the formalism used in quantum optics to describe the dy-

namics of two-level systems. Chapter 3 introduces the general model to describe optical
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and electronic properties of �nite graphene �akes and presents most important predictions

of physical properties of graphene nano�akes obtained in this framework. In Chapter 4,

the model is extended to account also for the presence of adatoms near graphene �akes.

It is applied to an exemplary hybrid system to demonstrate canonical e�ects like Rabi

oscillations and spontaneous emission in the adatom. The summary and outlook of the

thesis lists problems which could be treated with the developed model as well as its

possible extensions.
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Chapter 1

Electronic and optical properties of

graphene

Graphene is a one-atom-thick allotrope of carbon, which is increasingly gaining atten-

tion of scientists and technology developers due to its numerous unusual properties with

promising application potential. It is a gapless semiconductor and at the same time one

of the best conductors of electricity on Earth, which remains capable of conducting even

at the limit of zero temperature and zero carrier concentration with a �nite conductivity

value of ∼ 4e2/h [1]. It exhibits high carrier mobility of around 1332.4 cm2/Vs and

low resistivity of 0.7 kΩ at room temperature [2]. Charge carriers in graphene obey lin-

ear dispersion relation, thus mimicking massless relativistic particles (so-called massless

Dirac fermions). This results in the observation of very peculiar electronic properties like

anomalous integer quantum Hall e�ect, the Klein paradox, absence of localisation [3].

Graphene has a remarkable intrinsic tensile strength of 130 GPa and a Young's mod-

ulus close to 1 TPa [4], which means it has the tensile sti�ness of diamond but at the

same time it is lighter than aluminium. Graphene is highly thermally conductive with a

thermal conductivity of around 4000 W/mK [5]. It is considered to be completely imper-

meable to gases and liquids, even a single helium atom cannot pass through a defect-free

monolayer graphene sheet [6]. Graphene also represents a conceptually new class of ma-

terials, so-called two-dimensional materials, and it is very attractive for the fabrication

of mixed-dimensional van der Waals heterostructures [7].

However, the wonderful properties cannot be e�ectively exploited without the means

to synthesise high-quality, large-area graphene. First stable samples of high-quality
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graphene have been fabricated in 2004 [8], which was a big surprise considering the

common belief at that time, that truly two-dimensional crystals cannot exist in a stable

form [9]. The discovery led to a Nobel Prize in Physics for Andre Geim and Konstantin

Novoselov awarded in 2010 for groundbreaking experiments regarding the two-dimensional

material graphene. Since then, countless graphene production techniques have been in-

vented, amongst which the most prominent are: various variants of exfoliation [10, 11],

epitaxy [12], using a CO2 infrared laser [13], nanotube slicing [14], hydrothermal self-

assembly [15]. Nevertheless, the production of large sheets of high-quality defect-free

graphene still remains a challenge [16].

In this chapter, we present the chemical structure and fundamental properties of

graphene. In particular, we introduce the tight-binding approximation, which is later

used throughout the thesis for modelling graphene.

1.1 Structure

Figure 1.1: Two sp2-hybridised carbon atoms can bond via the sp2 orbitals, which creates a

strong bond called σ, and also very weakly via the unhybridised pz orbitals, which creates so

called π bonds. Adapted from Ref. 17.

Carbon is a chemical element with an atomic number of six, meaning there are six

electrons in a neutral carbon atom. A free carbon atom in vacuum has its energy levels

determined by the ground-state electron con�guration: 1s2 2s2 2p2. However, if we take

two or more carbon atoms and put them near each other, their atomic orbitals can mix

into new hybrid orbitals, which will be more energetically favourable. This process is

called hybridisation and it leads to the creation of chemical bonds. Carbon can exhibit

three types of hybridisation: sp, sp2 and sp3.

Graphene is built of sp2-hybridised carbon orbitals, which means that the s orbital in

the second shell mixes with two of the p orbitals and one p orbital remains unhybridised
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(Fig. 1.1). The sp2-hybridised orbitals can create strong bonds with other sp2-hybridised

carbon atoms. The bonds that are created this way are called σ bonds. Three of the four

valence electrons in graphene are used to create these strong bonds with neighbouring

atoms in the plane.

The fourth valence electron is considered to be in the unhybridised 2pz state. The

overlap between the pz orbitals and the other orbitals is zero by symmetry. Therefore,

the pz electrons can be treated independently from the electrons that create the σ bonds.

They can interact weakly with other pz electrons creating so called π bonds and therefore

they are also called π electrons.

The three electrons that constitute the σ bonds do not play a role in the conductivity

of graphene because they are energetically distant by about ±1 eV from the Fermi level.

The electrons that are responsible for the good conductivity of graphene are the highly

mobile π electrons in the pz orbitals. We treat graphene in the π-electron approximation,

meaning we take into account one conduction electron per atom.

The strong σ bonds create a rhombic lattice with two atoms in the unit cell, which

results in a honeycomb-like atomic structure characteristic for graphene, as shown in

Fig. 1.2. The two atoms in the unit cell are shown in the �gure as yellow and blue dots.

The colour of the dots distinguishes two sublattices, labelled with letters A and B. The

lattice constant a = 2.46Å. The two lattice vectors can be written as:

a⃗1 =
a

2

(√
3, 1
)

a⃗2 =
a

2

(√
3,−1

)
. (1.1)

The vectors connecting nearest neighbours in real space read:

δ⃗1 =
a

2

 1
√
3
, 1

 , δ⃗2 =
a

2

 1
√
3
,−1

 , δ⃗3 = a

−
1
√
3
, 0

 . (1.2)

The reciprocal lattice of graphene is also a rhombic lattice. The �rst Brillouin zone, which

is a rhombus, is presented in Fig. 1.2b. The reciprocal lattice vectors are given by:

b⃗1 =
2π

3a

(
1,
√
3
)

b⃗2 =
2π

3a

(
1,−

√
3
)
. (1.3)

Two high-symmetry points in the reciprocal space are the Dirac points K and K ′, which

are located at the coordinates:

K⃗ =
2π

3
√
3a

(√
3, 1
)

K⃗ ′ =
2π

3
√
3a

(√
3,−1

)
. (1.4)
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Figure 1.2: a) Lattice structure of graphene. Blue and yellow dots represent atoms of two distinct

sublattices. The unit cell is marked as a grey rhombus. b) First Brillouin zone corresponding to

the lattice marked in grey. The Dirac cones are located at the K and K ′ points.

1.2 Tight-binding model for graphene

In solid-state physics, the tight-binding model is an approach to the calculation of the

electronic band structure using energy eigenstates approximated as a superposition of

wave functions for isolated atoms located at each atomic site [18]. The term "tight-

binding" comes from the assumption that the electrons are tightly bound to the atom

to which they belong, meaning they have limited interaction with states and potentials

on surrounding atoms of the solid. Graphene has been studied theoretically with the use

of the tight-binding model already in 1947 by P. R. Wallace, who used it as a starting

point for studying graphite. He predicted the electronic properties of a graphene layer and

calculated its band dispersion [19]. A nearest-neighbour tight-binding Hamiltonian, which

takes into account only the π orbital on each atom, is a simple model which describes well

the electronic properties of graphene. The π electrons are the ones that are conducting

and highly mobile, they determine graphene's optical and electronic properties, therefore

it is su�cient to include only these in the model and neglect the in�uence of σ electrons.

Besides the mathematical simplicity and intuitive interpretation, an additional advantage

of the approach is that it is computationally inexpensive and therefore is suitable for

simulating larger structures, such as large �akes of graphene.

If we consider only the nearest-neighbour interactions, the tight-binding Hamiltonian
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reads:

H = −t
∑
<i,j>

(
a†ibj + b†jai

)
, (1.5)

where a†i (ai) is the creation (annihilation) operator of an electron at position ri (on site

i) of the sublattice A, and b†j (bj) is the creation (annihilation) operator of an electron at

position rj (on site j) of the sublattice B, the triangular brackets denote summing over

nearest neighbours only and t is the nearest-neighbour hopping energy. In the thesis,

t = 2.66 eV is used as the value for the hopping parameter between the neighbouring

sites in graphene. This value is based on experiments on extended graphene sheets and

is commonly used in literature [18, 20].

Looking at the honeycomb graphene lattice, one can note that the three nearest

neighbours of an electron from sublattice A always belong to sublattice B and vice-versa.

Using this fact, we can rewrite the Hamiltonian as:

H = −t
∑
i∈A

∑
δ∈

{δ1,δ2,δ3}

(
a†ibi+δ + b†i+δai

)
. (1.6)

We need to diagonalise the Hamiltonian given by Eq. 1.5. Since we have a translation

invariant system, it is convenient to make a transformation to the Fourier space. The

electron creation operators can be expressed in the reciprocal Fourier space as:

a†i =
1√
N

∑
k∈IBZ

eikria†k b†j =
1√
N

∑
k∈IBZ

eikrjb†k, (1.7)

where N is the number of unit cells in the lattice and IBZ denotes the �rst Brillouin zone.

The non-vanishing anticommutation relations are:{
ak, a

†
k′

}
=
{
bk, b

†
k′

}
= δkk′ (1.8)

and the rest are zero. Relations 1.8 result from the fermionic nature of electrons and

account for the Pauli exclusion principle. Using this fact, we can rewrite the Hamiltonian

from Eq. 1.5:

H = −
t

N

∑
j∈A

∑
δ,k,k′

[
ei(k−k′)rj e−ik′δ a†kbk′ + h.c.

]
= −t

∑
δ,k

(
e−ikδa†kbk + eikδb†kak

)
, (1.9)

where we used the fact that ∑
i∈A

ei(k−k′)ri = Nδkk′ . (1.10)
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De�ning Ψ = (ak, bk)
T we can express the Hamiltonian as:

H =
∑
k

Ψ†H̃(k)Ψ, (1.11)

where the matrix H̃ called the Bloch Hamiltonian takes the form:

H̃ =

 0 f(k)

f ∗(k) 0

 (1.12)

with

f(k) = −t
∑
δ

eikδ = −t

(
e−ikxa + 2 e

i
2
kxa cos

(√
3

2
kya

))
. (1.13)

The eigenvalues of the Bloch Hamiltonian give the energies of the system:

E± =
√

f(k)f ∗(k) = ±|f(k)|. (1.14)

Figure 1.3: Electronic dispersion of single-layer graphene calculated within the nearest-neighbour

approximation. The two bands touch each other at Dirac points in the reciprocal space.

The resulting energy values form two symmetric bands, which touch at the high-

symmetry points (Fig. 1.3). Therefore, graphene has no band gap and it can be seen

as a semimetal. However, the density of states vanishes at these points and from this

perspective graphene is sometimes called a gapless semiconductor, depending on the

chosen convention.

1.3 Adding electrons: doping and gating

1.3.1 Controlling the conductivity of graphene

As one can see from the energy dispersion relation obtained from the tight-biding model,

pristine graphene has a zero-bandgap, since the two bands touch at Dirac points, which
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Figure 1.4: Theoretical prediction of the resistance as a function of gate voltage for graphene

on a SiO2 substrate. VD marks the point where the resistance reaches its maximum. If the

gate voltage is larger than VD, the graphene is n-doped (electron doped) and if it is smaller, the

graphene is p-doped (hole doped). EF denotes the Fermi energy. Adapted from Ref. 21.

makes it behave like a metallic material. Since the early discovery of graphene, a minimum

conductivity at the neutrality point has been theoretically predicted for Dirac electrons

in graphene with a value of ∼ 4e2/h [1] and con�rmed in charge transport experiments,

which revealed that even if the carrier density vanishes at the Dirac point, the conductivity

does not go to zero but it remains �nite at zero temperature [22].

There are several ways that give reliable control of the type and density of the charge

carriers in graphene. By applying a gate voltage to graphene, it is possible to continuously

drive the Fermi level away from the Dirac point, thus controlling the type and amount of

carriers in the material [8, 23], as shown in Fig. 1.4. Depending on the sign of the applied

voltage, graphene is doped with either electrons or with holes, which in both cases leads

to the strengthening of metallic properties.

Introducing additional electrons to the system by the means of atomic or molecular

doping allows to open a bandgap in single-layer [24] and in bilayer graphene [25, 26].

Another way to control conducting properties is the method of electrostatic �eld tuning,

presented in Fig. 1.5.
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Figure 1.5: Band structure of single layer graphene, band structure of bilayer graphene and band

gap opening in bilayer graphene caused by electrostatic �eld tuning. Figure from [27].

1.3.2 Exciting plasmons

Doping graphene has also proven to be a simple and e�ective way to excite plasmons in

this material. Modern plasmonics, which emerged at the turn of the twenty-�rst cen-

tury [28, 29], has experienced huge interest in the past two decades with a recent shift of

focus toward related quantum processes and applications at the nanoscale. The rapid de-

velopment of nanostructure fabrication techniques and experimental tools, together with

the implementation of powerful numerical modelling based on full-wave electromagnetic

simulations, caused an explosion of interest in the �eld, which was visible over the past

decade [30]. Graphene physics has also attracted growing attention in the last years and

the number of publications on this subject has escalated quickly during that period.

The link between both these areas of research was established in 2011. One of the

�rst accomplishments in the emerging �eld of graphene plasmonics was the experimental

realisation of surface plasmon-polaritons (SPPs) in engineered graphene micro-ribbon

arrays obtained by patterning a pristine graphene sheet. The experiment revealed that

graphene plasmon resonances can be tuned over a broad terahertz frequency range by

changing micro-ribbon width and in situ electrostatic doping [31]. This seminal work has

sparked a lot of interest in graphene nanoplasmonics, paving the way for the investigation

of graphene as a novel plasmonic material [32�34].

Doped graphene is capable of sustaining SPPs [33, 35, 36] and its layers have shown

similar surface plasmon e�ects to those of metallic thin �lms [34, 37]. Having said that,

graphene SPPs also exhibit some signi�cant di�erences with respect to the noble metal

plasmons, some of which make them especially promising for applications.

An interesting property of the SPPs in graphene is their tunability - they can be dy-

15



Figure 1.6: Snapshots present the real space induced charge distribution in a triangular 270-

atom graphene nano�ake with 20 doping electrons under vertically polarized CW illumination

of frequency 1.39 eV (a) and 2.03 eV (b). Snapshots were taken at the time of maximum dipole

moment. Adapted from Ref. [40].

namically controlled and tuned through doping or electrical gating [30]. Since the spectral

position of plasmonic resonances depends on the interaction energy of the electrons in

the system, they are sensitive to the number of doping electrons because the position of

the Fermi energy is modi�ed and di�erent states contribute to the resonance. This shift

of the absorption peak has been predicted in doped graphene nanoantennas for collective

resonances under varying doping conditions [38, 39]. Additionally, electrostatic doping

has been used to demonstrate plasmon-frequency tunability and induced optical modu-

lations in the THz and infrared response of graphene [38]. This stands in contrast to

traditional metal-based plasmonics, where the tunability of plasmons is usually limited -

it can be achieved by controlling the geometry of the metallic nanostructures and their

dielectric environment, or by exploring the thickness of thin �lms of noble-metals. After

the fabrication of a metallic nanostructure, it is challenging to control and tune the fre-

quency of its plasmons. Furthermore, graphene surface plasmon-polaritons enable higher

levels of spatial con�nement than plasmons in noble metals and are predicted to su�er

from relatively low losses, therefore having larger lifetimes and propagation lengths, when

compared with traditional plasmonic materials [30].

The plasmons in very large graphene sheets are typically located in the far or mid in-

frared region of the electromagnetic spectrum with energies up to 1 eV [33], usually on the

order of tenths or hundredths of eV. A �nite �ake size allows to shift the plasmons energies

to visible energies [41], which is crucial for a wide variety of applications. Fig. 1.6 presents

the charge distribution in two plasmonic excitations in triangular graphene nano�akes.
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A vividly discussed topic is the possibility of exciting graphene plasmons in �nite �akes

by single electrons [39]. This problem is closely related to the more fundamental issue of

how a plasmon should be de�ned and how to distinguish single-particle-like resonances

in nanostructures from plasmonic ones [40, 42�44]. Typically, collective charge density

oscillation in real space is considered as the basis to classify a speci�c resonance as plas-

monic in nature [44]. However, as we recently pointed out (using the tools presented

throughout this thesis), in plasmonic systems that are so small that they require quan-

tum description the real space analysis cannot be the sole basis for decisions on the nature

of a resonance [40]. In order to characterize resonances in such systems, one also needs

to look carefully at both the absorption spectra of the nanostructure and the coherence

dynamics in energy basis.

Early studies found that in graphene nanoantennas, adding a single extra electron can

switch on infrared plasmons that were absent from the structure before doping [39]. That

said, if we understand the plasmon predominantly as a resonance originating from long-

range electron�electron interactions, it seems that a single electron is not able to excite a

plasmonic resonance and one needs heavier doping to achieve it [40]. In any case, there

is no doubt that graphene, which supports intrinsic tunable plasmons, is a well-suited

platform for investigating plasmonic phenomena and it deserves further exploration.

1.4 Adatoms on graphene

The properties of graphene strongly depend on the shape and purity of its lattice. Some

predictions can be hard to verify in practice due to impurities and defects. As an example

let us take graphene ribbons. Although theoretical calculations for defectless graphene

ribbons predict that these should transmit electrons without scattering and their low-

temperature conductances should be quantised in integer multiples of e2/h [45], their

experimental realisation is often far from ballistic, meaning that it shows signs of scat-

terers that disturb the ideal propagation, and the experimentally measured conductance

is much smaller than expected [46].

Atoms adsorbed to a crystal lattice are called adatoms. Adatoms can be a nuisance

for transport properties, but they can also be seen as a tool for tailoring graphene.

The adsorption of atomic hydrogen on graphene opens a gap in the electronic density of
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states and therefore it can turn the material into a semiconductor [47]. Remarkably, after

dehydrogenation, the metallic properties can be recovered. This o�ers a reliable method

for controlling the electronic properties of this material [48]. Moreover, graphene o�ers

better control over adsorbate addition than ordinary three-dimensional (3D) materials.

In 3D metals adatoms are introduced into the material by alloying, which is a random

process. In graphene, which is an open surface, adatoms can be controlled with the use

of atomic force microscopy to obtain structures with greater precision [49].

Since working with defect- or impurity-free materials is not always possible, it is crit-

ical to investigate how defects and impurities a�ect the electronic properties of graphene

and to decide whether their existence in a particular system is desirable and how it can be

utilised [50, 51]. A tight-binding model of graphene with adsorbates based on extended

Hückel theory was developed in Ref. [46], where it was used to carry out quantum trans-

port calculations for graphene nanoribbons with adsorbates. Possible ways to adsorb an

adatom on the graphene lattice, which are based on these calculations, are presented in

Fig. 1.7.

In this thesis, we focus on graphene nano�akes rather than in�nite graphene sheets.

Moreover, we take an opposite perspective and focus also on how the graphene nano�ake

can a�ect typical processes in two-level systems. We look not only on stationary solutions

but also study the dynamics of the hybrid systems.

Figure 1.7: Relaxed geometries of adsorbates on graphene. Carbon, hydrogen, �uorine, and

oxygen atoms are black, blue, green, and red respectively. (a) Adsorbed hydrogen atom. (b)

Adsorbed �uorine. (c) Adsorbed hydroxyl group. (d) Adsorbed oxygen. Adapted from Ref. 46.

Adatoms can attach to graphene in three di�erent positions with respect to the

graphene lattice - top, hollow or bridge [52], as shown in Fig. 1.8. If the adatom is

coupled to the �ake in the top position, it a�ects only one sublattice. Hollow and bridge

18



positions in�uence both sublattices. Throughout this work, we focus on the top position

of the adatom only, meaning that the adatom will be located over and coupled to one

particular graphene site.

Figure 1.8: Three possible adatom positions on an extended graphene sheet are marked with

crosses: top position (red) on top of a selected carbon site; bridge (green) in between a pair of

sites and hollow (blue) in the middle or above the middle of a hexagon.

1.5 Cutting graphene: edge types

Graphene can be cut into many di�erent shapes. Depending on where the cutting lines

pass through, the resulting �akes can have various edge types. If we cut along an axis

which is connecting two nearest neighbours, the resulting edge type is called armchair,

and if we cut along a line perpendicular to this one, we get a zigzag edge, as presented

in Fig. 1.9.

Armchair structures will prove to be of particular interest, since they are non-magnetic

and as we will see in further sections, they tend to have a bandgap around the Fermi level.

On the contrary, zigzag-edged nano�akes generally have multiple degenerate levels at zero

Fermi energy and they support magnetic edge states [53, 54], which signi�cantly com-

plicates their description and modelling. In this thesis, we focus on graphene nano�akes

of sizes up to 10 nm, since their HOMO-LUMO gaps have frequencies corresponding to

those of electromagnetic waves in the optical regime.
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Figure 1.9: Two ways to cut graphene and the resulting edge types: armchair (left) and zigzag

(right).
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Chapter 2

Interaction of light with atoms

This chapter contains a summary of basic processes which can occur when an atom

is irradiated with a light beam resonant with one of its natural frequencies. We will

present some commonly used approximations, such as the two-level approximation and

the rotating-wave approximation, which allow to �nd analytical solutions of the evolution

equations. With their help we will predict the behaviour of atoms interacting with an

external electromagnetic �eld, which will lead us to the phenomenon of Rabi oscillations.

Finally, to describe incoherent or dissipative processes, such as spontaneous emission,

we will introduce the density matrix formalism and the Gorini-Kossakowski-Sudarshan-

Lindblad equation. The reasoning in this chapter is based mostly on the excellent script

written by Daniel A. Steck [55] and on popular quantum optics textbooks by Fox [56],

Vogel and Welsch [57] and Haroche and Raimond [58].

Figure 2.1: A visualisation of the two-level atom approximation. When the illumination fre-

quency ω coincides with one of the optical transitions of the atom, we speak about a resonant

interaction between the atomic levels involved in this transition and the light �eld. We can

therefore neglect the other atomic levels, which only weakly interact with the incoming light.

Figure from [56].
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2.1 Two-level atom

In order for a quantum of light to be absorbed or emitted by an atom, its angular

frequency ω must be resonant to the energy di�erence between two quantised energy

levels of the atom, of which at least one has to be populated, here denoted as Ee and Eg:

Ee − Eg = ℏω. (2.1)

In general, an atom can have multiple quantised levels and there is a large number

of possible optical transitions between them. The quantum treatment of the interaction

between light and atoms, however, is often performed in terms of the two-level atom

approximation (Fig. 2.1). This approximation is applicable when the frequency of the

incoming light coincides with one of the optical transitions in the atom. In the two-

level atom approximation we only consider the pair of states whose energy di�erence is

resonant to the illumination frequency and neglect all the other levels. The atom is then

treated as a neutral particle with just two internal levels - the ground state |g⟩ with

energy Eg and the excited state |e⟩ with energy Ee.

Mathematically speaking, the two-level atom is represented as a two-dimensional com-

plex Hilbert space. An arbitrary pure state of the system can be represented as a vector

in this space:

|Ψ⟩ = cg |g⟩+ ce |e⟩ , (2.2)

with the two energy eigenstates of the atom chosen as the basis vectors:

|g⟩ =

0

1

 and |e⟩ =

1

0

 . (2.3)

The coe�cients cg and ce are probability amplitudes. The square of their modulus gives

the probability of measuring the system in the state |g⟩ or |e⟩, respectively. In this

two-dimensional complex space only four linearly independent operators are possible. A

common choice of the operators' form which has a good physical interpretation is:

1 = |e⟩ ⟨e|+ |g⟩ ⟨g| , (2.4)

σ̂z = |e⟩ ⟨e| − |g⟩ ⟨g| , (2.5)

σ̂+ =
1

2
(σ̂x + i σ̂y) = |e⟩ ⟨g| , (2.6)

σ̂− =
1

2
(σ̂x − i σ̂y) = |g⟩ ⟨e| , (2.7)
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where the operators σ̂x, σ̂y, σ̂z can be represented by the Pauli matrices, de�ned as:

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

 . (2.8)

Note that there is a physical interpretation which can be attributed to these operators,

even though not all of them are Hermitian and therefore do not necessarily correspond to

physically measurable quantities. An example is the non-Hermitian σ̂+ operator, which

generates a transition from the ground to the excited state and the operator σ̂−, which

does the opposite. Conversely to these two, σ̂z is a Hermitian operator, so its expectation

value is an observable physical quantity. It is the di�erence between the probability of

the excited state being occupied and the probability of the ground state being occupied,

sometimes called the population inversion of the atom. Also the Hermitian σ̂x operator

has an intuitive interpretation - it acts as a �ip operator, which changes one basis state

into the other, since σ̂x |e⟩ = |g⟩ and σ̂x |g⟩ = |e⟩.

Using these fundamental operators as a basis, one can construct other operators which

carry physical information about the system. The Hamiltonian is given by:

Ĥat = Ee |e⟩ ⟨e|+ Eg |g⟩ ⟨g| =

Ee 0

0 Eg

 . (2.9)

We can shift the energy scale as the only physically relevant information are the energy

di�erences and not absolute energy values. This will be useful for later calculations.

Ĥat =

Ee − Eg 0

0 Eg − Eg

 =

ℏω0 0

0 0

 = ℏω0σ+σ−, (2.10)

where we introduced the resonant frequency of the atom ω0, de�ned such that Ee−Eg =

ℏω0 holds.

An electric dipole operator in the one-electron case is de�ned via the position operator

r̂ as:

d̂ = −qer̂, (2.11)

where qe is the elementary charge. The bold font highlights the fact that the elements of

d̂ and r̂ are vectors in R3. The expectation value for the state 2.2 is given as:

⟨Ψ| d̂ |Ψ⟩ = −qe
(
|ce|2 ⟨e| r̂ |e⟩+ cec

∗
g ⟨g| r̂ |e⟩+ cgc

∗
e ⟨e| r̂ |g⟩+ |cg|2 ⟨g| r̂ |g⟩

)
. (2.12)
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We can use a simple parity argument to derive the form of the dipole operator in

a spherically symmetric system. The parity operator P̂ �ips the sign of the position

operator: P̂ r̂P̂ † = −r̂. Note that the parity operator is unitary and P̂ 2 = 1 and also

that it anticommutes with the position operator. On the other hand, the parity operator

commutes with an atomic Hamiltonian with a spherically symmetric potential, which has

the form
p2e

2m
−

α

|r|
, therefore P̂ and Ĥ have common eigenstates. Now let us consider

a matrix element of the anticommutator
{
P̂ , r̂

}
between energy eigenstates |a⟩ and |b⟩.

Since these states are eigenstates of the Hamiltonian, they are also eigenstates of the

parity operator, such that P̂ |a⟩ = pa |a⟩ and P̂ |b⟩ = pb |b⟩ hold. On one hand, as we

already know, the anticommutator vanishes, so:

⟨a|
{
P̂ , r̂

}
|b⟩ = 0. (2.13)

But since the states |a⟩ and |b⟩ are also eigenstates of the parity operator, the following

holds as well:

⟨a|
{
P̂ , r̂

}
|b⟩ = ⟨a|

(
P̂ r̂+ r̂P̂

)
|b⟩ = (pa + pb) ⟨a| r̂ |b⟩ . (2.14)

Since P̂ 2 = 1, the possible eigenvalues of the parity operator are ±1. For both Eq. 2.13

and Eq. 2.14 to hold, either pa + pb = 0 or ⟨a| r̂ |b⟩ = 0. If we take a look at the diagonal

elements of the dipole moment operator - ⟨g| d̂ |g⟩ and ⟨e| d̂ |e⟩ - we can notice that it is

impossible that 2pe = 0 or 2pg = 0 and therefore:

⟨g| d̂ |g⟩ = ⟨e| d̂ |e⟩ = 0. (2.15)

This means that an atom or any spherically symmetric system which is in an energy

eigenstate has no permanent dipole moment.

Regarding the o�-diagonal elements, it is reasonable to assume that |g⟩ and |e⟩ are

levels of opposite parities, and therefore these elements do not vanish. An atom only

exhibits a dipole moment if it is in a superposition of the basis states, i.e. cgc∗e ̸= 0. Since

the diagonal elements vanish, the expectation value becomes:

⟨Ψ| d̂ |Ψ⟩ = −qe
(
cec

∗
g ⟨g| r̂ |e⟩+ cgc

∗
e ⟨e| r̂ |g⟩

)
= ⟨Ψ| σ̂−deg

∗ + σ̂+deg |Ψ⟩ , (2.16)

where we have introduced the notation:

deg = qe ⟨g| r̂ |e⟩ . (2.17)

24



And since this is true for an arbitrary state, the dipole moment can be represented as:

d̂ = σ̂−deg
∗ + σ̂+deg =

 0 deg

deg
∗ 0

 . (2.18)

If we choose the phase of the dipole matrix element deg such that it is real, we obtain

the form:

d̂ = deg(σ̂− + σ̂+). (2.19)

2.2 Light-matter interaction Hamiltonian

Now let us introduce a new element into the system - we add a monochromatic external

�eld with angular frequency ω to model a laser �eld: E = E0 cos (ωt+ ϕ). Note that we

ignore the spatial dependence of the �eld, only considering the �eld at the location of

the atom. This is appropriate in the long-wavelength approximation, where we assume

that the wavelength of the illumination is much larger than the size of the atom, which

is generally a reasonable assumption [56].

It is convenient to decompose the �eld into its positive- and negative-frequency com-

ponents:

E (t) = E
(+)
0 e−iωt + E

(−)
0 eiωt = E(+) (t) + E(−) (t) , (2.20)

where E(+) and E(−) are electric �eld amplitudes which ful�l the relation (E(+))† = E(−).

The interaction between the atom and the �eld Ĥint is given by:

Ĥint = −d̂E. (2.21)

In this way the �eld induces the o�-diagonal elements of the Hamiltonian, which is consis-

tent with the experimentally known fact that laser illumination causes transitions between

the eigenstates of an atom.

Just as we decomposed the electric �eld into positive- and negative-frequency parts,

we can decompose the dipole operator as:

d̂ = deg(σ̂− + σ̂+) = d̂(+) + d̂(−), (2.22)

where for a monochromatic beam illumination the expectation values of the negative and

positive components of the dipole moment operator depend on time as ⟨d̂(±)⟩ ∼ e∓iωt.
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The interaction Hamiltonian becomes:

Ĥint = −
(
d̂(+) + d̂(−)

)
·
(
E(+) (t) + E(−) (t)

)
=

= −d̂(+) · E(+) − d̂(−) · E(−) − d̂(+) · E(−) − d̂(−) · E(+). (2.23)

If we assume that the external �eld is weak or moderately strong, the atom's response

is linear, meaning that a �eld with time dependence |E| ∝ eiωt will result in the dipole

moment oscillations with the same time dependence. Then, recalling that ⟨d̂(±)⟩ ∼ e∓iωt

and E(±) ∼ e∓iωt, we see that the expectation values of �rst two terms in Eq. 2.23 oscillate

rapidly as e±2ωt, while the last two terms depend on time very weakly. We can drop the

�rst two terms, which are rapidly oscillating at optical frequencies and replace them by

their zero average value, which amounts to a coarse-graining on femtosecond scale. This

step is referred to as making the rotating-wave approximation (RWA). After performing

the RWA, the atom-�eld Hamiltonian becomes:

ĤAF = −d̂(+)E(−) − d̂(−)E(+). (2.24)

Using the explicit time-dependence for the �eld and expression 2.22 for the dipole moment

operator, we can write:

ĤAF = −⟨g| d̂ |e⟩
(
E0

(−)σ−e
iωt + E0

(+)σ+e
−iωt
)
=

ℏΩ
2

(
σ−e

iωt + σ+e
−iωt
)
, (2.25)

where we assume E0
(+) to be real and we have de�ned the Rabi frequency as:

Ω := −
2 ⟨g| d̂ |e⟩E0

(+)

ℏ
= −

⟨g| d̂ |e⟩E0

ℏ
. (2.26)

2.3 Rabi oscillations

In order to trace the dynamics of the system, we investigate the time-independent Schrödinger

equation:

iℏ
d

dt
|Ψ⟩ = Ĥ |Ψ⟩ (2.27)

and �nd its solutions. Our atomic state is a superposition of the two basis states:

|Ψ⟩ = cg |g⟩+ ce |e⟩ , (2.28)
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where ce and cg carry all the time-dependence of the state |Ψ⟩. The Hamiltonian consists

of two parts: the atomic part Ĥat (Eq. 2.10) and the atom-�eld interaction ĤAF (Eq. 2.25):

Ĥ = ℏω0σ+σ− +
ℏΩ
2

(
σ−e

iωt + σ+e
−iωt
)
. (2.29)

Substituting these into Eq. 2.27 gives:

d

dt
cg |g⟩+

d

dt
ce |e⟩ = −iω0ce |e⟩ − i

Ω

2
eiωtce |g⟩ − i

Ω

2
e−iωtcg |e⟩ . (2.30)

Projecting the equation onto the states ⟨g| and ⟨e| gives a pair of coupled di�erential

equations:

d

dt
cg = −i

Ω

2
cee

iωt (2.31)

d

dt
ce = −iω0ce − i

Ω

2
cge

−iωt.

Without the time-dependent factor eiωt this set of equations would be easily solvable.

Fortunately, we can remove this factor by a unitary transformation:

U = eiωt|e⟩⟨e|, (2.32)

which transforms the state from Eq. 2.28 into:

|Ψ̃⟩ = U |Ψ⟩ = cg |g⟩+ cee
iωt |e⟩ = cg |g⟩+ c̃e |e⟩ . (2.33)

The Hamiltonian is transformed according to:

H̃ = UHU † + iℏ (∂tU)U †, (2.34)

which results in the following atom-�eld interaction Hamiltonian in the new frame of

reference:

Ĥ = −ℏ∆σ+σ− + ℏΩ (σ+ + σ−) , (2.35)

where ∆ = ω−ω0 is the detuning from resonance. Such a time-independent Hamiltonian

is only possible in the rotating-wave approximation. The counter-rotating terms would

still depend on time after the transformation given by Eq. 2.32. After the transformation,

the Schrödinger equation gives the coupled equations:

d

dt
cg = −i

Ω

2
c̃e, (2.36)

d

dt
c̃e = −i∆c̃e − i

Ω

2
cg.
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Solving them allows to trace the driven atomic dynamics. First, we look at the case of

exact resonance (∆ = ω − ω0 = 0), where the set of equations reduces to:

d

dt
cg = −i

Ω

2
c̃e, (2.37)

d

dt
c̃e = −i

Ω

2
cg.

These can be easily decoupled by di�erentiating each equation and substituting the deriva-

tives in the original equations, which gives:

d2

dt2
cg = −

(
Ω

2

)2

cg, (2.38)

d2

dt2
c̃e = −

(
Ω

2

)2

c̃e.

We can see that both equations have the form of an undamped harmonic oscillator of

frequency Ω
2
and therefore the general solutions for cg and c̃e are linear combinations of

trigonometric functions:

cg (t) = cg(0) cos

(
Ω

2
t

)
− ic̃e(0) sin

(
Ω

2
t

)
, (2.39)

c̃e (t) = c̃e(0) cos

(
Ω

2
t

)
− icg(0) sin

(
Ω

2
t

)
.

For an atom which is initially in the ground state, i.e. cg(0) = 1, c̃e(0) = 0, the probabil-

ities of the ground and excited states being occupied are then:

Pg (t) = |cg(t)|2 = cos2
(
Ω

2
t

)
=

1

2
(1 + cos (Ωt)) , (2.40)

Pe (t) = |ce(t)|2 = |c̃e(t)|2 = sin2

(
Ω

2
t

)
=

1

2
(1− cos (Ωt)) .

Here, we explicitly see the meaning of the Rabi frequency. It is the frequency, at which

the population in a two-level system oscillates between the ground state and the excited

state, as shown in Fig. 2.2. In the case when ∆ = ω − ω0 ̸= 0 we speak about detuning

from resonance. To �nd solutions of the set of Eqs. 2.36 we start again with di�erentiating

the equations and eliminating appropriate variables, which yields: d2

dt2
− i∆

d

dt
+

Ω2

4

 cg = 0, (2.41)

 d2

dt2
− i∆

d

dt
+

Ω2

4

 c̃e = 0.
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Figure 2.2: Rabi oscillations in a two-level system, which is subject to external illumination with

a frequency perfectly resonant to the atomic transition, i.e. ∆ = ω−ω0 = 0. The probability of

the ground and excited states being occupied oscillates in time with frequency Ω. Figure from

Ref. 55.

These can be rewritten in the form:(
d

dt
− i

∆

2
+ i

Ω̃

2

) d

dt
− i

∆

2
− i

Ω̃

2

 cg = 0, (2.42)

(
d

dt
− i

∆

2
+ i

Ω̃

2

) d

dt
− i

∆

2
− i

Ω̃

2

 c̃e = 0,

where we introduced the generalised Rabi frequency Ω̃ =
√
Ω2 +∆2. Any function which

causes either factor to vanish will solve the equation, therefore the solutions are linear

combinations of functions of the form ei∆t/2± iΩ̃ t/2 and they read:

cg (t) = ei∆t/2

{
cg(0) cos

(
Ω̃

2
t

)
− i

Ω̃
(∆ cg(0) + Ωc̃e(0)) sin

(
Ω̃

2
t

)}
, (2.43)

c̃e (t) = ei∆t/2

{
c̃e(0) cos

(
Ω̃

2
t

)
+

i

Ω̃
(∆ c̃e(0)− Ωcg(0)) sin

(
Ω̃

2
t

)}
.

For an initially unexcited atom with cg(0) = 1 and c̃e(0) = 0 the solution becomes:

cg (t) = ei∆t/2

{
cos

(
Ω̃

2
t

)
− i

∆

Ω̃
sin

(
Ω̃

2
t

)}
, (2.44)

c̃e (t) = −iei∆t/2Ω

Ω̃
sin

(
Ω̃

2
t

)
.

The excited state population is given by:

Pe (t) =
Ω2

Ω̃2
sin2

(
Ω̃t

2

)
=

Ω2

Ω̃2

(
1

2
− 1

2
cos
(
Ω̃t
))

. (2.45)
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As compared to the case without detuning, the detuned oscillations occur at a higher

frequency (since Ω̃ ≥ Ω) and their amplitude is reduced, as shown in Fig. 2.3.

Figure 2.3: Oscillations of the excited state in a two-level system, which is subject to external

illumination with a frequency nearly but not exactly resonant to the atomic transition, i.e.

∆ = ω − ω0 ̸= 0. The probability of excited state being occupied oscillates in time with higher

frequency and a smaller amplitude than in the resonant case. Figure from Ref. 55.

2.4 Spontaneous emission

Spontaneous emission is a process in which a quantum system emits a photon, while

simultaneously making a transition from an excited state to a lower energy state. Ac-

cording to quantum electrodynamics, spontaneous emission happens due the �uctuations

of photonic vacuum, explained by the Heisenberg uncertainty principle [59]. In order to

account for vacuum �uctuations, we employ the fully quantum-mechanical description,

where both the �eld and the emitter are treated as quantum entities.

Our ultimate goal is to �nd the formula for the spontaneous emission rate from an

emitter, which is located near a plasmonic nanostructure, in particular in the vicinity

of a graphene nano�ake. To achieve this, the derived formulas will be expressed using

the Green's tensor formalism. The �rst step will be to de�ne the total Hamiltonian of

the system, then we will �nd Heisenberg equations of motion for the atom and �elds

operators. For any operator Ô:

˙̂
O = − i

ℏ

[
Ô,H

]
. (2.46)

Afterwards, we will eliminate the �eld variables from atomic equations making use of

the Markovian approximation. This will allow to identify two contributions in the atomic
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equations - one which describes the exponential decay of the excited state (spontaneous

emission) and another, which is responsible for its energy shift. If we insert into these

equations the Green's function for vacuum, the �rst term gives us the same result as

Weisskopf-Wigner theory of spontaneous emission [59].

The derivation in this section is performed within the electric-dipole approximation.

The reasoning is based on the �eld quantisation in dispersive media scheme proposed in

Ref. 60 followed by the spontaneous emission rate derivation by Dzsotjan et al. [61]. Please

note that it can be generalised to include terms beyond the electric-dipole approximation,

as done by the author of this thesis et al. in Ref. 62.

The �eld operator at a given position can be expressed as an integral over all frequen-

cies [57]:

E(r) =

∫ ∞

0

E(r, ω) dω. (2.47)

Note that in the Schrödinger picture the �eld operator is time-independent. The fre-

quency components can be expressed via bosonic creation and annihilations operators

which ful�l the commutation rules:[
âi (r, ω) , â

†
j (r

′, ω′)
]
= δijδ (r− r′) δ (ω − ω′) (2.48)

[âi (r, ω) , âj (r
′, ω′)] = 0. (2.49)

The indices i and j stand for the variables x, y, z and the operator âi annihilates a

photon of frequency ω polarised in the i direction at position r. We also use vector

notation â = [âx, ây, âz].

The electric �eld E (r,ω) will be expressed via the electromagnetic Green's tensor

G (r, r′, ω) and bosonic annihilation operators âk. The Green's tensor connects the source

located at r′ with the �eld at position r. A detailed derivation of the relation is given

in [57] and leads to the formula:

E (r, ω) = i

√
ℏ
πϵ0

ω2

c2

∫
d3r′

√
Im ϵ (r′, ω)G (r, r′, ω) â (r′, ω) , (2.50)

where ϵ0 is the vacuum permittivity, ϵ is the permittivity of the environment, c - speed

of light. Now, let us by de�ne the Hamiltonian of the total system, which consists of

three parts - the Hamiltonian of the electromagnetic �eld, the atomic Hamiltonian and

the Hamiltonian describing the light-matter interaction:

Ĥ = Ĥfield + Ĥat + ĤAF. (2.51)
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We also assume that the atom-�eld coupling is rather weak, so that we can work in the

rotating-wave approximation, where ĤAF takes the form

ĤAF = −
[
σ+degE

(+) (r0) + degE
(−) (r0)σ−

]
(2.52)

with

E(+) (r) =

∫ ∞

0

dωE (r, ω) , (2.53)

E(−) (r) =

∫ ∞

0

dωE† (r, ω) . (2.54)

Making use of Eq. 2.50 and the Heisenberg equation of motion (Eq. 2.46), we calculate

the evolution of the annihilation operator âk(r, ω) and atomic operator σ−. The evolution

of the annihilation operator gives:

˙̂aj (r, ω) = − i

ℏ

[
âj,

∫
d3r

∫ ∞

0

dωℏωâ† (r, ω) â (r, ω)− σ+degE
(+) (r0)− degE

(−) (r0)σ−

]
=

=− iωâj (r, ω) +
1

ℏ

√
ℏ
πϵ0

ω2

c2

√
Imε (r, ω)ejG

† (r0, r, ω)degσ−, (2.55)

where we used the equal-time relations [σ−, σ+] = −σz, [σ−, σz] = 2σ−, [σ+, σz] = −2σ+

and commutation relations for annihilation and creation operators. Now we formally

integrate the last equation over time:

âj (r, ω) = âfreej (r, ω) +

√
Imε (r, ω)

ℏπϵ0
ω2

c2
ejG

† (r0, r, ω)dege
−iωt

∫ t

0

dt′σ− (t′) eiωt
′
, (2.56)

where âfreej (r, ω) corresponds to the free evolution of the annihilation operator, i.e. the

evolution due to free-�eld Hamiltonian Hfield.

Now we can write the Heisenberg equation (Eq. 2.46) for the atomic operator σ−:

σ̇− =− iω0σ− − i

ℏ
σzdegE

(+) (r0)

=− iω0σ− − i

ℏ
σzdegE

(+)
free (r0)

+
1

ℏπϵ0

∫ ∞

0

dω

∫
d3r′

ω4

c4
Imε (r′, ω)degG (r0, r

′, ω)G† (r0, r
′, ω)degσz (t)

∫ t

0

dt′σ− (t′) e−iω(t−t′),

(2.57)

where in the last line we used result 2.56 and E
(+)
free denotes the electric �eld evolving freely

due to the �eld Hamiltonian Ĥfield:

E
(+)
free =

∫ ∞

0

dω i

√
ℏ
πϵ0

ω2

c2

∫
d3r′

√
Imε (r′, ω)G (r0, r

′, ω) âfree(r′, ω). (2.58)
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To �nd the spontaneous emission rate, one has to deal with the integral over time, which

appears in Eq. 2.57. This requires making several assumptions. First, please note that in

the case of a free atom the operator oscillates freely in line with σ−(t) = σ−(0)e
−iω0t. If

one assumes that the photonic environment introduces only relatively small modi�cations

to this evolution, it is reasonable to see the in�uence of the environment as a certain

envelope upon the free oscillations. Let us de�ne σ̃−(t) = σ−(t)e
iω0t which in this case

can be assumed to change very little over the time interval where the rest of the integral

is non-zero and which, therefore, can be taken out of the integral at a �xed time t.

An interpretation of this step is that the evolution of the system is a�ected only by

its present state (the system has no memory). This step is known as the Markovian

approximation [63].∫ t

0

dt′σ− (t′) e−iω(t−t′) ≈e−iω0t

∫ t

0

dt′σ̃− (t′) e−i(ω−ω0)(t−t′) ≈ σ̃− (t) e−iω0t

∫ t

0

dt′e−i(ω−ω0)(t−t′) =

= σ− (t)

∫ t

0

dt′e−i(ω−ω0)(t−t′) = σ− (t)

[
πδ (ω − ω0) + iP

(
1

ω − ω0

)]
, (2.59)

where P denotes the principal value of an integral. Using the Sokhotski�Plemelj theorem

we arrive at: ∫ ∞

0

dt′ei(ω−ω0)(t′−t) = 2πδ(ω − ω0) + 2iP
(

1

ω − ω0

)
. (2.60)

With respect to the integral in 2.59, the upper integration limit is modi�ed from t to ∞.

The delta function has a peak at t = t′, so we can assume that the correct result of the

integral up to t is only a half of the integral value with the upper limit far above t [63].

Also, we assume that frequencies smaller than zero have no signi�cant contribution to

the integral and we go to −∞ with the lower limit in the integral over frequencies in 2.57.

The �nal equation for evolution of operator σ− reads:

σ̇− =−
(
iω0 + iδω +

1

2
Γ

)
σ− − i

ℏ
σzdegE

(+)
free (r, ω) ,

where we introduced the Lamb shift δω and the spontaneous emission rate Γ:

δω =
1

ℏπϵ0c2
P
∫ ∞

0

dω
ω2

ω − ω0

deg ImG (r0, r0, ω)deg,

Γ =
2ω2

0

ℏϵ0c2
deg ImG (r0, r0, ω0)deg. (2.61)

Using Eq. 2.61 with the Green's tensor for vacuum we get the familiar Weisskopf-Wigner

spontaneous emission rate in free space:

ΓWW =
ω3d2eg
3πϵ0ℏc3

. (2.62)
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However, please note that the expression 2.61 contains much more than just the free-space

value of spontaneous emission, since it allows one to quantify the spontaneous emission

in arbitrarily complicated environments, once their Green's tensor is known.

2.5 Density matrix

To study incoherent or dissipative processes it is necessary to switch to a statistical

description. Instead of describing the state of the system with a wave function and the

interaction of the atoms with the light �eld via the Schrödinger equation, one needs to

use the density operator and the master equation.

For a state that can be represented by a state vector |Ψ⟩, the density operator is

de�ned as:

ρ = |Ψ⟩ ⟨Ψ| . (2.63)

Such a state is called a pure state and the information contained in the density matrix

ρ is equivalent to the one in the state vector Ψ. However, the density operator can also

represent an ensemble of identical systems described by statistical mixtures of states. A

state that cannot be represented in the form of a pure state is called a mixed state and

is described in the general form:

ρ =
∑
α

Pα |Ψα⟩ ⟨Ψα| , (2.64)

which re�ects the fact that we do not know which of the states |Ψα⟩ the system is in and

we assign a probability (weight) Pα to each of the |Ψα⟩ states in the mixture. Note that∑
α Pα = 1 for proper normalisation.

The physical content of the density operator is more apparent when we compute the

elements ραα′ of the corresponding density matrix with respect to a complete orthonormal

basis. The density matrix elements are given by:

ραα′ = ⟨α| ρ |α′⟩ . (2.65)

The diagonal elements ραα are referred to as populations and they give the measurement

probability of the system in the state |α⟩:

ρα,α = ⟨α| ρ |α⟩ = | ⟨α|Ψ⟩ |2. (2.66)
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The o�-diagonal elements ραα′ (α ̸= α′) are referred to as coherences, since they give

information about the relative phase of di�erent components of the superposition. If we

write the state vector as a superposition with explicit phases:

|Ψ⟩ =
∑
α

|cα|eiΦα |α⟩ , (2.67)

then the coherences are:

ραα′ = |cαcα′|ei(Φα−Φα′ ). (2.68)

2.6 Time-evolution of density operators

The time evolution of a density operator can be described with the Schrödinger-von

Neumann equation:

∂tρ = − i

ℏ
[H, ρ] . (2.69)

However, the point of using density operators is to describe more general evolution pro-

cesses than only those implied by state-vector dynamics. To achieve this, one can use the

more general master equation:

∂tρ = Lρ, (2.70)

where L is called the Liouvillian superoperator, which acts on the Hilbert space of density

matrices. The explicit form of the most general Liouvillian operator which preserves the

properties of density matrices during the evolution reads:

Lρ(t) = −i [H, ρ(t)] +
∑
i

(
Liρ(t)L

†
i −

1

2

{
L†
iLi, ρ(t)

})
, (2.71)

where H is a Hermitian Hamiltonian, which describes the reversible Schrödinger-like part

of the evolution and Li are so-called Lindblad operators. Inserting this superoperator into

Eq. 2.70 we arrive at the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) equation:

∂tρ(t) = −i [H, ρ(t)] +
∑
i

(
Liρ(t)L

†
i −

1

2

{
L†
iLi, ρ(t)

})
. (2.72)

A detailed derivation and discussion of the GKLS equation can be found in Ref. 64.

To fully describe dissipation processes occurring in two-level systems, commonly two

types of Lindblad operator are used:

35



� jump operators σij = |i⟩ ⟨j| describe population transfer from the eigenstate j to

the eigenstate i at some corresponding rate; transfer from higher to lower energy

states is called decay or relaxation and from lower to higher is often described as

pumping,

� decoherence operators σii = |i⟩ ⟨i| which lead to the decay of coherences (o�-

diagonal elements of the density matrix) without in�uencing the populations of

the eigenstates.
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Chapter 3

Properties of graphene nano�akes

3.1 Hamiltonian of pristine graphene nano�akes

In this Section, we proceed to present the components of the framework, which we use

for modelling graphene nano�akes. In this Chapter we do not include any adatoms but

instead we start with the description of pristine graphene nano�akes. The adatoms will

be added to the system in Chapter 4 . Here, we use the second-quantisation Hamiltonian

(Eq. 1.5) in the simpler single-particle form:

HTB = −t
∑
⟨l,l′⟩

(|l⟩ ⟨l′|+ |l′⟩ ⟨l|) , (3.1)

where the Hilbert space spans over sites |l⟩ which can be occupied by an electron. The

Hamiltonian is constructed within the tight-binding approximation, where each carbon

atom corresponds to one site associated with a pz orbital. We assume that an electron can

be exchanged between nearest carbon-atom neighbours with the rate t, and ⟨l, l′⟩ means

summation over nearest neighbour atomic sites l and l′. Again, we use t = 2.66 eV.

Having constructed the Hamiltonian, we can diagonalise it, which gives us the energies

Ej and eigenvectors |ϕj⟩ of the system. This already provides a lot of information about

a nano�ake - the eigenvalues of equation 3.1 determine its resonant frequencies. The

eigenvectors let one construct the ground-state density matrix ρAufbau of a �ake �lled

with a given number of electrons Ne according to the Aufbau principle:

ρAufbau =
2

Ne

∑
j

fj (Ne) |ϕj⟩ ⟨ϕj| , (3.2)
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where fj (Ne) ∈ [0, 1] is the Fermi-Dirac distribution, which determines how many elec-

trons per spin occupy the state |ϕj⟩. Thus de�ned density matrix is normalised as Trρ = 1.

Please note that from now on we can operate in two di�erent bases, in which we can

describe our system. On one hand, we speak about the real-space basis of sites |l⟩, in

which we construct the tight-binding Hamiltonian. On the other hand, we have the basis

of eigenstates |ϕj⟩ obtained from the diagonalisation of the Hamiltonian, which we will

also call the energy basis. The two bases are related via a linear transformation with

coe�cients ajl:

|ϕj⟩ =
∑

ajl |l⟩ . (3.3)

The coe�cients ajl explain how much of a given eigenstate in energy basis can be at-

tributed to charge located on a given site in real space.

The Hamiltonian in Eq. 3.1 describes connections between the carbon atoms and

in this way contains information about the shape of the graphene �ake and its edges.

Now we can investigate how the edge type of a graphene nano�ake can in�uence its

energy spectrum, which will lead to some interesting conclusions. We focus on triangular

�akes, since they can have a homogenous edge of both entirely armchair or entirely zigzag

character (Fig. 3.1). Other �ake shapes such as a hexagon or a circle always cause the

�ake to have mixed character of the edges (see Fig. 3.2). A short overview of possible

triangular �ake geometries is shown in table 3.1. The energy spectra are presented in

Figs. 3.3 and 3.4. The energy levels in both cases originate from the quantisation of the

graphene spectrum and thus are contained within ±3t ≈ ±8 eV. In the case of armchair-

edged �akes there is always a gap around the zero energy. The gap decreases with the

size of the �ake but nonetheless it is always present. In zigzag-edged �akes the opposite

is true - there are always some energy levels present at the zero energy, hence there is no

gap around the Fermi level.
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Figure 3.1: Graphene nano�akes that have edges of only one type - purely armchair (left panel)

or purely zigzag (middle and right panels).

Figure 3.2: Graphene nano�akes that have edges of mixed type. An arbitrary �ake shape most

likely has mixed-type edges.

Figure 3.3: Energies of three armchair-edged triangular graphene nano�akes of various sizes.

Note that there is always a gap around the Fermi energy, which decreases with the size of the

�ake. The energy values are contained in the range between -8 and 8 eV.
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Armchair edge

Number of hexagons on side Number of atoms in �ake Side length (nm)

2 18 0.71

3 36 1.14

4 60 1.56

5 90 1.99

6 126 2.41

7 168 2.84

8 216 3.27

9 270 3.69

10 330 4.12

n 3n(n+ 1) 0.426n− 0.142

Zigzag edge

Number of hexagons on side Number of atoms in �ake Side length (nm)

2 13 0.49

3 22 0.74

4 33 0.98

5 46 1.23

6 61 1.48

7 78 1.72

8 97 1.97

9 118 2.21

10 141 2.46

n n2 + 4n+ 1 0.246n

Table 3.1: Possible sizes and numbers of atoms in armchair and zigzag edge triangular graphene

nano�akes.
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Figure 3.4: Energies of three zigzag-edged triangular graphene nano�akes of various sizes. Note

the presence of states located at the Fermi energy.
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3.2 Coulomb interaction in the �ake

Knowing the eigenvalues obtained from the diagonalisation of equation 3.1 allows us to

construct the density matrix of a �ake �lled with a given number of electrons according

to Eq. 3.2. For a bare nano�ake without doping or adatoms, the resulting ground state

in zero temperature gives a uniform charge distribution across the �ake (ρuniform)kl = δkl
N
,

where N is the number of sites. In this case, the number of electrons in the system is

equal to the number of sites: Ne = N . Note that this does not hold in general - we may

consider electron or hole doping, and later the adatom may introduce a di�erent number

of orbitals and electrons.

The ground state exhibits a uniform charge distribution across the �ake only in pristine

graphene �akes. If we add doping electrons, the ground state charge distribution that

follows from the ground state density matrix calculated from the tight-binding states

is no longer uniform. In this case, we expect some Coulomb repulsion in the initially

prepared state, pushing the electrons towards a uniform distribution. On the other hand,

the uniform distribution does not necessarily need to be the lowest-energy state. The

equilibrium state of the system is a result of a trade-o� between the two e�ects, such

that the energy minimisation in the non-interacting system and the Coulomb repulsion

balance each other. This equilibrium state can be found iteratively in a self-consistency

procedure. The procedure described below additionally provides a new basis set, which

is dressed in the Coulomb interaction. It consists of the following steps [65]:

1. For a given graphene �ake, diagonalise the free Hamiltonian (3.1).

2. With the speci�ed number of electrons Ne (equal to the sum of the number of

atoms in �ake and the number of doping electrons), calculate the density matrix

ρAufbau according to the Aufbau principle (Eq. 3.2). For an undoped �ake at adatom

absence and at zero temperature, the density matrix calculated in this way corre-

sponds to a uniform distribution of electrons among all N sites with, in general,

non-zero o�-diagonal elements.

3. Calculate the potential induced by the non-uniformity of charge distribution on the

l-th site:

(Φcharge)ll′ = −eNeδll′
∑
k

vlk
(
ρAufbau,kk − ρuniform,kk

)
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Here, indices k, l, l′ correspond to di�erent sites (i.e. carbon sites or later adatom

orbitals). The symbol vlk stands for the Coulomb interaction matrix element be-

tween sites l and k. For carbon-carbon interactions we employ the values evaluated

in Ref. 66.

4. Construct a Hamiltonian including the induced charge H = HTB − eΦcharge. In

practice, to ensure the convergence of the procedure, at each iteration we only

include a fraction of the new induced potential and combine it with the induced

potential from the previous iteration, i.e.: H(n+1) = HTB − e(1 − pmix) Φ
(n−1)
charge −

epmix Φ
(n)
charge, where pmix ∈ [0, 1]. Usually a good choice for pmix is in the range

0.1− 0.5.

Steps 1-4 can now be repeated with the new Hamiltonian from step 4, and a new ρAufbau

built based on the new Hamiltonian eigenstates. The procedure should be repeated until

self-consistency is reached, i.e. the evaluated charge-nonuniformity induced potential

Φcharge and the equilibrium density matrix ρsc from steps 2 and 3 are stable. The "sc"

superscript stands here for "self-consistency".

For �akes which are doped with additional electrons, the energies obtained by using the

above-mentioned procedure di�er from the energies of the pure tight-binding Hamiltonian

given by Eq. 3.1, however the di�erence is very small (Fig. 3.5). A slight impact of the

self-consistency procedure can also be seen in the real-space charge distribution (Fig. 3.6).

3.3 Including external illumination

The external electric �eld is coupled to the nano�ake using the following coupling scheme:

H (ρ(t), t) = HTB − eΦcharge − eΦ(t) = HTB − eΦcharge +
[
eΦext(t)− eΦind (ρ(t))

]
. (3.4)

Here,

Φext(t) = −
∑
l

rl · E(rl, t) |l⟩ ⟨l| (3.5)

is the energy of the external �eld that arises due to the illumination E(r, t) polarised

in the plane of the graphene �ake. In the case of a laser illumination we can use the

quasistatic limit and neglect the spatial dependence of the external �eld. The summation

goes over all carbon sites l. The Hamiltonian in Eq. 3.4 depends explicitly on the density
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Figure 3.5: Left: Energy spectrum of a 36-atom (1.14 nm) armchair-edged triangular graphene

�ake doped with an increasing number of electrons. Right: Energy spectrum of a 33-atom (0.98

nm) zigzag-edged triangular graphene �ake doped with an increasing number of electrons. The

navy lines present the energies after the self-consistency procedure. The red dashed lines in

the background correspond to the undoped case and serve for comparison. In �akes of both

edge types, the self-consistency procedure shifts the states' energies slightly with respect to the

undoped case.

matrix ρ. Usually in quantum mechanics we deal with Hamiltonians that do not depend

on ρ and their evolution equation is linear. The non-linearity in our case is the price which

we pay for including the Coulomb interactions and at the same time keeping a single-

particle Hilbert-space dimension. This allows us to investigate much larger systems than

we would be able to using a many-particle approach with a much larger Hilbert space

size.

As the electric �eld moves the electrons away from their equilibrium positions, Coulomb

interactions arise, which are accounted for by the �eld-induced potential:

Φind(t) = −eNeδkl
∑
l′

vll′ (ρl′l′(t)− ρscl′l′) , (3.6)

where the summation goes over the all carbon sites l′. The induced potential is between

one and two orders of magnitude smaller than the external one and has an opposite sign.
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Figure 3.6: Real-space charge distribution in triangular graphene �ake of size 2.41 nm doped

with 0, 10, 20, 30 electrons: before the self-consistency ρAufbau (left), after the self-consistency

ρsc (middle) and the di�erence ρsc − ρAufbau (right). Naturally, when there is no doping, the

distribution is uniform and the self-consistent procedure has no e�ect on the charge distribution.

3.4 Time evolution and dissipative processes

The dynamics of the system is described via the single-electron master equation

∂

∂t
ρ(t) = − i

ℏ
[H (ρ(t), t) , ρ(t)]−D [ρ(t)] . (3.7)

The Hermitian Hamiltonian described in previous sections accounts for the reversible

processes in the system, with the non-linearity related to the inclusion of the Coulomb

interactions. Dissipation e�ects can be taken into account in the term D [ρ(t)], which we

consider in one of the two forms described below and refer to as phenomenological and

Lindblad-based approaches. In the following, we discuss their form, underlying approxi-
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mations and compare their advantages and drawbacks.

3.4.1 Phenomenological approach

The phenomenological damping term has a relatively simple form and interpretation [67]:

D [ρ(t)] =
1

2τ
(ρ(t)− ρsc) . (3.8)

The model characterises the whole dissipative process with one parameter only: the

decoherence lifetime τ , where the advantage of simplicity comes for the price of several

approximations. Its value can be found from the relation ℏτ−1 = 10meV, which is known

from experiments in bulk graphene, being a very good approximation for large �akes [67].

An important advantage of the phenomenological approach is that it forces the system

back into its equilibrium state. By construction, that state includes the information on

the many-electron character of the system: ρsc is built according to the Aufbau principle

which takes the Pauli principle into account so that no more than two electrons are put

in one state.

However, this approach does not indicate how to modify the damping rates for small

�akes of graphene, where the bulk value of τ does not necessarily have to be the correct

one. Moreover, the stationary state of perturbed dissipative quantum systems results

from a trade o� between the excitation strength (here, proportional to the electric �eld)

and the loss rates. For strong perturbations, saturation e�ects occur [68]. The �eld

in�uence on the equilibrium state is beyond the scope of this approach, which is a good

approximation for strongly dissipative systems, in particular for large �akes, as well as

in the case of moderately strong illumination in the form of pulses shorter than the

relaxation time τ . Another drawback of the phenomenological approach is the fact that

it describes a very speci�c situation of all transition and decoherence rates being equal,

even for transitions which should be forbidden in �akes with inversion symmetry. Later,

when we include the adatom, this approach will not allow us to modify the dissipation

on the adatom, therefore being a rather coarse description from the atomic perspective

and for weak atom-�ake coupling rates te,g.
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3.4.2 Lindblad-based formalism

A fully quantum-mechanical description of dissipative processes can be achieved through

the use of the GKLS equation (Eq. 2.72) which involves the superoperator in the form:

D [ρ(t)] =
N2−1∑
k=1

γk

(
Lkρ̃(t)Lk

† − 1

2

{
Lk

†Lk, ρ̃(t)
})

. (3.9)

Lk are Lindblad operators and to fully describe dissipation in a system of several energy

levels two types of these operators are used: N(N − 1) jump operators σij = |i⟩ ⟨j| and

N − 1 independent decoherence operators σii = |i⟩ ⟨i|. In this work we usually consider

transfer from higher to lower energy states and disregard incoherent pumping e�ects.

Note that each of these dissipation channels is described with an independent rate γk,

that provides us with the possibility to assign di�erent rates to di�erent processes, in

particular to treat the adatom individually, to turn selected channels o�, or even to

include pumping with Lk → σij = |i⟩ ⟨j| for i > j. For multilevel systems it was shown

that there are additional, nontrivial constraints on the pure dephasing rates, which can

be found in Ref. 69.

However, there is a strong drawback of the rigorous approach. In the proper quantum-

mechanical form of Eq. (3.9) we simply have ρ̃ = ρ. The equation could then describe

a many-body problem under the condition that it is described in a many-body Hilbert

space. Here, we approach the problem with the single-particle formalism, which has the

great advantage of ability to approximately tackle relatively large systems with hundreds

of electrons. The price to pay is that the Pauli principle is not accounted for in the

master equation. The extreme manifestation of this fact is that the dissipation term

(3.9) without optical pumping pushes all electrons into the lowest-energy eigenstate of

the system, severely breaking the Pauli principle, as shown in the left panel in Fig. 3.7. To

overcome this problem, we have tried several correction methods, which are presented in

detail in Appendix A. Finally, we decided to set ρ̃ = ρ−ρsc. This choice leads to a similar

type of dissipation as the phenomenological approach described in the previous subsection

but it has some advantages. With the new approach we can separately modify transition

rates between pairs of eigenstates, in particular for the adatom. In practice, we can set

them to the values obtained from dipole moment calculations with the Weisskopf-Wigner

formula. We have tested this method numerically for a great deal of �akes of di�erent

shapes and sizes for various initial states in presence of weak and moderate electric �elds,
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i.e. up to 1010 V/m and have not encountered any example breaking the Pauli exclusion

principle or cause any problems with the normalisation or positive-de�niteness of the

density matrix.

Figure 3.7: Comparison of the dissipation in a benzene ring (6 atoms) which initially has the

HOMO-LUMO transition excited using the a) uncorrected Lindblad method (ρ̃ = ρ) and b) the

corrected Lindblad method (ρ̃ = ρ − ρsc). The energy levels of the benzene ring are labelled

with colours, as shown in the small plot in the upper-left corner of the sub�gures. There is no

external �eld nor doping.

3.4.3 Dissipation rates in small systems

Using the large decoherence rate of bulk graphene is justi�ed for large �akes. However,

in general the decoherence rate scales with the size of a quantum system and we ex-

pect it should be reduced for small �akes to prevent unphysically large damping. In this

subsection, we investigate conditions in which the two approaches described in the pre-

vious subsections converge to the same dynamics, both on the analytical and numerical

grounds. This will help us to understand how the decoherence rate τ−1, which is known

from bulk graphene, should be modi�ed for small �akes of graphene.

The phenomenological approach describes a speci�c situation in which all transition

and decoherence rates are equal. The second approach is more complex, as the model

contains many more adjustable parameters. We compare just the dissipative part and

omit the Hamiltonian-evolution term which is equal in both methods. The �rst approach,

given by Eq. 3.8, is very straightforward to analyse and yields:

ρ̇ij =
1

2τ
ρ̃ij. (3.10)
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Figure 3.8: A graphical demonstration of transitions which will be modelled in a system of

several energy levels. We only include transitions from higher energy levels to lower energy

levels, which are driven by jump operators |i⟩ ⟨k| and |j⟩ ⟨i|.

In the second case, let us �rst consider only jump operators:

ρ̇ii = ⟨i|

[
Ne∑
j,k

γjk

(
|j⟩ ⟨k| ρ̃ |k⟩ ⟨j| − 1

2
|k⟩ ⟨k| ρ̃− 1

2
ρ̃ |k⟩ ⟨k|

)]
|i⟩ =

=
∑
j,k

γjk

[
δij ⟨k| ρ̃ |k⟩ −

1

2
δik ⟨k| ρ̃ |i⟩ −

1

2
⟨i| ρ̃ |k⟩ δki

]
=

=
∑
k

γik ⟨k| ρ̃ |k⟩ −
1

2

∑
j

γji ⟨i| ρ̃ |i⟩ −
1

2

∑
j

γji ⟨i| ρ̃ |i⟩ =

=
∑
k>i

γikρ̃kk −
∑
j<i

γjiρ̃ii. (3.11)

If we assume that all emission rates in the equations above are equal, i.e. γkl = γ for

any pair of states |k⟩ and |l⟩ where Ek > El (for spontaneous emission we only include

transitions from higher energy states to lower energy states as shown in Fig. 3.8), this

result can be written in the form:

ρ̇ii = −γ(i− 1)ρ̃ii + γ

N∑
k=i+1

ρ̃kk. (3.12)

Similarly, one can obtain evolution equations for the o�-diagonal density matrix terms:

ρ̇ij = −
γ

2
(i+ j − 2)ρ̃ij. (3.13)

An analogous calculation for the decoherence operators shows that they do not in�u-

ence the diagonal elements of the density matrix:

ρ̇ii = 0 (3.14)
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and the o�-diagonal terms are modi�ed similarly as in the case of spontaneous emission:

ρ̇ij = −
γ

2
(i+ j − 2)ρ̃ij. (3.15)

If we restrict ourselves to the case of undoped or weakly doped �akes, we can assume

that the majority of the dynamics happens around the HOMO-LUMO gap, hence the

important case is i, j ≈
N

2
. If the �ake is su�ciently large we have i, j ≫ 1 and therefore

i+ j − 2 ≈ i+ j ≈ N . The diagonal elements above the LUMO state are most likely not

occupied. Then, we can approximate Eq. 3.12 with:

ρ̇ii = −
Nγ

2
ρ̃ii (3.16)

and Eq. 3.13 gives approximately:

ρ̇ij = −
Nγ

2
ρ̃ij. (3.17)

From the comparison of Eqs. 3.10 and 3.16 one can then �nd the relation between τ and

γ:

τ =
1

Nγ
. (3.18)

In general, we expect similar evolution from the phenomenological and Lindblad ap-

proaches if we set the rates τ and γ, such that they satisfy Eq. 3.18.

Note that the number N is limited by the coherence length lcoh in graphene. In

low temperatures, lcoh ∼ 1µm [70, 71]. Only atoms which are located in the area πl2coh

contribute here, such that the number of atoms contributing to the emission Ncoh ∝ πl2coh.

Assuming that the transition rate in bulk is a sum of the contributions on particular

atoms, we get that the emission rate on one atom γat = γ/Ncoh. These single atom

contributions sum up to the collective decoherence rate γ in bulk. In smaller �akes with

sizes below πl2coh, where N ≪ Ncoh, the value of τ should be then rescaled linearly with

the number of atoms N/Ncoh.

Now we will verify formula 3.18 for small �akes prepared in a state with the HOMO-

LUMO transition excited (i.e. one electron transferred from HOMO to LUMO as com-

pared to the ground state). We investigate the spontaneous emission and decoherence

by changing corresponding γ values. The decoherence rate is given relatively to the
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spontaneous emission rate. In Fig. 3.9 the results obtained numerically from the phe-

nomenological dissipation method are compared to results obtained using the adjusted

Lindblad dissipation. The di�erence between two evolutions was estimated using the

following formula:

∆ =
1

T

∑
tm

∑
i

|ρii,Lindblad(tm)− ρii,phenom.(tm)| · (tm+1 − tm), (3.19)

where tm denotes the m-th time step and T the total propagation time.

Figure 3.9: The plots show the di�erence between the phenomenological dissipation and the

Lindblad dissipation calculated from the occupations in the energy basis (left panel) and in

the site basis (right panel). In sub�gures a) and b) the results are shown for a 6-atom �ake -

benzene ring. In sub�gures c) and d) the results are shown for a 18-atom �ake. The decoherence

rate is given relative to the chosen spontaneous emission rate (so decoherence rate = 1 means

decoherence rate is the same as the spontaneous emission rate).

One can see that the best γ value to reproduce the phenomenological evolution for a

benzene ring lies around 1
6τ

(Fig. 3.9), which would agree with the prediction in Eq. 3.18.

Similarly, for the �ake which contains 18 atoms, the optimal γ seems to lie in the range
1

18τ
- 1

21τ
. This relation does not depend on the choice of τ . In this way we have veri�ed

that formula 3.18 provides a fair estimate of the relation between γ and τ also for small

�akes. The assessments made in this section con�rm the intuitions that decoherence rates

are smaller in smaller systems and gives an idea about their orders of magnitude.

3.5 Absorption spectra

At this stage we are able to calculate absorption spectra of graphene nano�akes. This

is of high importance, since the absorption spectrum is a quantity which can be directly

measured in experiments. There are two ways in which we can calculate the absorption

spectrum of a graphene nano�ake:
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1. Based on the possible transitions between eigenstates [72, 73]:

σnonint(ω) ∝
∑
if

(Ef − Ei) | ⟨f | r |i⟩ |2 δ (Ef − Ei − ℏω) , (3.20)

where (Ef − Ei) | ⟨f | r |i⟩ |2 is the oscillator strength of the transition from state |i⟩

to |f⟩ and the summation goes over indices i ∈ [1,#HOMO] and f ∈ [#LUMO, N ].

This method neglects the Coulomb interactions in the system, therefore σnonint is

also called the non-interacting absorption cross-section.

2. By illuminating the structure with a short spectrally broad pulse E(t) = E(t)êi

(i ∈ [x, y]). In the extreme case of E(t) ∼ δ(t) this corresponds to exciting the

nano�ake with all possible frequencies simultaneously. Then one can record the

resulting dipole moment P(t) and after taking the Fourier transform of E(t) and

P(t) calculate the frequency-dependent polarizabilities αi,j(ω) according to [74]:

αi,j(ω) =
Pi(ω)

Ej(ω)
, (3.21)

where i, j ∈ [x, y]. The absorption cross-section is then proportional to:

σint
j (ω) ∝ ω Im (αx,j(ω) + αy,j(ω)) . (3.22)

The numerical implementation of these equations has been performed by our co-workers

from the Institute of Theoretical Solid State Physics at Karlsruhe Institute of Technol-

ogy (special thanks to prof. Carsten Rockstuhl and to Marvin Müller). The analysis of

absorption spectra has proven to be an important tool for classifying resonances in nanos-

tructures. The framework which is presented in this section has been used to explore the

problem of distinguishing between plasmonic (or more generally interaction-mediated)

and single-particle-like resonances in graphene nanostructures. It has been an important

tool in the creation of the energy-based plasmonicity index, which is one of the measures

for resonance classi�cation in nanostructures. More details on this subject can be found

in Refs. 40, 75.

Figure 3.10 presents the absorption spectra for triangular graphene nano�akes of

varying size. Both for armchair- and zigzag-edged �ake we observe that as the size of the

nano�ake grows, the energies of its resonant absorption peaks decrease and their intensity

increases. This result is in agreement with the energy plots presented in Figs. 3.3 and 3.4.
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Figure 3.10: Exemplary non-interacting absorption spectra for triangular graphene nano�akes

of various sizes and edge-type character. Upper panel: armchair-edged nano�akes. Lower panel:

zigzag-edged nano�akes.

In the non-interacting approach, the absorption peaks correspond to transitions between

pairs of eigenstates, therefore the decreasing energy gap around the Fermi level directly

leads to lower resonant energies in larger �akes. Figure 3.11 presents a comparison of

the interacting and non-interacting spectrum for a triangular armchair-edge graphene

nano�ake with 18 atoms (size 0.71 nm). The left sub�gure shows the interacting spectrum,

which takes into account Coulomb interactions in the system, and the non-interacting

spectrum, in which the Coulomb interaction is neglected. The relation between these

two spectra is explained in the right sub�gure. It shows how the absorption spectra vary

as the Coulomb interaction strength in the system is gradually scaled by a factor in the

range from 0 to 1. This reveals a continuous transition from the non-interacting (scaling

factor = 0) to the interacting (scaling factor = 1) case.
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Figure 3.11: Absorption spectra for an 18-atom triangular graphene nano�ake. Left: Com-

parison of interacting and non-interacting absorption spectrum. Right: Absorption spectra in

the function of Coulomb interaction strength in the system. The Coulomb interaction here is

continuously scaled from 0 (which corresponds to a non-interacting spectrum) to 1 (interacting

spectrum).
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Chapter 4

Properties of graphene nano�akes with

adatoms

The most general form of our model describes the dynamics of a graphene nano�ake with

an adatom, illuminated with external electromagnetic �eld. In this Section, we will follow

a similar path as in Chapter 3, this time concentrating on how to incorporate the adatom

(modelled as a two-level system) into our framework. We start with the tight-binding

Hamiltonian of the hybrid system consisting of the �ake and the adatom. The adatom

introduces charge inhomogeneity and modi�es Coulomb forces in the system, which proves

the self-consistency procedure especially useful in this case. After including the external

illumination in the Hamiltonian, we look closely at the time evolution, exploring both

processes in the two-level system, such as Rabi oscillations and spontaneous emission,

and properties of the entire system, like absorption spectra and their dependence on the

adatom position.

4.1 Hamiltonian of graphene nano�akes with adatoms

The �eld-independent part of the Hamiltonian

HTB = −t
∑
⟨l,l′⟩

(|l⟩ ⟨l′|+ |l′⟩ ⟨l|) +
∑
α

Eα |α⟩ ⟨α|+
∑
α,l

tα,l (|l⟩ ⟨α|+ |α⟩ ⟨l|) (4.1)

is constructed in the tight-binding approximation, similarly as in Chapter 3 for stand-

alone graphene nano�akes. Again, we assume that an electron can be exchanged between

nearest carbon-atom neighbours with the rate t and ⟨l, l′⟩ means summation over nearest
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neighbour atomic sites l and l′. The adatom introduces several orbitals labelled by α,

whose energies Eα are evaluated with respect to the on-site energy in graphene, e.g., by

comparison of ionisation energies in graphene and of a given atom orbital. Electrons can

be exchanged between the adatom orbitals and selected �ake sites, and the corresponding

hopping rate is denoted as tα,l. We keep t = 2.66 eV as the hopping parameter between

the neighbouring sites in graphene. We consider adatoms bonded to graphene in the top

position, as shown in Fig. 1.8.

The hopping rates between the adatom orbitals and carbon sites tα,l generally depend

on the adatom parameters. We leave these parameters unspeci�ed in order to keep the

approach general and characterise the scope of possible physical e�ects achievable within

the model, rather than investigate speci�c adatoms. However, in the next section we

investigate the relation of the hopping rates with the distance to the coupling site, to

provide intuitions about the orders of magnitude for relevant distances. Adatom - �ake

hopping rates set to zero tα,l = 0 correspond to an in�nite distance and the absence of

coupling.

4.2 Relation of model parameters and adatom distance

Throughout this thesis, we do not specify the adatom type exactly but rather study the

scaling of e�ects with the hopping parameters between its energy levels and the graphene

�ake. Here, we provide an estimate of adatom distances to the coupling site of the

graphene �ake that correspond to given hopping rates.

If we take pristine graphene and shift one particular carbon atom by some distance,

we can model the hopping rate value as following a quadratic relation of the form: t′ =

t·(acc/l)2, where t′ is the hopping rate between the shifted atom and its nearest neighbour,

acc is the carbon-carbon distance in graphene (which is related to the lattice constant as

acc =
a
√
3
≈ 1.42Å) and l is the distance from the shifted atom to the nearest carbon

atom in the modi�ed lattice [76].

We assume that the hopping rates between the graphene sites and the adatom states

follow a similar relation which is a good approximation for small distances. This allows
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Figure 4.1: Left: Hopping rate tα between the adatom and the nearest graphene site as a

function of the distance between them. Right: Coulomb interaction between the adatom and

the nearest graphene site as a function of the hopping rate. The black dashed line is located at

the distance between nearest atoms in graphene (at acc = 2.46Å/
√
3 ≈ 1.42Å). The red lines

are located at the hopping rate for pristine graphene: t = 2.66 eV. Here, we assume the adatom

has carbon-type orbitals, i.e. β = 1 and a = acc.

us to estimate the distance between the adatom and �ake based on the hopping value:

l = βa

√
t

tα
, (4.2)

where a is the distance, at which the hopping parameter tα = t for a carbon atom and

β is a constant, which accounts for the choice of a di�erent adatom type than carbon,

in particular with a di�erent orbital type than pz. For carbon β = 1. The left panel in

Fig. 4.1 shows the relation of the distance l to the hopping parameter tα for an adatom

with carbon-like orbitals, such that β = 1 and a = acc.

4.3 Coulomb interaction on the adatom

Since the Coulomb interaction is inversely proportional to distance, it depends on the

hopping rate tα in the following way: v ∝ 1
acc

√
tα
t
. We include the Coulomb interaction

modi�cation in the matrix v by scaling the elements corresponding to the adatom sites

by a coupling-dependent term:

vαl =
vnn
β

√
tα
t
, (4.3)

where e2vnn = 8.64 eV denotes the equilibrium Coulomb interaction value for nearest

neighbours in graphene [66]. The resulting relation of the coupling constant tα on distance
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and its relation with the Coulomb interaction strength is shown in the right panel of

Fig. 4.1.

Another noteworthy fact is that the adatom introduces two sites at the exact same

location. So the on-site in�uence on these sites should arise from both of them, contrary

to the situation on the rest of the �ake where the on-site element only arises from one site.

Therefore, on the diagonal of v, we impose the on-site value e2vos = 16.52 eV [66] on the

entire 2× 2 part which corresponds to the adatom sites, s.t. vgg = vee = veg = vge = vos.

Note that the proposed scaling guarantees that the Coulomb interaction between the

adatom and a graphene �ake disappears as the �ake is moved to in�nity (i.e. when

tα −→ 0).

4.4 Energy spectra of nano�akes with adatoms

In this section, we look at the possible energies of graphene nano�akes with adatoms.

We also investigate how the energy spectra change while the �ake and the adatom are

coupled to each other with increasing coupling strength. We focus on armchair-edged

triangular nano�akes and adatoms with two energy levels: an excited state with energy

Ee = 0.5 eV and a ground state with energy Eg = −0.5 eV.

Knowing the Coulomb interaction between the adatom and the �ake, we can now

proceed to perform the self-consistent procedure described in 3.2, which gives us a new

dressed basis set, that includes the initial Coulomb interaction. Note that the Coulomb

interaction values on the adatom need to be modi�ed accordingly, as described in the

previous section. The resulting energy spectra and real-space charge distributions are

shown in Figs. 4.2, 4.4 and 4.5. In Fig. 4.2 we present the dependence of the energy

spectra on the hopping parameters te, tg (here assumed to be equal) for two di�erent

nano�akes. As expected, we can explicitly see that the eigenstates of the nano�ake which

mix with the adatom eigenstates most strongly are also the ones which change their

energies the most when we increasingly couple the adatom to the nano�ake. Moreover,

the same �gure shows that the presence of a strongly coupled adatom can produce states

that have energies outside of the [−8, 8] eV range. Shifting up or down the excited and

ground adatom levels breaks the electron-hole symmetry in the energy spectrum of the

system, as shown in Fig. 4.3. In particular, the energy di�erences between the energy
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levels are not symmetric around the zero energy anymore. This causes a splitting of the

originally degenerate peaks in the optical absorption spectrum, leading to a more complex

optical response. For the zig-zag triangle and an adatom with symmetrical energy levels

±0.5 eV, there are two degenerate eigenstates corresponding to the energy 0 eV that do

not move with increasing te and tg. One of these states, however, couples to the adatom,

whereas the other does not, hence the multi-coloured line at 0 eV. When the adatom

energies are not symmetrical around zero, the degeneracy of these states is lifted. Then,

one of the zero-energy states lowers its energy with increasing coupling to the adatom

and the other remains in place.

In Fig 4.4 we can see that a pristine graphene �ake has uniform charge distribution.

As expected, when the coupling between the graphene �ake and adatom is increased,

a higher fraction of the charge becomes exchanged between the two subsystems. The

biggest perturbation is located in the vicinity of the adatom and the in�uence on the

carbon atom located further than 1 nm away from the adatom is negligible.

In Fig. 4.5 we present energy spectra of a nano�ake with an adatom and doping.

Again, the adatom has a dominant impact on atoms which are located near it. However,

now the perturbation is extended across the entire nano�ake, which can be clearly seen

in the case of 30 doping electrons. Although the adatom adds only one new electron

into the system, the symmetry breaking is enough to a�ect the charge distribution in the

entire nano�ake.
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Figure 4.2: Dependence of the energy spectra on the hopping parameter te = tg of two graphene

nano�akes, each with an adatom attached at the left top-most atom of the �ake. Left: 18-atom

�ake (size 0.71 nm), right: 60-atom �ake (1.56 nm). The adatom has levels ±0.5 eV. The

line colour indicates the population of a given eigenstate localised on the adatom in real space:

Cj = |aje|2+ |ajg|2, where e and g denote the excited and ground adatom sites, and ajl is de�ned

via Eq. 3.3.
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Figure 4.3: Dependence of the energy spectra on the hopping parameter te = tg of two graphene

nano�akes, each with an adatom attached at the left top-most atom of the �ake. Upper row: 18-

atom armchair-edge �ake (size 0.71 nm), lower row: 22-atom zigzag-edge �ake (0.74 nm). The

adatom level energies are given in the top left corner of each sub�gure. The line colour indicates

the population of a given eigenstate localised on the adatom in real space: Cj = |aje|2 + |ajg|2,

where e and g denote the excited and ground adatom sites, and ajl is de�ned via Eq. 3.3.
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Figure 4.4: Real-space charge distribution in a triangular graphene �ake of size 2.41 nm with

an adatom attached at the top of the �ake and coupled with increasing strength: before the

self-consistency (left), after the self-consistency (middle) and the di�erence ρsc−ρAufbau (right).

The charge on the adatom is presented on the left side next to the �ake: the lower dot denotes

the charge in the ground state, upper dot - in the excited state.
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Figure 4.5: Real-space charge distribution in a triangular graphene �ake of size 2.41 nm with

an adatom attached at the top of the �ake coupled with te = tg = 2 eV and with additional

doping of d = 0, 10, 20, 30 electrons: before the self-consistency (left), after the self-consistency

(middle) and the di�erence ρsc − ρAufbau (right). The charge on the adatom is presented on the

left side next to the �ake: the lower dot denotes the charge in the ground state, upper dot - in

the excited state.
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4.5 Eigenstate symmetry breaking due to the adatom

The real-space distribution of eigenstates of a free triangular armchair-edged �ake consist-

ing of 60 atoms (1.56 nm) is presented in Fig. 4.6. Each sub�gure presents one particular

eigenstate ϕj with the energy Ej indicated in the upper-left corner. The quantity which

is shown for each eigenstate ϕj is the absolute value of the amplitude |ajl| as de�ned in

Eq. 3.3. In general, states with energies ±Ej have the same probability distribution |a2jl|

but the exact amplitudes ajl can vary by a phase factor. In Figs. 4.6 to 4.8 the phase

factor is omitted for the sake of clarity. Figures which contain the full information about

the amplitude, including the sign, can be found in Appendix B (Figs. B.4- B.6).

First, let us look at eigenstates of the 60-atom nano�ake without the adatom attached.

It is worth noting that not all eigenstates have threefold symmetry. Even though it might

seem wrong at the �rst glance, it is not a problem. In fact, after a careful examination

one can see that only states that correspond to degenerate energy levels do not manifest

this symmetry. For any chosen energy value a superposition of corresponding eigenstates

can be constructed which is symmetric with respect to 120◦ rotations and, therefore, no

particular direction is preferred in the real world.

Locating the adatom near the �ake causes a perturbation in the symmetry of the

system and leads to symmetry breaking in the eigenstates. The distribution of charge in

the eigenstates in real space for triangular graphene nano�akes with a coupled adatom is

shown in Figs. 4.7 and 4.8.

The adatom introduces two new eigenstates, namely the states which appear at

±0.34 eV for te = tg = 2 eV and at ±0.18 eV for te = tg = 5 eV. These states origin

at the ground and excited adatom states with energies ±0.5 eV at the absence of coupling

and gradually hybridise with �ake states as te and tg increase, which correspondingly

shifts their energies. These states become the new HOMO and LUMO of the system and

therefore are crucial for the optical properties of the system. The states which are located

directly below HOMO (−1.11 eV) and directly above LUMO (1.11 eV) do not couple to

the adatom states and consequently, their energies remain unchanged when the adatom

is present. Here, we only present visually the results for a 1.56 nm nano�ake, since the

number of eigenstates is not too large and it is convenient to analyse with the bare eye.

This �nding, however, is a general observation which is true for HOMO-1 and LUMO+1

states in graphene nano�akes of various sizes and shapes.
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Figure 4.6: Distribution on sites in real space of eigenstates of a solo 60-atom (1.56 nm) triangular

graphene nano�ake.
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Figure 4.7: Distribution on sites in real space of eigenstates of a 60-atom (1.56 nm) armchair-

edged triangular graphene nano�ake with an adatom attached in the lower-left corner of the

nano�ake (location denoted with an X mark) with coupling strengths te = tg = 2 eV. The phase

factor is neglected for clarity.
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Figure 4.8: Distribution on sites in real space of eigenstates of a 60-atom (1.56 nm) armchair-

edged triangular graphene nano�ake with an adatom attached in the lower-left corner of the

nano�ake (location denoted with an X mark) with coupling strengths te = tg = 5 eV. The phase

factor is neglected for clarity.

We can also note that in the states which are initially degenerate attaching the adatom
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causes one state of the pair to couple to the adatom states and change its energy, while

the other state remains una�ected. Hence, attaching the adatom lifts the degeneracy of

states. States which in the solo graphene �ake correspond to degenerate energy values

and can be combined to form three-fold symmetric states with the adatom become non-

degenerate states with approximate two-fold symmetry, e.g. for the case of the coupling

strength te = tg = 2 eV the states at ±5.41 eV, ±5.29 eV and ±2.32 eV. This �nding is

also true in zigzag-edged nano�akes. Moreover, the investigation of zigzag-edged �akes

suggests that when there are multiply degenerate states (more than two eigenstates per

energy), still only one eigenstate couples to the adatom states and the other states remain

unchanged (see Figs. B.1, B.2 and B.3 in Appendix B).

4.6 Including external illumination

The external electric �eld is coupled to the nano�ake, similarly as in Chapter 3:

H (ρ(t), t) = HTB − eΦcharge − eΦ(t) = HTB − eΦcharge +
[
Hext(t)− eΦind(t)

]
. (4.4)

Here,

Hext(t) = −
∑
L

e rL · E(r, t) |L⟩ ⟨L| − deg · E(r, t) (|e⟩ ⟨g|+ |g⟩ ⟨e|) (4.5)

is the energy of the external �eld that arises due to the illumination with an electric �eld

E(r, t) assumed to be polarised in the plane of the graphene �ake. The capital letter L

denotes a joint summation index L = {l, α} going over the carbon sites l and over the

adatom orbitals α. The graphene �ake and the adatom are treated at the same level

of approximation. We explicitly take the �ake's spatial structure into account through

the summation over the sites. Each carbon atom site is, however, approximated as a

point, and so is the adatom. The internal structure of the adatom is taken into account

through the transition dipole moment operator deg. The last Hamiltonian term describes

transitions induced by the external �eld between the ground and excited states of the

adatom.

As the electric �eld moves the electrons away from their equilibrium positions, Coulomb

interactions arise which are accounted for by the �eld-induced potential:

Φind
KL(t) = −eNeδKL

∑
L

vLL′ (ρL′L′(t)− ρscL′L′) , (4.6)
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Figure 4.9: Distribution of the x-components (left) and y-components (right) of the electric �eld

that is induced around an 18-atom graphene nano�ake due to an external illumination polarised

either in x-direction (upper panels) or in y-direction (lower panels). The locations of graphene

sites are marked in the �gures as thin green circles.

where the summation goes over the all carbon and adatom sites L = {l, α}.

Finally, we add to our Hamiltonian a term coming from the fact that when the exter-

nal electromagnetic �eld excites the electronic charge density, the electrons respond by

oscillating and thus generate an induced electric �eld [77]:

Eind (t, r) =
1

4πϵ0

∑
l∈flake

Ql (t) (rl − r)

|rl − r|3
, (4.7)

where Ql(t) = Ne (ρll(t)− ρscll ) is the charge induced on the l-th site at time t. This �eld

is added to the illumination in the Hamiltonian.

Depending on the location of the adatom with respect to the �ake, the induced �eld

can either enhance the e�ect of the external �eld or be opposite in phase and reduce
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its impact. The distributions of the induced �elds for an 18-atom graphene nano�ake

illuminated at the frequency 1 eV are shown in Fig. 4.9. The colorbar is centred such

that white colour indicates spots where the induced �eld is equal in amplitude to the

external �eld, and blue regions show where the induced �eld is weaker than the external

one. The induced �eld dominates the external �eld in the red and pink regions, i.e.

at distances up to 3 Å from the �ake. The dominant component of the induced �eld

is always the one whose orientation is in agreement with the external �eld orientation.

However, since we show the near �eld, also the perpendicular component of the induced

�eld is present.

4.7 Time evolution

The local enhancement of the electromagnetic �eld around nanostructures, such as graphene

nano�akes, produces extremely strong light-matter interactions, on the order of hundreds

of THz. Because of this, placing a two-level system near a graphene nano�ake will greatly

enhance the intensity of its spontaneous emission. This is an optical channel for the

interaction of the graphene �ake with an adatom. On the other hand, the extreme elec-

tromagnetic �elds are strongly localised and the emitter has to be located at a very small

distance from the nano�ake to experience the e�ects of its presence. At distances below

0.5 nm the tunnelling e�ects become important [78], meaning the hopping of electrons tα

between subsystems has to be taken into account. In this Section, we explore the impact

of the electron hopping e�ect between the adatom and the nano�ake on coherent (Rabi

oscillations) and incoherent (spontaneous emission) processes in the two-level system, and

compare it to the in�uence of the optical mechanism.

4.7.1 Modi�cation of Rabi oscillations

We will apply the formalism presented above to the case of a single two-level adatom

coupled to a selected site of a graphene �ake, illuminated with an external laser beam.

First, we study how the coherent Rabi oscillations between the adatom eigenstates are

modi�ed by the presence of the carbon �ake. The time evolution of the density matrix

is again described via the master equation 3.7 similarly as in Section 3.4. In this section,

we focus only on reversible Hamiltonian dynamics, assuming that there is no dissipation,
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i.e. D [ρ(t)] = 0.

One of the canonical systems discussed in quantum optics is an atomic two-level

system subject to external illumination. Its population undergoes sinusoidal Rabi oscil-

lations between the ground and excited states, as described in Chapter 2. The population

oscillation amplitude is equal to 1 in the case of resonance, and the oscillation frequency

(called Rabi frequency) reads as Ω =
1

ℏ
E · deg, where E is the external and induced

�eld amplitude at the position of the two-level system and deg is the transition dipole

moment between the ground and excited adatom states. Below we study how the generic

Rabi oscillations are modi�ed for di�erent coupling strengths between the adatom and

the �ake. We focus on armchair-edged triangular nano�akes of sizes 0.71 nm and 2.41

nm, respectively with 18 and 126 carbon atoms. The adatom is a two-level system with

energy states 0.5 eV and -0.5 eV and a dipole moment of 7.5D. The value of the dipole

moment has been chosen such that for moderately strong �elds we can observe the Rabi

oscillations happening on a similar time-scale as the dissipation in bulk graphene (which

happens with a lifetime τ = 100 ℏ/eV). We assume for simplicity that both adatom levels

are coupled to the graphene �ake equally strongly, i.e. te = tg for all simulations presented

in this section. The investigated hopping parameters te and tg are in the range from 0 to

5 eV, which corresponds to distances starting from 1 Å according to the selected model

(see Fig. 4.1). The external �eld has an amplitude of 0.05 V
Å
and is vertically polarised.

Dipole moment change due to state mixing

At �rst, we neglect the electron-electron Coulomb interactions in the system for the sake

of clarity. This allows us to see the basic e�ect happening in the adatom as it is coupled

to the �ake with increasing strength - the change of frequency of the Rabi oscillations

between the HOMO and LUMO states.

For the parameters given above, we �nd that the stronger we couple the adatom to

the graphene �ake, the lower frequency of Rabi oscillations it exhibits when illuminated

resonantly (Fig. 4.11). This can be explained by the fact that the dipole moment of the

adatom has been set to a relatively large value. In the graphene �ake, the transitions

between its eigenstates have lower dipole moments, up to 5 Debye or none at all. When we

move the adatom closer to the graphene �ake, the eigenstates of both systems mix and the

dipole moment between HOMO and LUMO states is decreased with respect to the original
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dipole moment in the adatom. In Fig. 4.10 we present the change of the transition dipole

moment between the HOMO and LUMO states in an 18-atom armchair-edged triangular

nano�ake due to the coupling of an adatom with increasing strength. Since the Rabi

frequency of oscillations depends on the transition dipole moment between the states

which exchange population, it will also decrease with increasing coupling of the adatom.

This is presented in Fig. 4.11. The energies of the HOMO and LUMO states in the hybrid

system consisting of a nano�ake and an adatom change with increasing coupling of the

adatom, as was shown in Fig. 4.2. We chose the right illumination frequency for each

value of te and tg, so that it is resonant to the HOMO-LUMO transition.

Figure 4.10: Change of the dipole moment in an 18-atom armchair-edged triangular nano�ake

due to the coupling of an adatom with increasing strength te = tg and the resulting eigenstate

mixing of both subsystems.

Figure 4.11: Rabi oscillations. Occupations in energy basis in an 18-atom �ake with an adatom

coupled with a) te = tg = 0.5 eV b) te = tg = 2.0 eV c) te = tg = 3.5 eV. The HOMO and LUMO

states exchange population. The population of other states remains nearly constant in time.

Here, the Coulomb interaction is neglected. The illumination frequency is always resonant to

the HOMO-LUMO transition frequency.
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Now, let us �x the illumination frequency to be constant and equal to the energy

di�erence between the ground and excited level of an uncoupled two-level system. As the

adatom is increasingly coupled to the �ake, the energy structure of the system is modi�ed

but the illumination frequency does not adjust to it, so that in this case detuned behaviour

is expected. In fact, we observe increased Rabi frequency and lowered amplitude of

oscillations, as shown in Fig. 4.12.

Figure 4.12: Rabi oscillations. Occupations in the energy basis in time for a 18-atom �ake with

an adatom coupled with a) te = tg = 0.5 eV b) te = tg = 2.0 eV c) te = tg = 3.5 eV. Here, the

Coulomb interaction is neglected. The illumination frequency is �xed and equal 1 eV in each

case.

Finally, we include the electron-electron interaction and look again at the time evo-

lution of the hybrid system consisting of the triangular armchair graphene �ake and the

two-level adatom. The Coulomb interactions depend on time and modify the Hamil-

tonian di�erently at each timestep. Therefore, the energy levels change accordingly in

time and there is no particular illumination frequency, which would be resonant to the

HOMO-LUMO transition at all times. We thus expect a detuned and more irregular be-

haviour than without the Coulomb interactions. However, we are still able to reproduce

Rabi oscillations when illuminating the system with a frequency which corresponds to

the HOMO-LUMO transition in the system without any external illumination. As com-

pared to the previous cases, these oscillations are modi�ed by the Coulomb interaction,

especially in the case of stronger coupling of the adatom (Fig. 4.13).

Change of �eld amplitude due to the �eld induced by the �ake

Under external illumination, the electric charge in the �ake oscillates and generates an

additional induced electric �eld, which should be included in the time evolution. Since
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Figure 4.13: Rabi oscillations. Occupations in the energy basis in time of an 18-atom �ake a)

te = tg = 0.5 eV b) te = tg = 2.0 eV c) te = tg = 3.5 eV. The illumination frequency is resonant

to the transition frequency between HOMO and LUMO states of the system before illumination.

the Rabi frequency depends on the �eld amplitude, it will change due to the change of

the �eld amplitude by the �ake. Depending on the sign of the induced �eld, it can either

increase or decrease the Rabi frequency. For the chosen position of the adatom, the optical

e�ect (induced �eld impact) is negligible compared to the e�ect of the electron exchange

between the �ake and the adatom. The e�ect would be stronger if one positioned the

adatom in regions where the induced �eld is equally strong or stronger than the external

�eld (like in the reddish regions in Fig. 4.9). However, then the evolution becomes erratic

and a much smaller integration step is required to perform calculations.

Evolution in larger �akes

In general, the shift of Rabi frequency with increasing adatom coupling strength looks

similarly in larger �akes. First, we look at two adatom positions - near the centre of the

�ake and near one corner of the �ake - and �nd in both cases that the Rabi oscillations

are distorted in a similar manner as for the 18-atom case. The dynamics in energy basis

for both adatom locations and HOMO state distributions are presented in Figs. 4.14, 4.15

and 4.16.

Even though the details of the evolution are di�erent, the three distinct cases are

similar as for the smaller �akes. For small values of te and tg we can see slightly mod-

i�ed Rabi oscillations, large values of te and tg cause detuning and the evolution in the

intermediate regime is irregular.

A natural question which arises in larger �akes is whether the position of the adatom

a�ects the behaviour of the system. To investigate this, twelve di�erent adatom coupling

sites were chosen along two axes and labelled with letters A-L, as shown in Fig. 4.17.
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Figure 4.14: Rabi oscillations in a 126-atom �ake with the adatom attached near the edge of

the �ake with a coupling strength of a) te = tg = 0.5 eV b) te = tg = 2.0 eV c) te = tg = 3.5 eV.

Figure 4.15: Rabi oscillations in a 126-atom �ake with the adatom attached near the centre of

the �ake with a coupling strength of a) te = tg = 0.5 eV b) te = tg = 2.0 eV c) te = tg = 3.5 eV.

Figure 4.16: Real-space distribution of the HOMO state in a 126-atom �ake with the adatom

attached with a coupling strength of te = tg = 2.0 eV a) near the edge of the �ake, b) near the

centre of the �ake. The occupation on adatom sites is marked by the two dots on the left (upper

dot - excited state, lower dot - ground state). The location of the adatom is denoted by the

black X mark.

We focus on the case of te = tg = 2 eV, since this is a coupling strength which lies in

the intermediate regime between the resonant and detuned Rabi oscillations. The energy

basis dynamics is presented in Figs. 4.18. One can note that the time evolution depends
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Figure 4.17: Atom labelling.

to some extent on the adatom's position but further research is required to precisely

determine the impact of the adatom's location on the evolution of the system.

4.7.2 Spontaneous emission

An excited atomic system can spontaneously decay from an excited state into a lower-

energy state, while simultaneously releasing energy into the surrounding environment.

The rate of this emission depends on the properties of the environment. The enhance-

ment of spontaneous emission rates of atoms upon coupling to environment was discovered

by Edward Purcell and is hence called the Purcell e�ect [79]. A strong Purcell e�ect can

be observed in atoms in weakly coupled cavities and in emitters located near plasmonic

nanostructures, which are able to con�ne the electromagnetic �eld into very small vol-

umes [80]. In this section, we investigate how the graphene nano�akes in�uence the

emission rates in adatoms which they are coupled to.

We exploit the Green's tensor formalism, with the decay rate given by Eq. 2.61. The

Green's tensor can be decomposed into the homogeneous part G0 and the scattered part

Gs: G = G0 + Gs, which in turn allow us to rewrite the decay rate as a sum of two

corresponding contributions Γ = Γ0 + Γs, involving either G0 or Gs in Eq. 2.61. In free

space, the scattered part of the Greens tensor vanishes and so does the scattered emission

rate. The homogeneous part of the tensor leads to the Weisskopf-Wigner formula 2.62,

describing the spontaneous decay of a system with a given transition frequency and

dipole moment. Below, we investigate the in�uence of electronic interactions between the

adatom and the �ake on the homogenous spontaneous emission rate which occurs due
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Figure 4.18: Occupation of energy states in time in a 126-atom graphene nano�ake with the

adatom attached at sites A-L (see Fig. 4.17).

77



to modi�cation of these two parameters, as ωeg is replaced by ωLH being the frequency

di�erence between the LUMO and HOMO states, and similarly as the dipole moment deg

is replaced by the gradually modi�ed dLH .

On top of that, the �eld of our dipole emitter, to a good approximation localised at

the adatom position, is scattered by the �ake giving rise to the scattered Green's tensor

component Gs and the corresponding emission rate component Γs.

Below, we analyse these e�ects one by one. First, we investigate the electronic mech-

anism by �rst attaching the adatom to the nano�ake and calculating new eigenstates

of the combined system, whose energies are changed with respect to the energies in a

pristine graphene nano�ake without adatoms (conf. Fig 4.2) due to the exchange of elec-

trons between the two subsystems. The next step is the evaluation of transition dipole

moments and frequencies between pairs of eigenstates in the system and then using the

Weisskopf-Wigner formula for spontaneous emission.

The optical enhancement of emission rates can be calculated based on the evaluation

of the scattered Green's tensor arising in the dipole illumination scheme. We perform

this calculation twice. First, we neglect the e�ects of electronic coupling by setting

te = tg = 0 and keeping the adatom dipole moment and frequency unmodi�ed regardless

of the distance to the �ake. Please note that this calculation re�ects the classical approach

widely used in plasmonics, where the Purcell enhancement is quanti�ed via the scattered

�eld intensity at the emitter's position.

The �nal calculation extends this approach and includes both the optical and the

electronic e�ects: the scattered Green's tensor is evaluated for a system with the modi�ed

transition dipole dLH and frequency ωLH . This step-by-step method allows us to compare

di�erent contributions and estimate their impact for di�erent adatom-�ake distances.

Electronic in�uence on the spontaneous emission rate

To calculate the spontaneous emission rate modi�cation caused by the electronic mech-

anism we start by evaluating transition dipole moments between energy states from the

formula:

dij = ⟨ϕi| r |ϕj⟩ . (4.8)
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Putting Eq. 3.3 into Eq. 4.8 we obtain:

dij =

(∑
l

a∗il ⟨l|

)
er

(∑
k

ajk |k⟩

)
=
∑
l,k

a∗ilajk ⟨l| er |k⟩ =
∑
l,k

ea∗ilajkδkl =
∑
l

a∗ilajl.

(4.9)

As before, the resonant frequency ωij is evaluated by diagonalisation of the tight-binding

Hamiltonian which describes the adatom and �ake. Now we have all the quantities which

are necessary to evaluate the spontaneous emission rate in the system with the use of the

Weisskopf-Wigner formula 2.62:

Γ (ϕj → ϕi) =
ω3
ijd

2
ij

3πϵ0ℏc3
, (4.10)

where Γ (ϕj → ϕi) is the transition rate from state |ϕj⟩ to |ϕi⟩. The dependence of the

spontaneous emission rate on the distance between the nano�ake and adatom is shown

for two triangular nano�akes in Fig. 4.19. The coupling strengths te and tg have been

evaluated based on the distance using Eq. 4.2 with β = 1.

Figure 4.19: Dependence of the spontaneous emission on the distance from two triangular

armchair-edged graphene nano�akes consisting of 36 atoms (left panel) and 126 atoms (right

panel) computed from the transition dipole moment and frequency modi�cation of the HOMO-

LUMO transition due to the electronic coupling of the adatom with the �ake. The dipole moment

in the uncoupled adatom was set to deg = 0.01 eÅ≈ 0.05D.

Optical in�uence on the spontaneous emission rate

To evaluate the spontaneous emission rate arising from the optical mechanism, we illu-

minate the nanostructure with a dipole �eld source of a given orientation located at the

position of the adatom rad and propagate the entire system in time. Next, we calculate
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the scattered part of the �eld which is induced from the nano�ake at the position of the

adatom using formula 4.7. We continue by performing a Fourier transform of the induced

�eld:

Eind(rad, t) −→ Eind(rad, ω). (4.11)

Next, we construct the scattered part of the Green's tensor of the graphene nano�ake as

de�ned by the following relation:

Gs (rad, rad, ω) d =
1

ω2µ0

Eind (rad, ω) , (4.12)

Finally, the spontaneous emission rate can be evaluated from the expression:

Γs =
2ω2

0

ℏϵ0c2
d ImGs (rad, rad, ω0)d, (4.13)

where d = [dx, dy, dz] describes the dipole moment of the adatom and ω0 is its resonant

frequency. To obtain a more accurate prediction of the spontaneous emission rate, one

might go beyond the dipole approximation and add further multipolar terms in equa-

tion 4.13, as we have described in Ref. 62.

The dependence of the spontaneous emission rate on the distance between the nano�ake

and adatom is shown for two adatom dipole orientations in Fig. 4.20. We observe that

for small distances the optical mechanism dominates the electronic in�uence by several

orders of magnitude. However, when we go far away from the �ake, the spontaneous

emission rate evaluated with the Green's tensor goes to zero, whereas the electronic part

remains constant on the order of 106 Hz.

4.8 Absorption spectra with adatom

Here, we investigate the in�uence of the adatom's position on the absorption spectra

of the nano�akes with adatoms (Fig. 4.21). Generally, in hybrid systems consisting of

a nano�ake and adatom increasing the coupling strength te and tg causes a splitting of

resonances. When the adatom is attached to sites near the centre of a �ake (D, E, F, G,

H, I), the resonances of the hybrid system get more a�ected than resonances in systems

with an adatom located near the edge of the �ake.

The in�uence of the adatom is seen strongest in small nano�akes, especially in the

armchair-edges ones (Fig. 4.22). The most pronounced resonance (at 2.84 eV in the

80



Figure 4.20: Dependence of the spontaneous emission rate on the distance from the �ake. Left:

For x-orientation of the adatom dipole moment. Right: For y-orientation of the adatom dipole

moment. Here, the emission rate is computed from the scattered part of the Green's tensor of

the structure and plotted relatively to the free-space emission value. Figure from Ref. 62.

Figure 4.21: Non-interacting absorption spectra and their dependence on the adatom coupling

strength te = tg for a triangular nano�ake with 126 atoms and an adatom attached at positions

A-L, as labelled in Fig 4.17. The spectra are shown in arbitrary units.

smallest armchair triangle) corresponds to the HOMO-LUMO transition in the pristine

nano�ake. With the adatom, new HOMO and LUMO states arise which consist mostly

of adatom levels. The resonance corresponding to there states is the one with the lowest
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Figure 4.22: Non-interacting absorption spectra and their dependence on the adatom coupling

strength te = tg for triangles of various sizes with an adatom attached at the coordinates [0,

1]Å (next to the lower-left corner of the �ake). Upper row: armchair edged. Lower row: zigzag-

edged.

energy (at 1 eV for te = tg = 0). The intensity of this resonance grows with te and tg,

since for this calculation we assumed the transition dipole moment element in the adatom

deg to be equal zero. The energy of this resonance decreases with growing te and tg since

the adatom levels shift their energies closer to the zero-point energy, as shown in Fig. 4.3.

The in�uence of the adatom is more pronounced in armchair-edge �akes.

In Fig. 4.23 we present absorption spectra for a triangular armchair-edge graphene

�ake with 18 atoms (side length 0.71 nm) with an adatom attached near its tip (at

the coordinates [3, 7.5]Å). On the left we show the dependence of the non-interacting

absorption spectrum on the hopping rate te and tg, on the right - the same but for

the interacting absorption spectrum, and in the middle panel we show the continuous

transition from one case to the other for a �xed value of the hopping rate te = tg = 2 eV

by scaling the Coulomb interaction strength in the system.
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Figure 4.23: Absorption spectra for an 18-atom triangular graphene nano�ake with an adatom

attached at the coordinates [3, 7.5]Å. Left: Non-interacting absorption spectrum dependence on

the �ake-adatom hopping rate te = tg. Middle: Absorption spectrum for �xed hopping rates

te = tg = 2t in the function of Coulomb interaction strength in the system. The Coulomb

interaction is scaled by a factor continuously changing from 0 (which corresponds to a non-

interacting spectrum) to 2. Right: Interacting absorption spectrum dependence on the �ake-

adatom hopping rate te = tg.
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Final remarks

The thesis introduces tools for describing and predicting the behaviour of graphene

nano�akes coupled to two-level atoms subject to illumination with electromagnetic �elds.

The presented framework combines concepts from solid-state physics, like the tight-

binding approximation, with methods from quantum optics and quantum dynamics, such

as the master equation. This required a consolidation of various distinct ways to describe

the same phenomena, e.g. di�erent ways of modelling a dipole moment, either calculated

from the charge distribution or seen just as a parameter.

The proposed method allows to describe many-body systems with hundreds of elec-

trons using a simple one-electron Hamiltonian, which gives a large computational ad-

vantage. The many-body character of the problem is included as a non-linearity in the

Hamiltonian. A similar approach has been used before to pristine graphene nano�akes

but in this thesis it has been extended to systems with adatoms. In dissipative systems,

this kind of description leads to problems with the Pauli exclusion principle. A solution

that allows to overcome this problem has also been proposed in the thesis.

The entire framework has been implemented numerically in Python and the thesis

presents a large number of results obtained using this code. In particular, we show

for various hybrid systems consisting of nano�akes with adatoms: their energy levels,

charge distribution of eigenstates, symmetry breaking due to the adatom presence, ab-

sorption spectra, change of time evolution caused by increasing the adatom-�ake inter-

action strength, spontaneous emission in the adatom and its dependence on the �ake-

adatom distance. The implemented model has also been used to explore subjects which

are not contained in the thesis, such as the investigation of the resonance character in

graphene nanostructures [40].

The presented framework is quite general and contains many tunable parameters to

characterize both the �ake and the adatom. In the thesis, the phenomena were presented
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only for speci�c systems and many of them require a more systematic investigation. A

potential area for further research is the examination of the in�uence of the adatom

position on the optical properties of the nano�akes. This would allow to de�ne optimal

locations for attaching the adatom such that it a�ects the measurable quantities in a

controlled way. Another topic worth studying would be a systematic study of how the

properties of the nano�akes a�ect spontaneous emission in the adatoms which they are

coupled to.

There are many ways in which this work can be extended to further investigate similar

systems. Using only the equations and methods presented in this thesis, one could proceed

by adding multiple adatoms in the system to �nd if and how they can interact with each

other via the graphene nano�ake. The next step could be to replace the graphene by

a di�erent type of 2-D material, e.g. hBN or transition metal dichalcogenides. This

would require several changes in the model but can still be achieved relatively easily

by adjusting the hopping parameters, onsite energies and geometrical properties of the

2D material. Finally, throughout the thesis we focused only on systems that do not

exhibit magnetic properties, therefore it was rather super�uous to include this kind of

e�ects in the description. However, to make the tool even more general and applicable

to any arbitrary nano�ake shape and adatom type, magnetic e�ects could be included.

This would probably require a signi�cant amount of work, since it demands adding new

components to the system and consequently modifying nearly all presented equations.
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Appendix A

Including Pauli exclusion principle in

the model

The dissipation with use of the Lindblad operators as described in Eq. 3.9 should normally

be performed using ρ̃ = ρ. However, as was mentioned in Section 3.4 in the main body of

the thesis, in our case such choice leads to severe breaking of the Pauli exclusion principle,

as shown in the left panel in Fig. 3.7. This appendix presents several approaches which

we have tried to overcome this problem.

The �rst attempt consisted in evolving the system in time and at each timestep:

1. Converting Coulomb interaction matrix and density matrix into energy basis.

2. Iterating over all diagonal elements of the density matrix in energy basis. If a given

energy state has occupation higher than or equal 2: Set on-site values of Coulomb

matrix elements corresponding to the states that have occupations exceeding 2 to

a very large value to induced depopulation of these states.

3. Converting the new Coulomb back to site basis and continue evolution in site basis.

Unfortunately, this method led to a very irregular evolution and did not solve the problem,

as presented in Fig. A.1.

The second approach we have tried to prevent breaking the Pauli principle involved

modifying the emission rates γij while evolving the system in time. During the time

evolution, when the occupation on some energy state |j⟩ reached 2, we shut down all

decay rates into this state by setting ∀iγij = 0. This approach works well for evolution
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Figure A.1: Demonstration of attempts to prevent breaking the Pauli principle while evolving

with a Lindblad decoherence term. The system under consideration is a benzene ring with an

adatom with energies ±1 eV attached to one carbon atom with coupling strengths te = 4t, tg = 0.

The dissipation is included using the Lindblad propagation as described in Eq. 3.9 with ρ̃ = ρ.

Sub�gure A shows the evolution without using the correction mechanism. In Sub�gures B and

C the Coulomb matrix elements corresponding to states with occupations exceeding 2 were set

to: 1000 eV (B), 10000 eV (C). This method causes very irregular evolution, and still does not

enforce the Pauli exclusion principle.
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without external illumination. However, occupations were sometimes still exceeding 2

when we included external electromagnetic �eld. Therefore, it is not su�cient for all the

cases we wanted to explore and we continued to look for another solution of the problem.

Finally, we took the attempt which is mentioned in the main part of the thesis, in

Section 3.4. It consists in choosing a particular expression for ρ̃ in Eq. 3.9. Normally,

one should use just ρ̃ = ρ. We tried to substitute the usual formula with one which

leads to a similar type of dissipation as the phenomenological approach, i.e. ρ̃ = ρ− ρsc.

This method has solved the problem of occupations which exceed the value of 2, while

still working well to model spontaneous emission in the system. We tested this solution

numerically for a great deal of hybrid systems and did not encounter any case which

would break the Pauli principle.
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Appendix B

Eigenstate distribution for zigzag-edged

nano�akes and with phase factor

included

This Appendix contains �gures which present the probability amplitudes that the electron

of a given eigenstate (energy) is located at given sites in real space. In the main text, in

Figs. 4.6 to 4.8 absolute values of the amplitudes are shown for armchair-edged triangles.

Here, we present absolute values of the probability amplitudes for zigzag-edged nano�akes.

We also show the armchair-edged amplitudes including their sign.
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Figure B.1: Distribution on sites in real space of eigenstates of a 78-atom (1.48 nm) zigzag-edged

triangular graphene nano�ake. The phase factor is neglected for clarity.
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Figure B.2: Distribution on sites in real space of eigenstates of a 78-atom (1.48 nm) zigzag-edged

triangular graphene nano�ake with an adatom attached in the lower-left corner of the nano�ake

(location denoted with an X mark) with coupling strengths te = tg = 2 eV. The phase factor is

neglected for clarity.
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Figure B.3: Distribution on sites in real space of eigenstates of a 78-atom (1.48 nm) zigzag-edged

triangular graphene nano�ake with an adatom attached in the lower-left corner of the nano�ake

(location denoted with an X mark) with coupling strengths te = tg = 5 eV. The phase factor is

neglected for clarity.
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Figure B.4: Distribution on sites in real space of eigenstates of a 60-atom (1.56 nm) armchair-

edged triangular graphene nano�ake.
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Figure B.5: Distribution on sites in real space of eigenstates of a 60-atom (1.56 nm) armchair-

edged triangular graphene nano�ake with an adatom attached in the lower-left corner of the

nano�ake (location denoted with an X mark) with coupling strengths te = tg = 2 eV.
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Figure B.6: Distribution on sites in real space of eigenstates of a 60-atom (1.56 nm) armchair-

edged triangular graphene nano�ake with an adatom attached in the lower-left corner of the

nano�ake (location denoted with an X mark) with coupling strengths te = tg = 5 eV.
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Appendix C

Numerical implementation of the

framework: GRANAD toolbox manual

The entire framework presented in the thesis has been implemented in the Python pro-

gramming language as a scienti�c toolbox. The code is freely available upon request from

the author of this thesis. Figure C.1 contains a diagram which presents all modules of the

toolbox together with the information about the classes and functions that are stored in

each of them. Further below, we provide a manual in the form of simple usage examples.

Each example consists of a short description of the used modules, code snippets with

comments and a presentation of the expected results.
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Figure C.1: A schematic representation of the GRANAD toolbox showing all of its modules, together with the information about classes and

functions that are stored in each of them.
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