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1. Abstract in English 

Observation of changes in biological tissues allows evaluating the patient's health condition and also 

helps both in diagnosing and monitoring the progress of treatment of modern civilization diseases 

such as diabetic retinopathy, hypertension, glaucoma and cancer. These diseases reduce the patient's 

standard of living, and in their advanced stages prevent normal functioning and professional work.  

 Physicians are ready to test new methods for diagnosis, monitoring, and treatment of lifestyle 

diseases that are non-invasive and easy to implement in a clinic. A promising method is optical co-

herence tomography (OCT), a non-invasive method currently used in clinics for three-dimensional 

visualization of biological objects transparent to light. In this method, infrared or visible light is di-

rected at the examined biological object. Part of the light is reflected by anatomical layers of tissue 

and can be registered by a detector and transformed into an image. 

 The OCT method has much greater diagnostic potential than visualization of structure based on 

the scattering properties of biological tissue. Tissues in living organisms are active, and optical meth-

ods allow us to monitor the physiological or pathological functioning of these tissues. Hence the name 

"functional testing", which includes phase-based data analysis methods. 

 The objective of the research proposed in this project is to develop methods for phase analysis 

of OCT signal allowing quantitative studies of selected physical parameters of tissues for medical 

diagnostic purposes. 

 In my work, I have demonstrated selected applications of these methods in Doppler OCT (used 

for quantification of blood flow in living tissues), OCT elastography (used for quantification of elastic 

properties of tissues) and optoretinography (used for quantification of the changes in nerve cell retinal 

layers in response to light stimulus). I focused on several problems associated with phase analysis: 

time required for data processing and memory requirements, limited range of measurable axial dis-

placements, obtaining displacement information only in the beam axis, influence of object geometry 

on the measurement, motion artifacts unavoidable in a few-second measurement, phase artifacts re-

sulting from combined analysis of OCT data. I have proposed methods for analysis of phase of OCT 

signal obtained with widely available spectral OCT systems, which would allow application of new 

methods with the use of already existing devices. The methods proposed in this thesis allow to reduce 

phase artifacts and make it possible to obtain reliable results. Experimental results were confirmed 

by simulations, experiments on real biological data ex vivo and in vivo. I have designed, optimized 

and implemented a phase unwrapping algorithm on graphics card processors to speed up computation 

time.  
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 The projects presented in my dissertation are part of a broad research effort to develop phased 

methods and increase the functionality of OCT devices, which may in the future help develop bi-

omarkers and accelerate the diagnosis of selected civilization diseases.  
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2. Abstract in Polish  

Obserwacja zmian w tkankach biologicznych 

zarówno w diagnozowaniu 

zacyjnych, takich jak retinopatia cukrzy jaskra i nowotwory. Choroby te 

 

a i leczenia chorób 

cywilizacyj

optyczna tomografia koherencyjna (OCT), nieinwazyjna metoda stosowana obecnie w kli-

nikach W tej 

b widzialne kierowane jest 

tworzona na obraz. 

Metoda tury na pod-

oparte na fazie.  

 fazy 

 celach dia-

gnostyki medycznej.  

 Dopplerowskiej metodzie OCT 

 ), elastogra-

fii OCT (OCE  ) oraz optoretinografii 

(ORG, stosowana do 

)

nym na przetwarzanie danych i zapotrzebowanie na 

  

metrii obiektu na pomiar, artefakty ruchowe nieuniknione w kilku sekundowym pomiarze, artefakty 

do spektralnej  

na w ra-

mach niniejszej pracy doktorskiej  
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eksperymentami na rzeczywistych danych biologicznych ex vivo oraz in vivo

algorytm odwijania fazy FPU na procesorach kart graficznych w  
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3. Introduction 

Civilization diseases, such as diabetic retinopathy, hypertension, and glaucoma, reduce the standard 

of patients' lives and prevent normal functioning and professional work in their advanced stage. In 

addition, cardiovascular diseases and cancer are the most common cause of death. According to the 

demographic yearbook 2020 of The Central Statistical Office, between 2000 and 2018, in Poland, 20-

25% of deaths were caused by cancer [1]. Cardiovascular diseases are the leading cause of death in 

Poland, accounting for between 30-40% of deaths between 2000-2018 [1]. An increasing number of 

patients requires constant medical care, social welfare, and help from their family members, which 

causes an increasing burden on the health care system and affects the economies of highly and mod-

erately developed countries, including Poland. Therefore, these countries are making efforts to find 

effective methods of early diagnosis, treatment, and monitoring of these diseases and treatment pro-

gress. 

Doctors are ready to test new methods of diagnosis and treatment, which would help to cope with 

the scourge of civilization diseases. In ophthalmology research, optical coherence tomography (OCT) 

has become the diagnostic standard for which the eye is an ideal object of study because it is an organ 

transparent to light. Infrared or visible light can easily reach deep layers of the eye, such as the retina 

or choroid. Some of the light is reflected by the anatomical layers of the eye and can be registered by 

a detector and processed into an image. In ophthalmology clinics and offices, OCT is mainly used for 

3D visualization of the anterior chamber of the eye (cornea, lens) or retina. It also allows to create 

maps of the vascular network but without the information about the actual values of blood flow in the 

vessels. 

OCT has much greater diagnostic potential than visualization of structure based on the scattering 

properties of biological tissue. Tissues in living organisms are active, and optical methods allow to 

monitor the physiological or pathological functioning of those tissues. Hence the name "function ex-

aminations" or "function tests", which include, among others, the Doppler OCT method [2–4], allow-

ing for function examination of the circulatory system by measuring the blood flow velocity. Another 

branch of functional OCT methods is the study of tissue biomechanics. OCT elastography (OCE) 

deals with the study of the deformation of biological tissues under mechanical stimulus [5,6]. Opto-

retinography (ORG), on the other hand, allows for measuring the changes occurring in the nerve cell 

layers of the eye under the influence of a light stimulus [7,8]. We know from research conducted by 

scientists all over the world that civilization diseases, not only of the eye, but also systemic ones, 

manifest themselves as changes in the functioning of tissues [9,10], nerve cells [11,12], and vascular 

systems of the ocular fundus [9,13], often in the early stages of these diseases. For example, in dia-

betes, pathologies in the circulatory regulation of the brain, including the eye, appear earlier than 
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diabetic retinopathy[14,15]. Development of methods for quantitative analysis of OCT signal may 

allow early diagnosis of diseases, i.e., when they can be stopped, and lesions can still be cured.  

These quantitative studies of retinal blood flow, nerve cell activity, and measurements of layer 

biomechanics can be performed by analyzing the phase of the OCT signal. Despite promising results, 

the transfer of OCT phase methods from research laboratories to clinics has been delayed. Before 

phase methods can be widely used, a number of problems must be solved, including: long data pro-

cessing time and large memory requirements, limited range of measurable axial displacements and 

layer shuffling velocities, obtaining displacement information only in the beam axis, effect of object 

geometry on the measurement, motion artifacts unavoidable in a few seconds of in vivo measurement 

of biological objects, and phase artifacts resulting from composite analysis of OCT data. 

The aim of the doctoral thesis was to address some of the abovementioned issues by devising 

OCT phase methods allowing for quantitative examination of selected parameters of biological 

tissues for medical diagnostics. The most important findings were described in publications Pub 1-5, 

of which I am the lead author. During my doctoral studies, I was working on four research projects 

P1-4, concerning the analysis of the OCT signal phase and its potential applications in medical diag-

nostics.  

Research projects, depending on the application and the manner of phase analysis:  

P1. Reduction of artifact resulting from OCT signal phase analysis involving phase wrap-

ping. (Pub. 1) 

P2. Measuring blood flow parameters in eye blood vessels. (Pub. 2, 3) 

P3. Measuring light-induced retina activity. (Pub. 4) 

P4. Measuring biomechanical properties of biological tissues under compression. (Pub. 5) 

The information which serves as an introduction to the issues described in Pub 1-5 is included in 

chapters §1-8 of this work. The experimental part, findings, and conclusions from individual works 

were presented in detail in Pub 1-5, which are included in the doctoral thesis.  

The doctoral thesis was written as a part of project POIR.04.04.00-00-2070/16-00, "FreezEYE 

Tracker – ultrafast system for image stabili  carried out within the 

TEAM TECH programme of the Foundation for Polish Science co-financed by the European Union 

under the European Regional Development Fund. 
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4. Optical coherence tomography 

4.1. Detection of interferometric fringes

Optical coherence tomography (OCT) is a technique of optical imaging allowing for three-dimen-

sional observation of biological objects transparent for light. OCT was created in the 90’s of the 20th 

century [16–18]. There are many types of optical coherence tomography, depending on the light 

source used and the manner of detection. Among them, there is the time method (TdOCT) [18], spec-

tral method (SdOCT) [19,20], the method using short-cavity swept light sources (SS-OCT) [21,22]

and the full field method (FFOCT) [23]. In my research, I focused mainly on the spectral domain 

optical coherence tomography (SdOCT). The method is easily available and relatively cheap. It is 

currently the most commonly used OCT method in eye clinics. Creating an additional functionality, 

apart from standard imaging, would merely require a software change in the already existing devices.

Fig. 1. a) Conceptual scheme of the OCT measuring system in the configuration of Michelson 

interferometer. A beam of light is split at the beam splitter. One part is directed to the reference 

arm, the other to the object arm. Detection of interferometric spectral fringes is conducted by 

means of a spectrometer (d). b) Graph of spectral interferometric fringes I( ). The modulation 

frequency is proportional to the difference of optical paths between the reference arm and the 

layers within the object. c) Fourier’s transform of the optical signal from (b). The locations of 

peaks in the transform reflect the optical distances of the object’s layers in reference to the length 

of the optical path of the light from the reference arm zref.  

A device for spectral domain OCT uses an interferometer to measure the optical path difference be-

tween the reference arm and the object arm. A schematic of the spectral OCT (SdOCT) system in the 
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Michelson interferometer configuration is shown in Fig. 1(a). A beam of light with high spatial co-

herence and low temporal coherence is split at the beam splitter. A mirror of high reflectivity is placed 

in the reference arm. An object is placed in the object arm, usually consisting of multiple reflective 

layers. Light is reflected from the individual layers of the object and then runs to the detector, inter-

fering with the beam reflected from the reference mirror. The detection of the spectrum of the light 

source modulated by interferometric fringes (Fig. 2(a)) is performed with the spectrometer equipped 

with a diffraction grating where each pixel of the line-scan camera detects a specific range of wave-

lengths. 

Fig. 2. a) Signal of interferometric fringes collected directly on the line-scan camera. b) The sig-

nal after the removal of background, compensation of dispersion, and after calibration from wave-

lengths to wavenumbers. c) Amplitude of signal after Fourier’s transformation (b). One line of 

an image, called A-scan, obtained from one spectrum (a) recorded on the detector. d) Cross-

section of the measured object – a human eye retina. B-scan presented on the greyscale with 

intensity proportional to the amplitude of the signal from (c). The lighter the object, the stronger 

the scattering properties of the measured retina layer. The blue line marks the A-scan reflecting

the graph (c). 

In the process of measurement using a spectrometer equipped with a diffraction grating, the spec-

trum is sampled in wavelengths and is non-linear in wavenumbers k. Additionally, different optical 

materials in the arms of the interferometer cause dispersion mismatch, and light reflexes from layers 

in the interferometer lead to parasitic terms in the signal. Therefore, before Fourier transforming the 

acquired signal, a number of preprocessing steps is required in the following order: (1) the fixed 

pattern noise removal to cancel the parasitic terms, followed by (2) resampling from wavelengths to 

wavenumbers, and (3) numerical compensation of dispersion mismatch [24]. After these steps, the 

signal ready for Fourier’s transformation takes the following form:  

0( , ) cos 2 ,rI k t I k R R knz t (1) 
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where I0(k) is the spectra density of the light source, Rr – mirror’s reflectance in the reference arm, R 

– reflectance of the object’s layer, n – refractive index of the object’s layer, t – time in which the 

interferometric fringe spectrum was recorded, z – the difference in the lengths of optical paths of the 

light between the object arm and the reference arm zref. An example of an optical signal prepared in 

this manner was demonstrated in Fig 2(b). Fourier’s transformation allows for moving from the do-

main of wavenumbers k to the domain of differences in the optical paths between the interferometer’s 

arms, usually denoted as z. Distances to subsequent layers in object, z1, z2, …, zw, are measured from 

fringe zero, which denotes the distance equal to the optical distance to the reference mirror in the 

reference arm.   

A line of OCT image is the result of Fourier’s transformation of the FT spectrum of interferomet-

ric fringes and is a complex signal:  

 , ( , ) , exp , ,FT I k t S z t A z t j z t  (2) 

with amplitude A(z, t) and phase (z, t). Each point of the transform carries information about scat-

tered light at the optical distance reflecting the location of that point. Amplitude A of the OCT signal, 

which is the value of Fourier’s transform at a given point, is related to the dispersing properties of 

those layers and proportional to the root of the reflection index [19,20,25]. This property is used in 

the creation of so-called structural OCT images, in which the source of contrast is the ability to scatter 

light. From a single interference spectrum, we obtain an image line that contains information about 

the distances between successive layers of the object and is called an A-scan. An example image line 

is shown in Fig. 2(c). 

By using a galvanometer or resonance scanner to move a beam that forms A-scans over an object, 

a two-dimensional cross-section of the object can be obtained. This is called a B-scan and is composed 

of A-scans. An example B-scan is shown in Fig. 2(d) in the spatial variables (x, z). In this notation, 

the coordinate z describes the direction along the light beam, while the coordinate x describes the 

direction of light beam displacement by the scanner. Using an additional galvanometric scanner, add-

ing the ability to move the beam in a direction perpendicular to the motion set by the first scanner, 

a 3D tomogram of the object under study, composed of B-scans, can be obtained. The spatial variable, 

perpendicular to the B-scan plane, is denoted as y in Fig. 2(d). The Fourier’s transform of the inter-

ferometric fringes’ spectrum at any point (x, y, z) is described by the formula: 

 ( , , , ) ( , ) , exp , ,S x y z t S t A t j tr r r  (3) 

with amplitude A (r, t) and phase (r, t), of a point in space denoted by vector r whose coordinates 

are (x, y, z). 
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Issues related to optical coherence tomography have been thoroughly described in publications 

[17,19,20], in postdoctoral dissertation by Profesor Maciej Wojtkowski [26], and in doctoral theses 

by Maciej Szkulmowski, PhD, Prof. NCU [24], Anna Szkulmowska, PhD [25], and Marcin 

Sylwestrzak, PhD [27].  
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4.2. Phase information of OCT signal

The OCT signal is a complex signal described by expression (3). The amplitude A of the OCT signal, 

or the value of the Fourier transform modulus at a given point, is related to the scattering properties 

of the layers. The phase of the OCT signal, on the other hand, carries information about the position 

of the scattering layer small enough that it does not cause a change in the frequency of the interfero-

metric striations large enough that it leads to a shift in the next peak of the Fourier transform. These 

small frequency changes manifest as a change in the initial phase of the OCT signal, as illustrated in 

Fig. 3. 

Fig. 3. Graph for two harmonic signals present in detected OCT signal with slightly different 

frequencies f1 and f2. The green rectangle indicates the range of wave numbers k for which the 

signals are recorded on the detector, for a light source with a central wavelength of 860 nm and 

a half-width of 100 nm. In a typical OCT analysis, the frequencies of these signals are indistin-

guishable, while the change in phase offset (or initial phase for k1) is clearly visible.

When an object moves in time t at the velocity of v, it is possible to measure its relocation

z = v t by measuring changes in the initial phase of the fringe reflecting the in-depth position z: 

0( , ) cos 2 ,rI k t t I k R R knz t t (4) 

0( , ) cos 2 2 .rI k t t I k R R knz t kn z (5) 

Since the change in phase between signals ( , )I k t and ( , )I k t t for the frequency reflecting the 

location of z is equal to 2kn z the relocation of the scattering center by z can be calculated in the 

following way: 

.
2

z
kn

(6) 
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In this way, directly from the phase difference of spectral fringes, it is possible to calculate the relo-

cation for a single point in space – one depth from A-scan. After performing the Fourier’s transfor-

mation and moving to space z, the same value of the phase change  can be calculated for the whole 

3D set of complex valued B-scans S’(r) for every spatial point with coordinates r = (x, y, z): 

 ' '( ) arctan Im ( ) / Re ( ) ,S Sr r r  (7) 

where 

 ' *( ) ( , ) ( , )S S t S t tr r r  (8) 

defines the signal composed of OCT signals after Fourier’s transformation, defined by formula (2), 

registered at two time instants t and t t. The symbol * denotes complex conjugate.  

Making use of the fact that z = v t, it is possible to calculate the velocity of a moving object 

from the transformed formula (6): 

 .
2

v
kn t

 (9) 

Information from different time instants and from the same location in the object can be recorded 

between A-scans, B-scans, and also between three-dimensional tomograms. It is necessary to fulfill 

the condition of comparing phase differences between points that contain part of the common infor-

mation, i.e., during subsequent measurements the measuring beam must illuminate the same set of 

scattering particles in the object. Ideally, the beam should cover an identical area, but in practical 

cases, this is difficult to achieve, and only partial coverage is achieved. The effect of incomplete 

coverage is a decrease in the signal-to-noise ratio (SNR) because the phase information is countable 

only between those signal components that originate from the same scatterers. For studies of blood 

flow in OCT spectral systems in laboratory practice, it is sufficient that the displacement of the beam 

between consecutive spectra acquisitions is lower than half of the transverse beam profile [28,29]. 

Phase information for the same object then occurs between successive A-scans. 

Phase changes can also be analyzed between B-scans and whole three-dimensional tomograms 

of the studied structure if the data processing or measurement protocol allows to eliminate the effect 

of signal decorrelation in time. The phase relation between signals from consecutive B-scans was the 

subject of research in my doctoral dissertation on optoretinography and OCT elastography described 

later in this paper and Pub. 4, 5.  

The issues related to the interpretation of phase in the OCT signal was exhaustively described in 

doctoral dissertations of Anna Szkulmowska, PhD [25] and Maciej Szkulmowski, PhD, Prof. NCU 

[24].  
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4.3. Artifacts related to phase analysis 

Phase analysis can be applied to functional tissue studies using OCT. Although the first references to 

phased-based OCT methods were made several years after the development of OCT [2,30], the trans-

fer of phased array methods from research laboratories to clinical practice is still ongoing.  

In general, methods using phase information are more precise in estimating object relocations 

than methods using amplitude. This means that they are also sensitive to motion artifacts, unavoidable 

in in-vivo studies. For eye imaging, motion artifacts are mainly due to breathing, heartbeat, but also 

to the physiology of the visual process. One of the main eye movements that hinder measurement is 

microsaccades [31], which are a physiological phenomenon with the purpose of changing the gaze 

direction to allow stimulation of different photoreceptor cells. The chemical processes accompanying 

the process of vision are reversible. If there is a full rhodopsin bleaching in a photoreceptor outer 

segment optical signal cannot be processed by this nerve cell. Eye movements occur in both horizon-

tal and vertical directions. Any eye movement during OCT measurement, which lasts from a few to 

several tens of seconds, causes phase signal decorrelation in time. There is a gradual decrease in 

sensitivity of the measurement until the useful information is completely dominated by phase noise.  

Each phase measurement is limited from the bottom and from the top. The bottom limit is phase 

noise, consisting of shot noise which results from the particle nature of a photocurrent generated in 

a semiconductor detector [32,33]. In OCT, the shot noise is mainly related to the optical power of the 

incident light beam, detector quantum efficiency and acquisition time [34]. The variance of the pho-

tocurrent influences variance detected spectral optical fringes signal. 

The top limit is fringes washout [29,35]. When an object is moving, the frequency of interfero-

metric fringes changes. Minor changes in the frequency are observed on the detector in the form of 

phase shift. The detector records the electric signal reflecting the value of light intensity falling on 

the vision scan line camera during ta acquisition. In the OCT spectra method, signal detection re-

flects the integration of interferometric fringes in ta time. Let us consider equation (1) for the inter-

ferometric fringes spectrum. By integrating equations (1), we obtain a sinc function: 

 0 0
0

sin 2
cos 2 .

2

at
a

r r a
a

kn t
I k R R knz t dt I k R R t

kn t
 (10) 

 For a given wavenumber k, the sinc function drops to zero, when the phase in the equation (9) 

equals , meaning the object’s velocity of vwash =  / 2kn ta. For this velocity, the amplitude of the 

signal recorded on the detector drops to the level of background noise, making speed measurement 

impossible. 
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The phase of the OCT signal required to recover velocity using equation (9) is obtained from the 

real and imaginary parts of the complex signal, according to equation (7). The counter-domain of the 

arcus tangent function of the real and imaginary parts of the complex number, covers the interval 

(- , ). In this range the maximal object velocity that can be determined by Doppler OCT is give by: 

,
2wrapv

kn t
(11) 

where t – time between subsequent recorded signals for a given wavenumber k. In case the phase 

exceeds this range a phase wrapping artifact occurs. I devoted a separate chapter of this work (§4.4.) 

to the topic of phase unwrapping.  

Fig. 4. Cross-section of a glass tube made using OCT. A glass tube with a diameter of 0.8 mm 

was filled with milk. The movement of the fat suspension was induced by pressing the piston of 

a syringe that was connected to the tube. a) Structural image shown in gray scale. b) Artefacted 

phase difference image corresponding to structural image (a). According to equation (5), the 

phase difference is proportional to the axial velocity of the fluid flow. The red shades represent 

the negative phase change, corresponding to the displacement of the object in the direction of the 

incident beam. The blue shades represent positive phase change values, which corresponds to 

particles moving against the direction of the incident beam. The white shade represents an object 

that did not move during the measurement. c) Phase difference image after removal of the phase 

wrap artifact, corresponding to structural image (a). d) Plot of the phase along the line marked in 

black line on phase image (b). Wrapped phase – black line, and unwrapped phase – purple line. 

An example of the wrapped phase in Doppler OCT presents in Fig. 4. In the Doppler OCT exper-

iment, I counted the axial velocity component of milk inside a glass tube with a 0.8 mm diameter. 

The movement of the fat suspension was induced by pressing the piston of a syringe that was con-

nected to the tube. The structural OCT image of the glass tube shows in Fig. 4(a). In Fig. 4(b, c) the 

color scale from red to the blue codes velocity of the milk inside the tube. The red shades represent 

the negative phase change, corresponding to the displacement of the object in the direction of the 
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incident beam. The blue shades represent positive phase change values, which correspond to particles 

moving against the direction of the incident beam. In Fig. 4(b), one can see the discontinuity in 

wrapped phase, limited to the range (- , ). However, the flow inside the vessel is continuous, so the 

change in velocity direction is an artifact caused by the phase wrap effect. The unwrapped phase is 

presented in Fig. 4(c), the phase unwrapping discontinuities are removed and the parabolic velocity 

profile inside the vessel is revealed. In Fig. 4(d) a comparison of wrapped (black line) and unwrapped 

(purple line) phase from a single profile taken along the black line from Fig. 4(b, c) is shown.  

Additional difficulties, especially important for clinical staff, are the need to collect and analyze 

large data sets (on the order of GB). Currently, full phase analysis is performed after measurement 

acquisition is finished and takes from several to several dozen seconds. Work is in progress to imple-

ment online calculation of selected biomarkers.  

Difficulties related to the measurement protocol should also be mentioned. The phase allows the 

calculation of displacements in the beam axis, which means the influence of the test object's geometry 

on the measurement result. This is especially important when measuring blood flow in the blood 

vessels of the eye. Blood vessels in the eye are mainly arranged horizontally with respect to the inci-

dent beam, which in extreme cases makes measurement impossible when the angle between the light 

beam and the flow direction approaches  / 2. Therefore, techniques to cope with this limitation are 

used, most often involving a change in the spatial orientation between the object and the incident 

beam. The main methods include techniques using multiple measurement beams or introducing 

changes in measurement protocols and the way the object is scanned [36–38].  
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4.4. Wrapped phase effect and known methods of unwrapping phase  

The phase wrapping effect is an artifact resulting from complex analysis and occurs in many interfer-

ometric fields. The effect limits the possibility to unambiguously measure phase to the range (- , ). 

In the OCT spectral method, the limitation of the measured phase causes limitations in the measure-

ment of object displacements and velocities, according to equations (9) and (11). An example of phase 

unwrapping is shown in Fig. 4(b). The goal of all phase unwrapping methods is to reconstruct the 

unwrapped phase waveform, which extends beyond the range (- , ) corresponding to the wrapped 

phase.  

According to equations (5) and (10), phase unwrapping is related to the wavenumber k, and thus 

also to the wavelength of the OCT source. One class of phase unwrapping methods are multi-wave-

length methods [39–41], first applied to holography. In the case of OCT, for each wavelength, phase 

unwrapping will occur for a different value of measured object shift. Wraps can then be detected at 

the measurement stage or during the processing of already collected data, and unwrapping can be 

performed [42]. 

The phase unwrapping problem can be analyzed as a series of two-dimensional images. There 

are methods to look for pixels arranged in certain structures such as edges or signal jumps using 

methods borrowed from image processing [43,44]. 

There are a number of methods that are based on jump detection and breaking continuity by 

calculating a gradient or a derivative [45,46]. In order to reduce the noise-sensitivity of those methods, 

a combination of derivative and Laplace operators with Prewitt and Sobel operators [46] and other 

methods borrowed from the image-processing analysis.  

Phase wrapping results from complex analysis, which is why the problem can be considered mak-

ing use of the full information of complex OCT signal. The first algorithms used in interferometric 

radars [47,48] were based on the residue theorem as well as the search for the branch point and branch 

cut. Path-following methods make use of the residue theorem, which for phase unwrapping is de-

scribed by the following equation: 

 2 ,dr  (12) 

where  is the sum of charges of phase residues is not closed by the contour along which the integral 

is calculated. It is easy to see from equation (12) that balancing the residue charges in a certain region 

causes the integral along any closed contour to be zero. This means that phase unwrapping is possible 

if and only if the integration contour does not surround the unbalanced residue charges. The residue 

charge is balanced by combining residues of opposite polarity inside the cutting branch. Phase un-

wrapping can occur along the integration path but cannot cross unwrapping barriers called cut 
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branches. The unwrapping barriers must be defined by balancing the charge of the residues. Improv-

ing phase unwrapping methods with path-following methods boils down to increasing the efficiency 

of residue charge balancing and selecting the integration paths. 

A separate class is formed by the methods based on searching for the minimum norm of the 

function. Let us consider the problem in two dimensions. Let Dq,h+1/2 = q,h+1 – q,h , Dq+1/2,h = 

q+1,h – q,h for q = 1, …, N and h = 1, …, M. Unwrapped phase  is reflected by wrapped phase 

. In order to unwrap the phase, such a value of D function is sought for which the functional below 

reaches the minimum:  

 
221 1

, 1 , 1 , 1/2 1, , 1/2,1 1 1 1
.N M N M

q h q h q h q h q h q hq h q h
D D  (13) 

From mathematical analysis, a function reaches an extreme value when the derivative of that 

function is zero. Then, the phase unwrapping problem is reduced to a differential problem and the 

solution of Poisson's equation [48,49]. Poisson's equation can be solved in a number of ways, in phase 

unwrapping algorithms the most common ways are: least squares method [49], discrete cosine trans-

form based method [48], Fourier transform based method [50]. This class of methods also includes 

fast phase unwrapping algorithm (FPU), implemented to OCT solutions.  

Nowadays, there is a growing interest in artificial intelligence and its application in new technol-

ogies. Phase unwrapping methods based on neural networks have been developed [51,52].  

There are also ways to process the phase that avoid the need for its unwrap depending on down-

stream applications. An example is the vector method used to calculate the deformation of tissue 

under compression, described in Pub. 5. The deformation of a compressed object is proportional to 

the derivative of the phase difference. The phase differences, and hence the tissue deformation, are 

calculated from complex numbers, for which the phase wrapping effect occurs only after the transition 

from complex to real analysis. Another example is the phase method I used to measure the retinal 

response to a light stimulus (Pub. 4.). In this method, the retinal layer shifts can be reconstructed from 

time samples for which no phase wrapping has occurred. 
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5. List of publications included in the doctoral thesis  

The doctoral dissertation consists of a number of intermediate projects P1-P4. An abbreviated de-

scription of each of them was provided in chapter §6. The list of references describing the results of 

individual projects includes the following items:  

Pub. 1. Ewelina Pijewska, Iwona Gorczynska, and Maciej Szkulmowski. "Computationally effec-

tive 2D and 3D fast phase unwrapping algorithms and their applications to Doppler optical co-

herence tomography." Biomedical Optics Express 10(3), 1365-1382 (2019). 

https://doi.org/10.1364/BOE.10.001365 

Pub. 2. Ewelina Pijewska

Pawlak, Maciej Szkulmowski. "Blood flow rate estimation in optic disc capillaries and vessels 

using Doppler optical coherence tomography with 3D fast phase unwrapping". Biomedical Op-

tics Express 11(3), 1336-1353 (2020).  

https://doi.org/10.1364/BOE.382155 

Pub. 3. Ewelina Pijewska, Marcin Sylwestrzak, Krystian Wróbel, Iwona Gorczynska, Szymon 

"Blood flow rate estimation in optic disc 

capillaries and vessels using Doppler optical coherence tomography." Biomedical Spectroscopy, 

Microscopy, and Imaging. SPIE Proceedings Vol. 11359. International Society for Optics and 

Photonics, 113590Q (2020). 

https://doi.org/10.1117/12.2555754 

Pub. 4. Ewelina Pijewska

 of phase-based optoretinograms (ORG) from se-

rial B-scans acquired over tens of seconds by mouse retinal raster scanning OCT system," Bio-

med. Opt. Express 12(12), 7849-7871 (2021).  

https://doi.org/10.1364/BOE.439900  

Pub. 5. Jiayue Li, , Qi Fang, Maciej Szkulmowski, Bren-

dan Kennedy, "Analysis of strain estimation methods in phase-sensitive compression optical 

coherence elastography", Biomed. Opt. Express 13(4), 2224-2246 (2022). 

https://doi.org/10.1364/BOE.447340 
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6. Phase methods in selected applications  

6.1. Fast phase unwrapping algorithm  

Fast phase unwrapping algorithm (FPU) was first proposed by Schofield [50] for holographic pur-

poses, as a proposal for estimation of unwrapped phase reflecting wrapped phase calculated from 2D 

interferometric fringes. He was using Laplace operator and reversed Laplace operator, replaced by 

Fourier’s transformations.   

It is necessary to provide a number of equations for the purpose of further analysis of the FPU 

method. The phase of any signal, both in the form of wrapped  and unwrapped  is indistinguish-

able:  

 exp exp ,j j Pr r r  (14) 

where in the case of using it for an OCT signal, ' '  /r r rP S S can be obtained directly from 

the complex signals by means of equations (4) and (8). Vector r reflects the coordinates (x, y, z) in 

the data volume. Using Laplace operator on each term of equation (14) and transforming the equation 

for the purpose of obtaining the estimation of est phase, we obtain a differential-integral formula:  

 12 2Im .est P Pr r r  (15) 

After replacing Laplace’s operator 2 and inverse Laplace’s operator –2 with Fourier’s transfor-

mations according to the formulas included in works [50,53], we obtain the equation which allows 

for direct calculation of the unwrapped phase estimation based on the phase obtained from the meas-

urement: 

 2 1 2 1 2 1 2(2 ) Im ( ) (2 ) ( ) ,est F F P F F Pr K r K r  (16) 

where K is the vector of Fourier’s coordinates reflecting a spatial vector r with coordinates (x, y, z). 

Equation (14) was an implementation amendment, which allowed to speed up the calculation time 

twofold (Pub. 1).  

Based on equation (15), several problems and limitations of the FPU method can be noticed. First 

of all, it is a differential-integral method, which means the possibility of random phase shift by the 

offset(r) function (Pub. 1, 5). In addition, it is necessary to meet the boundary conditions and the 

conditions of continuity of the first and the second complex function P(r) derivative and the real 
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function (r) derivative. It means that there is an influence of input phase distribution on the algo-

rithm’s proper functioning.   

FPU algorithm in its original form, used for 2D B-scan from Doppler OCT, did not perform in 

a satisfactory manner. It was necessary to use the algorithm in the 3D form, which analyzes the vol-

umetric data. More details about the algorithm used for Doppler OCT, as well as a comparison of 

two-dimensional and three-dimensional methods, are described in Pub. 1. publication contains the 

results of FPU algorithm tests on in silico and ex vivo data.  

When measuring blood flow velocity in the blood vessels of the eye, I examine inherently sym-

metrical objects. The blood vessels are a circle or ellipse in cross-section, and the background of the 

measurement is tissue and background noise. In practice, this means that the blood vessels within 

which phase wrap occurs are surrounded by a medium that produce the signal close to zero, because 

the tissue moves only slightly during A-scan acquisition. The specificity of the Doppler OCT data 

caused the FPU algorithm to successfully unwrap the phase already with the direct application of 

equation (12), without any additional data preparation. The results of in vivo phase unwrapping of 

phase data obtained by Doppler OCT are further described in Pub. 2. Implementation of FPU algo-

rithm on graphic card processors allowed for unwrapping the phase of 1.5 GB of data within ~1 s 

(Pub. 1). The algorithm I implemented, in C/CUDA language Code 1 and in programing environment 

of Matlab Code 2 has been attached to this paper.  

 
Fig. 5. Schematic showing the principle of the composite filter. Within a given window, I per-

formed summation of the complex numbers c1,..., c4. The amplitude of the complex number 

acts as weights because a high amplitude value in the OCT corresponds to a high signal-to-

noise ratio. Ultimately, the composite number c1,4 resulting from the windowed summation 

of the composite numbers takes on a phase value close to the dominant phase of the number 

with the largest amplitude, slightly corrected by the phase of the numbers c1, c3, and c4. 

The data in OCT elastography (OCE) show a different specificity (Pub. 5). Under compression 

on a homogeneous object, I expect a linear increase in the layer shift over time, which corresponds to 

a linearly increasing phase change. As a result of experiment and composite analysis, I obtain the 

input function for the FPU algorithm, which is in the form of ramp. The ramp does not satisfy the 

continuity condition on the edges. Martinez-Carranza et al. [54] proposed a solution to this problem 
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using the Volkov symmetrization [55]. I have demonstrated the application of Volkov symmetrization 

on three-dimensional OCE data. The application of Volkov symmetrization is not always sufficient. 

In addition, symmetrization results in an eightfold increase in volumetric data and increases the de-

mand for working memory. The problem turns out to be not insignificant for tomographic data. Using 

the algorithm in three-dimensional form results in the need to allocate the GPU (graphics processing 

unit) or CPU (central processing unit) memory for up to tens of GB. When symmetrization is not 

enough, phase unwrapping can be completed successfully using an iterative approach. I also intro-

duced a change in the iteration stop condition and an implementation change in the calculation of the 

correction in each iteration, which are described in more detail in Pub. 5. 

My analysis shows that for OCE data, reducing the number of iterations and also the sensitivity 

of the algorithm to noise can be achieved by using additional filters, for example, a median or complex 

filter. By its nature, the FPU algorithm does not use information from the signal amplitude. Calcula-

tions are performed using complex analysis, but assuming that all complex numbers have amplitude 

equal to one. The use of composite filtering, allows the amplitude information to be introduced into 

the phase analysis. The operation of the composite filter is schematically shown in Fig. 5.  
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6.2. Measurements of blood flow parameters in eye blood vessels 

Diseases of the circulatory system manifest themselves in changes of vascularization and the mecha-

nism of autoregulation of blood flow. We are able to observe part of the cerebral vessels optically 

without the need to perform invasive examinations. OCT of the eye is adapted for this purpose. In the 

last few decades, dynamic development of angiographic methods has been observed, which consists 

in imaging and tracking morphological changes of blood vessels in the retina and choroid [56–58]. In 

addition to angiographic methods, there is a separate class of Doppler OCT methods that allows 

measurement of the velocity of the scattering centers of the measured object. The determination of 

velocity is possible by measuring the Doppler frequency [30,59,60] or from phase analysis [61,62].  

The main goal of the project was to obtain information on selected blood flow parameters such 

as axial velocity, volume flow, and the dependence of blood flow on vessel diameter as defined by 

Murray parameter. The main challenges of the project were to reduce the influence of blood vessel 

geometry on the measurement, to remove the phase wrapping artifact, and to reduce the time from 

experiment to complete data processing and obtain flow biomarkers.  

As part of the P2 project, I implemented the FPU phase unwrapping algorithm in the Doppler 

OCT method. In my research, I focused on retinal blood vessels of healthy volunteers. Example re-

sults of selected parameters of blood flow in human eye and description of experiments with meas-

urement protocols are included in publications Pub. 2, 3.  

In Pub. 3 we demonstrated the feasibility of determining resistivity and pulsatility index by OCT 

for healthy volunteers and compared these parameters for the middle cerebral artery obtained by tran-

scranial Doppler ultrasonography (TCD). One of my goals was to develop a method and measurement 

protocols to determine resistivity and pulsatility parameters by noninvasive Doppler OCT.  

In the future, I would like to study the differences between the blood flow velocity course between 

a cerebral vessel with a diameter of ~100 m and a middle cerebral artery with a diameter of the order 

of mm. I have already performed some experiments on 40 patients at Oculomedica Clinic in Byd-

goszcz in cooperation with doctor  Data analysis and development of meth-

ods allowing for greater automation of the data analysis process, mainly segmentation of blood ves-

sels, is ongoing. Together with the authors, we hypothesize that blood flow autoregulation pathologies 

occurring in smaller retinal vessels may precede changes in larger cerebral vessels, which may help 

develop new bio-markers for cardiovascular disease.  
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6.3. Measurement of light-induced retina activities  

Another application area of the phase is nerve cell research. The biochemical processes involved in 

vision are still not well understood. Electroretinography (ERG) [63], an invasive method involving 

direct measurement of voltage shifts between the inside and outside of a nerve cell, has provided 

much valuable information about the changes occurring in retinal nerve cells under the influence of 

a light stimulus. The OCT method is adapted to measure the shifts without invasive use of electrodes. 

Optical methods for determining the retinal response to light stimulus are called optoretinography 

(ORG). Currently, attempts are being made to relate the changes observed in OCT to the results of 

ERG and physiological pathologies within the photoreceptors. 

Due to the limited resolution of optical systems, the measurement of single photoreceptors is still 

the subject of much research, especially those related to adaptive optics [64]. Adaptive optics allows 

for the reduction of wavefront distortion thus reducing the influence of optical aberrations on the 

experimental outcome. Changes in single photoreceptors are manifested by changes within entire 

layers, which can be observed by means of spectral OCT.  

The goal of the P3 project was to develop a method that would measure the response of nerve 

cells to a given luminous stimulus using a spectral OCT scanning system, without the use of adaptive 

optics and additional eye tracking systems. Studies of changes in retinal nerve cell layers under a lu-

minous stimulus based on the scattering properties of biological tissue have already been conducted 

by other research groups [65–69]. These methods show low sensitivity to signal decorrelation over 

time, at the expense of the measurement accuracy of the measured layer relocations.  

The project objective has been reached thanks to modification and application of a method based 

on phase analysis. It was possible due to data presentation by means of so called cross-spectra. The 

ORG signal, meaning the relocations of the retinal layers after the onset of a light pulse, is recon-

structed in this method from the Knox-Thompson pathways based on the cross-correlation spectrum. 

The cross-correlation spectrum, in simple terms, represents the evolution of the signal difference be-

tween two retinal layers (Fig. 1 in Pub. 4). The method allows us to use the full information between 

each time sample, not just the differences between the first and subsequent time samples. The graph-

ical presentation of the autocorrelation signal of the phase difference between the analyzed retinal 

layers, allows to develop weights and to separate the less correlated signal from the well-defined one. 

By running paths within the cross-correlation spectrum, it is possible to reconstruct the ORG signal, 

even in tens of seconds of measurement, as I have shown in Pub. 4 In this project, we tracked the 

shifts between the photoreceptor (inner and outer photoreceptors segments, IS/OS) and Bruch's mem-

brane (BrM) layers in mouse retinas. Application of the phase method allowed us to increase the 

sensitivity of the measurement and to observe more subtle changes, unnoticeable in results obtained 
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with methods based on amplitude analysis. The study was conducted on anesthetized mice at the 

University of California, Davis Eyepod Imaging Laboratory. Following the collaboration of this pro-

ject, after the completion of work on Pub. 4, I completed a month-long research internship at the 

laboratories of the University of California, Davis under the supervision of Professor Robert 

-related topics.  

As the next steps, I plan to develop a phase-based ORG method by optimizing the selection of 

a pathway composed of Knox-Thompson pathways, which will enable the application of this method 

on humans in clinical conditions. 

The details of the experiments and the proposed method were described in Pub. 4. 
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6.4. Measurement of biomechanical properties of biological tissues under compression  

Precise measurements of sample’s layer relocations in OCT measurements, also allow the use of 

phase methods to determine biomechanical properties of tissues. Changes in tissue stiffness accom-

pany disease processes, including cancer. In this project, I studied changes in tissue stiffness modulus 

under the influence of tissue compression using a piston that gradually compresses tissue between 

successive OCT image recordings. Rigid tissue under compression deforms less than soft tissue. Tu-

mor tissue is characterized by heterogeneous structure and stiffness, which allows to distinguish it 

from healthy tissue [70]. Measuring the stiffness modulus boils down to measuring the displacement 

of tissue layers between two piston positions [5,71]. 

The goal of this project was to propose a new method for calculating the deformation of objects 

using OCT elastography (OCE) and to present it in terms of two previously used methods: the vector 

method [72] and the weighted phase unwrapping method [73]. The new method was intended to re-

duce the amount of artifacts caused by phase wrapping. We also wanted to review the methods and 

analyze the algorithms in OCE applications.  

I modified the FPU fast phase unwrapping algorithm for elastography applications. The main 

changes were the extension of the algorithm to analyze three-dimensional volumetric data, the devel-

opment and application of Volkov symmetrization [55] for the case of three-dimensional data, and 

a change in the iteration stop condition and an implementation change in the calculation of the cor-

rection in each iteration (Fig. 1 in Pub. 5). The algorithm I implemented, in Matlab Code 3 has been 

attached to this paper. I used the modified FPU in the procedure of defining the strain on the data 

from mice and pig tissue. This enabled the reduction of artifacts in strain imaging caused by phase 

unwrapping errors in the other two methods. Along with the other authors of Pub. 5, I made a com-

parison between the previously used methods for calculating the stiffness modulus and the method 

using FPU. The FPU method was able to increase the dynamic range and thus improve the contrast 

in strain imaging at the cost of decreasing computational efficiency. In Pub. 5, in collaboration with 

the University of Western Australia in Perth, we presented the advantages and disadvantages of each 

method, which can help in choosing the right one depending on the researcher's goal.  

Details of the application of the FPU algorithm to OCE studies of mouse and pig tissue and 

a comparison of the results for the other methods of determining the stiffness modulus in OCE are 

described in Pub. 5. 
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7. Description of doctoral student’s contribution 

The publications presented in this dissertation are part of the output of the research projects P1-P3 

projects where I was the main contributor in all the aspects, starting from the concept of the research, 

development of necessary tools, their implementation, design of experiments and data analysis. For 

obtaining the results from projects P4-P5 I have reached to forein partners with proposition of imple-

menting the developed tools in their studies, made preliminary tests followed by close collaboration, 

where I prepared almost all the data analysis tools and processed the experimental datat that led to 

the published results. Detailed description of the work done in the projects is given below.  

In P1 project, as a part of my research, I modified and implemented an algorithm for removing 

one of the most common artifacts occurring during phase analysis of OCT signal - phase wrap. I im-

plemented, with the help of Marcin Sylwestrzak, PhD, FPU algorithm on GPUs in C/CUDA environ-

ment. I implemented simulation of flow phantom, allowing to change its orientation and to change 

parameters of internal flows. I made a number of tests of the FPU algorithm in silico. I prepared and 

performed OCT experiments on the flow phantoms. My tasks also included entire data processing 

and preparation of the final results.   

In the P2 project, I was responsible for implementing the FPU algorithm to remove phase wrap 

artifact in Doppler OCT measurements. I applied the algorithm to the study of blood flow in retinal 

vessels in the human eye in healthy patients. I was responsible for preparation of the experiment both 

formally and scientifically, including recruiting the volunteers, contact with the eye clinic, contact 

with patients, and direct execution of experiments on volunteers. I proposed post-measurement pro-

tocols and performed full data processing to obtain selected blood flow parameters such as flow ve-

locity, volume flow, Murray parameter relating diameter to volume flow in the vessel, vascular re-

sistance. In Pub. 3 the time course of axial blood velocity pulsatility for selected retinal arterioles is 

also shown. I was responsible for the preparation and execution of the experiments, complete data 

processing and presentation of the final results. I compared pulsatility in retinal arterioles with blood 

velocity in middle cerebral artery obtained by transcranial Doppler (TCD) ultrasonography.  

As part of the P3 project, I demonstrated another way of presenting the phase signal along with 

the application of the phase method with Knox-Thompson pathways to measure light-induced retinal 

function using spectral OCT. I implemented the method and adapted it to the needs of optoretinogra-

phy. I demonstrated the application of the method in real in vivo measurements on immobilized mice. 

I applied the phase method base on cross-correlation to widely available spectral OCT systems with-

out the need for adaptive optics, an eye movement-induced motion artifact correction device, fast 

light sources, and high acquisition rates. My tasks included complete data processing and presentation 

and analysis of the final results. 
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As part of the P4 project, I once again modified the FPU algorithm and applied it to a new field, 

OCT elastography, for measuring the biomechanics of biological tissues. My modifications included 

extending the algorithm to analyze three-dimensional volumetric data, developing and applying 

Volkov symmetrization [54] for the case of three-dimensional data, changing the iteration stop con-

dition, and an implementation change in computing the correction at each iteration. I was responsible 

for implementing FPU phase unwrapping for strain rate measurements on real ex vivo biological tis-

sues. My tasks included the preparation of phase data and its processing by the FPU method. I was 

involved in comparing the calculated strains with results obtained using two methods previously used 

at OCE: the vector method and the weighted phase unwrapping method. I contributed to the analysis 

of results comparing the performance of three methods for calculating tissue strain in OCE. 

In Pub. 1-4, which are part of the dissertation, I am the lead author. The text of the manuscripts 

of Pub. 1-4 were almost entirely written by me. I authored the tables, figures, and video files included 

as appendices to the publications. I was responsible for responses to reviewers and edits to the man-

uscript after reviews. In the publication Pub. 5, I share the lead authorship with Jiayue Li. I am the 

author of the results obtained using the FPU algorithm found in the tables and figures of this paper.  

I am the author of the illustration showing the operation of the modified FPU algorithm and the chap-

ter on the FPU method. I was responsible for the responses to papers reviewers concerning the appli-

cation of the modified FPU method in OCE.  
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8. Summary 

Phase provides a range of interesting physiological information that could help in the diagnosis of 

selected modern civilization diseases. A prerequisite for the applicability of these methods is their 

reliability and obtaining information in a satisfactory time, adapted to real clinical conditions. Despite 

promising results, the transfer of phased-based OCT methods to clinics has been halted by a number 

of problems, which are still an open topic for researchers. 

I have demonstrated selected applications of the OCT signal phase in Doppler OCT, OCT elas-

tography and optoretinography. I focused on several problems accompanying phase analysis: the time 

required for data processing and the need for working memory, the limited range of measurable axial 

displacements, obtaining displacement information only in the beam axis, the influence of object 

geometry on the measurement, motion artifacts unavoidable in a measurement of a few seconds, phase 

artifacts resulting from the composite analysis of OCT data. I have shown proposals of methods for 

analysis of phase data obtained with widely available systems for spectral OCT, which would allow 

application of new methods using already existing devices.  

The proposed methods allow to reduce phase artifacts and to obtain reliable results, what was 

confirmed by simulations and experimental data gathered ex vivo and in vivo from real biological 

samples. I have implemented FPU phase unwrapping algorithm on graphics card processors to speed 

up the computation time.  

The projects presented in my dissertation are part of a broad research effort to develop phased-

array methods and increase the functionality of OCT devices, which may help develop biomarkers 

and accelerate the diagnosis of selected diseases of civilization in the future. 
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Appendixes 

Code 1. The code of FPU algorithm implemented in programing environment C/CUDA 

1. //CUDA 10.1, Visual Studio 2017 
2. #define EXPORT_FCNS 
3. #define Pi 3.141592654f 
4. #include "helper.h" 
5. #include "stdafx.h" 
6. #include "CUDAprocessing.h" 
7. #include <cuda.h> 
8. #include <cuda_runtime.h> 
9. #include <stdio.h> 
10. #include <cufft.h> 
11. #include <malloc.h> 
12. #include <Windows.h> 
13. #include "device_launch_parameters.h" 
14. #include "device_functions.h" 
15. #include "cuda_fp16.h" 
16. #include <math.h> 
17. #define BATCH 10 
18. #define NRANK 3 
19. #define Pi 3.141592654f  
20.  
21. int pix = 0; 
22. int ascans = 0; 
23. int bscans = 0; 
24. int allPix = pix * ascans*bscans; 
25. const float PI = 3.141592654f; 
26. float* K_device = NULL; 
27. #define LUT_FWHM_FUNCTIONS 80 
28. cufftHandle plan1, plan2; 
29. cufftComplex* dispAndShapeVector_dev = NULL; 
30. // 
31. // CUDA initialization 
32. int InitCuda(void) 
33. { 
34. int count = 0; 
35. int i = 0; 
36. cudaGetDeviceCount(&count); 
37.  
38. if (count == 0) { 
39. return 5001; // CUDA device is disconected 
40. } 
41.  
42. for (i = 0; i < count; i++) { 
43. cudaDeviceProp prop; 
44. if (cudaGetDeviceProperties(&prop, i) == cudaSuccess) { 
45. if (prop.major >= 1) { 
46. break; 
47. } 
48. } 
49. } 
50.  
51. if (i == count) { 
52. return 5002; // device does not support CUDA calculations 
53. } 
54. cudaError_t cudaStatus = cudaSetDevice(i); 
55. if (cudaStatus != cudaSuccess) { 
56. return 5003; // error with CUDA initialization 
57. } 
58. return 0; 
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59. } 
60.  
61. //            ************************************                 
62. //          P R O C E S S I N G Phase unwrapping FPU                      
63. __global__ void div_ComplexFloatD(cufftComplex *C, float *B) { 
64. register int i_loc = blockIdx.x*blockDim.x + threadIdx.x; 
65. C[i_loc].x = C[i_loc].x / B[i_loc]; 
66. C[i_loc].y = C[i_loc].y / B[i_loc]; 
67. //avoid division by zero 
68. if (i_loc == 0) { 
69. C[i_loc].x = 0; 
70. C[i_loc].y = 0; 
71. } 
72. } 
73.  
74. __global__ void product_ComplexFloatD(cufftComplex *C, float *B) { 
75. register int i_loc = blockIdx.x*blockDim.x + threadIdx.x; 
76. C[i_loc].x = C[i_loc].x * B[i_loc]; 
77. C[i_loc].y = C[i_loc].y * B[i_loc]; 
78. } 
79.  
80. __global__ void Imag_z1byz2(cufftComplex *A, float *B, float allPix_c) { 
81. //imag(z1/z2) = im2re1-im1re2; when |z2|=1; 
82. register int i_loc = blockIdx.x*blockDim.x + threadIdx.x; 
83. A[i_loc].x = A[i_loc].y*cosf(B[i_loc]) / allPix_c - 

A[i_loc].x*sinf(B[i_loc]) / allPix_c; 
84. A[i_loc].y = 0; 
85. } 
86.  
87. __global__ void unwrap(float *W, cufftComplex *PSI, float PI2, float all-

Pix_c) { 
88. register int i_loc = blockIdx.x*blockDim.x + threadIdx.x; 
89. W[i_loc] = W[i_loc] + PI2 * round((PSI[i_loc].x / allPix_c - W[i_loc]) / 

(PI2)); 
90. } 
91.  
92. __global__ void P_vec(cufftComplex *P, float *W){ 
93. register int i_loc = blockIdx.x*blockDim.x + threadIdx.x; 
94. P[i_loc].x = cosf(W[i_loc]); 
95. P[i_loc].y = sinf(W[i_loc]); 
96. } 
97.  
98. // Fast Phase Unwrapping (FPU) with timing 
99. int FPU3d(float *wrapped, float *unwrapped) { 
100. LARGE_INTEGER countPerSec, tim1, tim2, tim3, tim4, tim5, tim6, tim7, 

tim8, tim9, tim10, tim11; 
101. QueryPerformanceFrequency(&countPerSec); 
102. cufftHandle plan1 = NULL, plan2 = NULL; 
103. int err; 
104. cudaError_t status; 
105. cufftResult_t e; 
106. float* data_in = NULL; 
107. cufftComplex* P = NULL; 
108.  
109. /* Create a 3D FFT ComplexToComplex plan. */ 
110. int n[3] = { bscans, ascans, pix }; 
111. int n1[3] = { pix, ascans, bscans }; 
112. e = cufftPlan3d(&plan1, bscans, ascans, pix, CUFFT_C2C); 
113. cudaMalloc((void**)&data_in, allPix * sizeof(float)); 
114. cudaMalloc((void**)&P, allPix * sizeof(cufftComplex)); 
115.  
116. if ((P == NULL) || (data_in == NULL) ) { 
117. return 5004;  // error with CUDA malloc 
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118. } 
119.  
120. dim3 block(pix, 1, 1); 
121. dim3 grid(ascans*bscans, 1, 1); 
122. QueryPerformanceCounter(&tim1); 
123. status = cudaMemcpy(data_in, wrapped, allPix * sizeof(float), cudaMemcpy-

HostToDevice); 
124. QueryPerformanceCounter(&tim2); 
125. P_vec << < grid, block >> > (P, data_in); 
126. cudaDeviceSynchronize(); 
127. err = cudaGetLastError(); 
128. QueryPerformanceCounter(&tim3); 
129. //1 
130. e = cufftExecC2C(plan1, P, P, CUFFT_FORWARD); 
131. cudaDeviceSynchronize(); 
132. QueryPerformanceCounter(&tim4); 
133. product_ComplexFloatD << < grid, block >> > (P, K_device); 
134. cudaDeviceSynchronize(); 
135. err = cudaGetLastError(); 
136. QueryPerformanceCounter(&tim5); 
137. //2 
138. e = cufftExecC2C(plan1, P, P, CUFFT_INVERSE); 
139. cudaDeviceSynchronize(); 
140. QueryPerformanceCounter(&tim6); 
141. Imag_z1byz2 << < grid, block >> > (P, data_in, allPix); 
142. cudaDeviceSynchronize(); 
143. err = cudaGetLastError(); 
144. QueryPerformanceCounter(&tim7); 
145. //3 
146. e = cufftExecC2C(plan1, P, P, CUFFT_FORWARD); 
147. div_ComplexFloatD << < grid, block >> > (P, K_device); 
148. cudaDeviceSynchronize(); 
149. err = cudaGetLastError(); 
150. //4 
151. QueryPerformanceCounter(&tim8); 
152. e = cufftExecC2C(plan1, P, P, CUFFT_INVERSE); 
153. cudaDeviceSynchronize(); 
154. QueryPerformanceCounter(&tim9); 
155. unwrap << < grid, block >> > (data_in, P, 2 * PI, allPix); 
156. cudaDeviceSynchronize(); 
157. err = cudaGetLastError();  
158. QueryPerformanceCounter(&tim10); 
159. status = cudaMemcpy(unwrapped, data_in, allPix * sizeof(float), cudaMem-

cpyDeviceToHost); 
160. QueryPerformanceCounter(&tim11); 
161. double j[12]; 
162. j[0] = (double)(tim2.QuadPart - tim1.QuadPart)/countPerSec.QuadPart*1000; 
163. j[1] = (double)(tim3.QuadPart - tim2.QuadPart)/countPerSec.QuadPart*1000; 
164. j[2] = (double)(tim4.QuadPart - tim3.QuadPart)/countPerSec.QuadPart*1000; 
165. j[3] = (double)(tim5.QuadPart - tim4.QuadPart)/countPerSec.QuadPart*1000; 
166. j[4] = (double)(tim6.QuadPart - tim5.QuadPart)/countPerSec.QuadPart*1000; 
167. j[5] = (double)(tim7.QuadPart - tim6.QuadPart)/countPerSec.QuadPart*1000; 
168. j[6] = (double)(tim8.QuadPart - tim7.QuadPart)/countPerSec.QuadPart*1000; 
169. j[7] = (double)(tim9.QuadPart - tim8.QuadPart)/countPerSec.QuadPart*1000; 
170. j[8] = (double)(tim10.QuadPart -tim9.QuadPart)/countPerSec.QuadPart*1000; 
171. j[9] = (double)(tim11.QuadPart-tim10.QuadPart)/countPerSec.QuadPart*1000; 
172. j[10] = (double)(tim11.QuadPart-tim1.QuadPart)/countPerSec.QuadPart*1000; 
173. j[11] = (double)(tim10.QuadPart-tim2.QuadPart)/countPerSec.QuadPart*1000; 
174.  
175. cudaFree(P); 
176. cudaFree(data_in); 
177. cudaFree(K_device); 
178. cufftDestroy(plan1); 
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179. return 0; 
180. } 
181.  
182. __global__ void kernel_ifftShift_3(float* data_copmlex_dev) 
183. { 
184. register int index = blockIdx.x * blockDim.x + threadIdx.x; 
185. register int offset = blockDim.x * gridDim.x; 
186. float re = data_copmlex_dev[index]; 
187. data_copmlex_dev[index] = data_copmlex_dev[index + offset]; 
188. data_copmlex_dev[index + offset] = re; 
189. } 
190.  
191. int ifftShift_3(float* data_copmlex_dev) 
192. { 
193. int nThreads = pix; 
194. dim3 nBlocks(ascans*bscans/ 2); 
195. kernel_ifftShift_3 << <nBlocks, nThreads >> > (data_copmlex_dev); 
196. cudaError_t cudaStatus1 = cudaGetLastError(); 
197. cudaError_t cudaStatus2 = cudaDeviceSynchronize(); 
198. if ((cudaStatus1 != cudaSuccess) && (cudaStatus2 != cudaSuccess)) { 
199. return 11; 
200. } 
201. return 0; 
202. } 
203.  
204. __global__ void kernel_ifftShift_1(float* data_complex_dev) 
205. { 
206. register int index = blockIdx.y * 2 * blockDim.x * gridDim.x + blockIdx.x 

* 2 * blockDim.x + threadIdx.x; 
207. register int offset = blockDim.x; 
208. float re = data_complex_dev[index]; 
209. data_complex_dev[index] = data_complex_dev[index + offset]; 
210. data_complex_dev[index + offset] = re; 
211. } 
212. int ifftShift_1(float* data_complex_dev) 
213. { 
214. int nThreads = pix / 2; 
215. dim3 nBlocks(ascans, bscans, 1); 
216. kernel_ifftShift_1 << <nBlocks, nThreads >> > (data_complex_dev); 
217. cudaError_t cudaStatus1 = cudaGetLastError(); 
218. cudaError_t cudaStatus2 = cudaDeviceSynchronize(); 
219. if ((cudaStatus1 != cudaSuccess) && (cudaStatus2 != cudaSuccess)) { 
220. return 11; 
221. } 
222. return 0; 
223. } 
224.  
225. __global__ void kernel_ifftShift_2(float* data_complex_dev) 
226. { 
227. register int index = blockIdx.y * blockDim.x * 2 * gridDim.x + blockIdx.x 

* blockDim.x + threadIdx.x; 
228. register int offset = blockDim.x * gridDim.x; 
229. float re = data_complex_dev[index]; 
230. data_complex_dev[index] = data_complex_dev[index + offset]; 
231. data_complex_dev[index + offset] = re; 
232. } 
233. int ifftShift_2(float* data_complex_dev) 
234. { 
235. int nThreads = pix; 
236. dim3 nBlocks(ascans / 2, bscans, 1); 
237. kernel_ifftShift_2 << <nBlocks, nThreads >> > (data_complex_dev); 
238. cudaError_t cudaStatus1 = cudaGetLastError(); 
239. cudaError_t cudaStatus2 = cudaDeviceSynchronize(); 
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240. if ((cudaStatus1 != cudaSuccess) && (cudaStatus2 != cudaSuccess)) { 
241. return 11; 
242. } 
243. return 0; 
244. } 
245.  
246. __global__ void kernel_calc_matrix_K(float* K_dev) 
247. { 
248. //k - threadIdx.x 
249. //j - blockIdx.x 
250. //i - blockIdx.y 
251. //pix - blockDim.x 
252. //ascans - gridDim.x 
253. //bscans - gridDim.y 
254. int index = blockDim.x * gridDim.x * blockIdx.y + blockIdx.x * blockDim.x 

+ threadIdx.x; 
255. K_dev[index] = (1.0 / (float(blockDim.x - 1))*(-float(blockDim.x) / 2 + 

threadIdx.x)) *(1.0 / (float(blockDim.x - 1))*(-float(blockDim.x) / 2 + 
threadIdx.x)) 

256. + (1.0 / (float(gridDim.y - 1))*(-float(gridDim.y) / 2 + block-
Idx.y))*(1.0 / (float(gridDim.y - 1))*(-float(gridDim.y) / 2 + blockIdx.y)) 

257. + (1.0 / (float(gridDim.x - 1))*(-float(gridDim.x) / 2 + block-
Idx.x))*(1.0 / (float(gridDim.x - 1))*(-float(gridDim.x) / 2 + blockIdx.x)) 
+ 2.0e-16; 

258. //for (int i = 0; i < bscans; i++) 
259. // for (int j = 0; j < ascans; j++) 
260. //  for (int k = 0; k < pix; k++) { 
261. //   K_dev[k + j * pix + i * ascans*pix] = powf(1.0 / (float(pix - 1))*(-

float(pix) / 2 + k), 2) 
262. //    + powf(1.0 / (float(bscans - 1))*(-float(bscans) / 2 + i), 2) 
263. //    + powf(1.0 / (float(ascans - 1))*(-float(ascans) / 2 + j), 2) + 

2.0e-16; 
264. //  } 
265. } 
266. int calc_matrix_K(float* K_dev) 
267. { 
268. int nThreads = pix; 
269. dim3 nBlocks(ascans, bscans, 1); 
270. kernel_calc_matrix_K <<<nBlocks, nThreads >>> (K_dev); 
271. cudaError_t cudaStatus1 = cudaGetLastError(); 
272. cudaError_t cudaStatus2 = cudaDeviceSynchronize(); 
273. if ((cudaStatus1 != cudaSuccess) && (cudaStatus2 != cudaSuccess)) { 
274. return 21; 
275. } 
276. return 0; 
277. } 
278.  
279. //void frequency_vec_K(float *vec_K) { 
280. // 
281. // for (int i = 0; i < bscans; i++) 
282. //  for (int j = 0; j < ascans; j++) 
283. //   for (int k = 0; k < pix; k++) { 
284. //    vec_K[k + j * pix + i * ascans*pix] = powf(1.0 / (float(pix - 1))*(-

float(pix) / 2 + k), 2) 
285. //     + powf(1.0 / (float(bscans - 1))*(-float(bscans) / 2 + i), 2) 
286. //     + powf(1.0 / (float(ascans - 1))*(-float(ascans) / 2 + j), 2) + 

2.0e-16; 
287. //   } 
288. // int i = 0; int j = 0; int k = 0; 
289. // float p, a, b; 
290. // p = 1.0 / (float(pix))*((float(pix) / 2) + 0); 
291. // a = powf(1.0 / (float(ascans))*(-float(ascans) / 2 + j), 2); 
292. // b = powf(1.0 / (float(bscans))*(-float(bscans) / 2 + i), 2); 
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293. //} 
294. EXPORTED_FUNCTION int Initialization(int _ascans, int _bscans, int _pix) 
295. { 
296. ascans = _ascans; 
297. bscans = _bscans; 
298. pix = _pix; 
299. allPix = ascans * bscans*pix; 
300. int error = 0; 
301. error = InitCuda(); 
302. if (error != 0) 
303. return error; 
304. cudaDeviceReset(); 
305. cudaMalloc((void**)&K_device, allPix * sizeof(float)); 
306. int status=0; 
307. //status = cudaMemcpy(K_dev, K_c, allPix * sizeof(float), cudaMemcpy-

HostToDevice); 
308. calc_matrix_K(K_device); 
309. if (error == 0) 
310. error = ifftShift_3(K_device); 
311. if (error == 0) 
312. error = ifftShift_2(K_device); 
313. if (error == 0) 
314. error = ifftShift_1(K_device); 
315. return 0; 
316. } 
317.  
318. EXPORTED_FUNCTION int FPU(float *wrapped, float *unwrapped) 
319. { 
320. FPU3d( wrapped, unwrapped); 
321. return 0; 
322. }  
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Code 2. The FPU algorithm implemented in programming environment of the Matlab 

R2021a 

1. %                 Fast phase unwrapping algorithm (FPU)                   % 
2. %   _____________________________________________________________________ % 
3. %   wrapped                              input array with wrapped phase   % 
4. %   --------                                              -------------   % 
5. %   estimated_psi                     output array with unwrapped phase   % 
6. %                                                                         % 
7. %   _____________________________________________________________________ % 
8.   
9.   
10. function [unwrapped_psi] = fpu_base(wrapped_fi) 
11.      
12.     S = size(wrapped_fi); 
13.     dim = length(S); 
14.   
15. %   estimated unwrapped phase psi using 4 FFTs 
16.   
17.     complex_buf = exp(1i*wrapped_fi); 
18.     complex_buf = fftn(complex_buf); 
19.     K = calc_K; 
20.     complex_buf = K.*complex_buf; 
21.     clear K 
22.     complex_buf = ifftn(complex_buf); 
23.     complex_buf = complex_buf./exp(1i*wrapped_fi); 
24.     real_buf = imag( complex_buf ); 
25.     complex_buf = fftn(real_buf); 
26.     real_buf = calc_K; 
27.     complex_buf = complex_buf./real_buf; 
28.     real_buf = real(ifftn(complex_buf)); 
29.     clear complex_buf 
30.      
31.     estimated_psi = real_buf; 
32.      
33. %   estimated unwrapped phase psi using 4 FFTs 
34. %   estimated_psi = ... 
35. %     ifftn(fftn(imag(ifftn(K.*fftn(exp(1i*wrapped_fi)))... 
36. %     ./exp(1i*wrapped_fi)))./K); 
37.   
38. %   estimated unwrapped phase psi using 6 FFTs 
39. %   estimated_psi = ... 
40. %     ifftn(fftn(((cos(wrapped_fi).*ifftn(K.*fftn(sin(wrapped_fi)))...  
41. %     - sin(wrapped_fi).*ifftn(K.*fftn(cos(wrapped_fi))))))./K); 
42.   
43. %   estimated unwrapped phase psi using 8 FFTs 
44. %   estimated_psi = ... 
45. %     ifftn( fftn(cos(wrapped_fi).*(ifftn(K.*fftn(sin(wrapped_fi)))))./K ) ... 
46. %     -ifftn( fftn(sin(wrapped_fi).*(ifftn(K.*fftn(cos(wrapped_fi)))))./K ); 
47.   
48.     Q = round( (estimated_psi - wrapped_fi)/(2*pi) ); 
49.     unwrapped_psi = wrapped_fi + 2*pi*(Q);    
50.     unwrapped_psi = real(unwrapped_psi); 
51.   
52.      
53.  function K = calc_K() 
54.       
55.     fx = 1/(S(1)-1)*[-S(1)/2:S(1)/2-1]; 
56.     fy = 1/(S(2)-1)*[-S(2)/2:S(2)/2-1]; 
57.   
58.     % K is Fourier-space conjugate of the vector r [x,y] or r [x,y,z] 
59.   
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60.     if dim == 2 
61.         [X, Y] = meshgrid(fy, fx); 
62.         K = X.^2 + Y.^2 + eps; 
63.          
64.     elseif dim == 3 
65.         % additional coordinates for third spatial dimension 
66.         fz = 1/(S(3)-1)*[-S(3)/2:S(3)/2-1]; 
67.          
68.         [X, Y, Z] = meshgrid(fy, fx, fz); 
69.         K = X.^2 + Y.^2 + Z.^2 + eps; 
70.          
71.     elseif dim == 1 
72.         K = fx.^2 + eps; 
73.          
74.     end 
75.         K = fftshift(K); 
76.         tic(); 
77.         t1 = tic; 
78.     end 
79.   
80. end 
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Code 3. The code of iterative FPU method for phase unwrapping with Volkov 

tion  

1. %     Fast phase unwrapping algorithm (FPU) with Volkov symmetrization    % 
2. %   _____________________________________________________________________ % 
3. %   wrapped                              input array with wrapped phase   % 
4. %   threshold                               stop parameter to iteration   % 
5. %   iter                                       stop limit of iterations   % 
6. %   path                                        main path to input file   % 
7. %   filename                                  file name with input file   % 
8. %   --------                                              -------------   % 
9. %   estimated_psi                     output array with unwrapped phase   % 
10. %                                                                         % 
11. %   _____________________________________________________________________ % 
12.   
13.   
14. close all 
15. clear all 
16.   
17. global S dim SK 
18.   
19. threshold = 1.5; 
20. iter = 1e3; 
21.   
22. % folder with file 
23. path = 'C:\MainpathToFile\'; 
24.   
25. % path to file 
26. filename = ['filename.m']; 
27.   
28.     wrapped = read3DleeS([path filename]); 
29.     S = size(wrapped); 
30.     dim = length(S); 
31.     SK = S*2; 
32.          
33. wrapped = flip(wrapped,3); 
34. p = isnan(wrapped); 
35. [rr1,rr2]=find(p>0); 
36. wrapped(p)=0; 
37.      
38.   
39. % symmetrization 
40. ex_wrapped = cat(1,wrapped,flip(wrapped,1)); 
41. ex_wrapped = cat(3,ex_wrapped,flip(ex_wrapped,3)); 
42. ex_wrapped = cat(2,ex_wrapped,flip(ex_wrapped,2));  
43.   
44.   
45. % first estimation of unwrapped phase 
46. [ex_estimated_psi] = estimation(ex_wrapped); 
47. estimated_psi = ex_estimated_psi(1:S(1),1:S(2),1:S(3)); 
48.   
49. clear ex_estimated_psi ex_wrapped wrapped 
50.   
51. i = 0; 
52. if i <= iter 
53. if th <= threshold 
54.      
55.     % correction of estimation 
56.     Q2 = angle(exp(1i*wrapped).*exp(-1i*estimated_psi)); 
57.      
58.     % noise can be calculaten in ROI or global 
59.     th = std(std(std(angle(Q2)))); 
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60.   
61.      
62.     % Volkov symmetrization 
63.     ex_Q = cat(1,Q2,flip(Q2,1)); 
64.     clear Q2     
65.     ex_Q = cat(2,ex_Q,flip(ex_Q,2)); 
66.     ex_Q = cat(3,ex_Q,flip(ex_Q,3));  
67.   
68.             
69.     % estimation of correction    
70.     [est_Q2] = estimation(ex_Q); 
71.     Q = est_Q2(1:S(1),1:S(2),1:S(3)); 
72.      
73.            clear ex_Q est_Q2 
74.                
75.     % corrected estimation psi        
76.     estimated_psi = estimated_psi + Q; 
77.    
78. i = i + 1;     
79. end 
80. end   
81.      
82.      
83. function [output_phase] = estimation(input_phase) 
84.   
85.     SK = size(input_phase); 
86.   
87.     real_buf = GenSaveKtesty(SK); 
88.     K = real_buf; 
89.   
90.     complex_buf = single(input_phase); 
91.   
92.     % estimated unwrapped phase psi using 4 FFTs 
93.   
94.     complex_buf = exp(1i*complex_buf); 
95.     complex_buf = single(complex_buf); 
96.     complex_buf = fftn(complex_buf); 
97.   
98.     complex_buf = real_buf.*complex_buf; 
99.     complex_buf = ifftn(complex_buf); 
100.   
101.     complex_buf = complex_buf./exp(1i*ex_wrapped); 
102.   
103.     clear ex_wrapped    
104.   
105.     real_buf = imag( complex_buf ); 
106.     complex_buf = fftn(real_buf);                                                 
107.   
108.     complex_buf = complex_buf./K; 
109.   
110.     clear K 
111.   
112.     real_buf = real(ifftn(complex_buf)); 
113.   
114.     clear complex_buf 
115.   
116.     output_phase = real_buf; 
117.   
118. end 
119.      
120.      
121. function [array_data] = read3DleeS(path) 
122.   
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123.     file1 = fopen(path,'r');                  % open file to read 
124.     size = fread (file1,3,'int32', 'ieee-le');% read 3-dimentional data 
125.     data = fread (file1,'single','ieee-le');  % read data in single precision 
126.     fclose('all');                            % close file 
127.   
128.     % reshape data to matlab 3-dim array  
129.     array_data = reshape(data,[size(1),size(2),size(3)]);    
130.   
131. end 
132.   
133.   
134. function K = GenSaveKtesty(SK)     
135.   
136.     global dim 
137.      
138.     ER = 0.01; 
139.       
140.     fx = [-SK(1)/2:SK(1)/2-1]; 
141.             fx = single(fx); 
142.     fy = [-SK(2)/2:SK(2)/2-1]; 
143.             fy = single(fy);  
144.              
145.     % K is Fourier-space conjugate of the vector r [x,y] or r [x,y,z] 
146.   
147.     if dim == 2 
148.         [X, Y] = meshgrid(fy, fx); 
149.                 clear fz ty 
150.         K = X.^2 + Y.^2 + ER; 
151.                 clear X Y Z 
152.                  
153.     elseif dim == 3 
154.          
155.         % additional coordinates for third spatial dimension 
156.          fz = [-SK(3)/2:SK(3)/2-1]; 
157.          
158.         [X, Y, Z] = meshgrid(fy, fx, fz); 
159.          
160.         clear fz fy fz 
161.         X = single(X); 
162.         Y = single(Y); 
163.         Z = single(Z); 
164.          
165.         K = X.^2 + Y.^2 + Z.^2 + ER; 
166.         clear X Y Z 
167.     end 
168.         K = fftshift(K); 
169.         tic(); 
170.         t1 = tic; 
171. end 
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Abstract: We propose a simplification for a robust and easy to implement fast phase 
unwrapping (FPU) algorithm that is used to solve the phase wrapping problem encountered in 
various fields of optical imaging and metrology. We show that the number of necessary 
computations using the algorithm can be reduced compared to its original version. FPU 
can be easily extended from two to three spatial dimensions. We demonstrate the applicability 
of the two- and three-dimensional FPU algorithm for Doppler optical coherence tomography 
(DOCT) in numerical simulations, and in the imaging of a flow phantom and blood flow in 
the human retina in vivo. We introduce an FPU applicability plot for use as a guide 
in  the  selection of the most suitable version of the algorithm depending on the phase noise in 
the acquired data. This plot uses the circular standard deviation of the wrapped phase 
distribution as a measure of noise and relates it to the root-mean-square error of 
the recovered, unwrapped phase. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction 
Optical coherence tomography (OCT) is a micrometer-scale imaging technique [1, 2] most 
commonly used in medical diagnostics to visualize structures and detect the functions of 
biological tissues and cells. OCT relies on the principle of white light interferometry. 
Analysis of the interference signals originating from backscattered light within the tissue and 
backreflected from the reference mirror of an interferometer provides information about 
the spatial distribution of scattering structures within the object. The broader the spectrum of 
the light is, the higher the axial imaging resolution is. In the case of the Fourier-domain 
variant of the OCT technique (FdOCT), the interference signal is recorded in the wavelength 
space. Interference spectra are acquired, digitized, and numerically processed (calibrated in 
the wavenumber domain, corrected for dispersion, spectrally shaped, and Fourier 
transformed) to generate complex OCT signals that contain information about the object. One 
of the advantages of the inherent access to the amplitude and phase of the interference signals 
is the possibility to devise methods for motion or flow detection and measurement. 
The motion/flow detection methods are typically used in biomedical OCT imaging for 
the visualization of the circulatory systems within the living tissues. Their most common 
application is the use of blood motion to generate contrast for the visualization of vessels 
using a family of techniques known as optical coherence angiography (OCA or OCTA) [3-5]. 
However, motion detection techniques can be also augmented with data analyses to provide 
quantitative information about at least one component of the flow velocity vector [6-11]. 
Most frequently, the flow measurement is performed with Doppler OCT techniques that 
either use the Doppler effect directly [12-16], or analyze the phase differences among 
complex OCT signals [17-21]. Quantitative motion detection and the Doppler OCT methods 
are often jointly referred to as OCT velocimetry. 
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Doppler OCT methods can provide information similar to OCTA techniques, i.e., about 
the 3D architecture of active vascular systems [13, 22-24]. However, they can also 
enable  the  quantification of parameters characterizing the blood flow in the vessels of 
various organs, such as the eye [21, 23], or the brain [21, 25-27]. Doppler OCT can therefore 
provide information that is important for the research and clinical diagnosis of pathologies 
affecting specific tissues or the entire circulatory system. However, there are a few practical 
limitations associated with this technique. One of the most often discussed limitations is 
the range of axial flow velocity values which can be measured. If the flow is too slow, it 
cannot be distinguished from the noise attributed to the phase stability of various components 
of the OCT system [19, 28-34]. If the flow is fast enough to introduce a phase change among 
the complex signals that exceeds 2π, a phase wrapping occurs that renders the estimation of 
the flow velocity obscured [24, 32]. The same effect is encountered in electron holography, 
magnetic resonance imaging (MRI), radar interferometry, and other interferometric 
techniques [35-38]. If the flow is too fast, i.e., much faster than the imaging speed of the OCT 
system, interference fringe wash-out occurs [32, 39-41], and the flow cannot be detected. 
However, the severity of this effect depends on the degree of averaging of the interference 
fringes. In practice, it is prominent in the spectral-domain OCT systems and often negligible 
in the swept-source OCT systems. 

Since the phase wrapping problem is commonly encountered in various imaging and 
detection techniques, several data analyses methods have been developed to solve it [38]. 
The simplest algorithm adds or subtracts 2π whenever the phase difference between 
consecutive phase values exceed π. Calculations of phase differences directly make this 
algorithm highly sensitive to noise and unpractical for use in most real life applications. More 
sophisticated algorithms were proposed by Goldstein [35] and Itoh [42]. These methods 
search for phase discontinuities by calculating phase gradients either directly or with use of 
Laplace operators, or by comparing phase distributions at different wavelengths. Therefore, 
these algorithms require numerous, time consuming calculations. To improve the efficiency 
of the computations, a fast phase unwrapping (FPU) method was developed by Schofield et 
al. [43]. The calculation of the phase derivatives with Laplace operators was replaced 
by Fourier transformations. This method has also been used in MRI for quantitative magnetic 
susceptibility mapping (QSM) [44], MRI venography [45], MRI flow estimation methods 
[46], magnetic resonance elastography [47], electron holography [48], and digital holographic 
microscopy [49]. 

The main reason for the failure of the phase unwrapping methods is attributed to the low 
signal-to-noise ratio (SNR) of reconstructed phase images. A phase unwrapping method for 
Doppler OCT must meet additional requirements, e.g., it must work in low SNR cases, and 
must also be insensitive to spatial variations of the SNR, including variations in depth 
(sensitivity roll-off), across the vessels (interference fringe wash-out at increasing flow 
velocities), or across the imaged pathology (weak OCT signal due to developing pathology). 
This method should also work in the presence of speckle noise and preferably operate in real 
time. To the best of our knowledge, to-this-date, the only methods that have been used for 
phase unwrapping in OCT are synthetic wavelength phase unwrapping [50] and various phase 
gradient analyses methods [51-53].  

In this study, we have adapted the fast phase unwrapping (FPU) algorithm for spectral-
domain Doppler OCT imaging, and demonstrate its applicability in data obtained 
with  the  joint spectral and time domain OCT (STdOCT) method [12]. We present the FPU 
method in a unified notation for multidimensional signals and propose a methodology to 
improve the calculation speed. The algorithm in the presented form has three properties that 
make it attractive for the OCT data processing. First, it uses the basic properties of Fourier 
transformations and postulates no assumptions on the input signal. Secondly, the method 
can be easily applied to either 2D or 3D data analyses. Lastly, it can be applied directly to 
OCT complex data without the need to extract the phase of the signal before its input to 
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the algorithm. We compare the phase unwrapping performances of the FPU algorithm 
following its applications in numerical simulations and in data obtained from Doppler OCT or 
STdOCT imaging of a flow phantom which used a milk solution as the fluid flowing through 
a glass capillary. We demonstrate the applicability of the 2D and 3D FPU for Doppler OCT 
imaging of the human retina in vivo. We finally introduce a method to estimate 
the performance of the algorithms directly from the wrapped phases. 

2. Methods 

2.1 Fast phase unwrapping 

The common observation in phase unwrapping methods is that the phase has to be corrected 
when an abrupt change occurs in the analyzed data (e.g., wrapping over a 2π range). One of 
the strategies used to correct the phase wraps is to calculate the phase derivatives and then 
compute the integral of the result. This leads to the estimation of the unwrapped phase, as will 
be explained in detail in a subsequent section. Depending on the data dimensionality, one, 
two, or three partial spatial derivatives have to be calculated. In the approach presented by 
Schofield et al. [43], a two-dimensional (2D) phase derivative calculation was performed 
using 2D Laplace operators. The key observation in this popular algorithm was that the use of 
Fourier transformations simplifies and speeds up the computations. Therefore, the  name fast 
phase unwrapping (FPU) was used. Herein, we outline the FPU algorithm for data with an 
arbitrary number of spatial dimensions before we introduce the optimizations in the next 
section. The dataflow in the algorithm is depicted in Fig. 1. 

 

Fig. 1. Graphical representation of the data flow in the fast phase unwrapping (FPU) algorithm. 
The wrapped phase distribution, ϕ (r), is the input data. It is used to calculate the phase 
estimate ψest (r). The phase correcting function Q(r) is computed as the difference between 
the phase estimate and the input phase scaled by 2π and rounded to the nearest integer 
numbers, i.e., it is an integer map of 2π phase wraps. The phase wrap map is multiplied by 2π 
and added to the input phase to yield the output unwrapped phase distribution ψ (r). 

If the spatial phase distribution ϕ (r) in the acquired data has phase wraps, a correcting 
function Q(r) needs to be identified to obtain the unwrapped phase distribution ψ (r): 

 ( ) ( ) ( )2 ,Qψ ϕ π= + ⋅r r r  (1) 

where r denotes the spatial coordinates, and Q(r) is a function used to correct the wrapped 
phase using an integer number of 2  radians. The estimate of Q(r) can be calculated as, 

 ( ) ( ) ( ) ( )( )12 .estQ π ψ ϕ−′ = −r r r  (2) 

Q′(r) is a function of real numbers (can be fractional, positive, and negative). Accordingly, 
ψest (r) is the unwrapped phase estimate which should to be identified using only wrapped 
phase information. This can be done by integrating the derivatives of the phase, and in 
practice, by applying the Laplace operator ∇2 and its inverse ∇-2: 

 ( ) ( ) ( ) ( )( )1 2 2 22 .estQ π ψ ϕ− −′ = ∇ ∇ − ∇r r r  (3) 

Schofield proposed to solve this equation for ∇2
est (r) by defining a function P(r) such that 

 ( ) ( )( ) ( )( )exp exp ,estP j jψ ϕ= =r r r  (4) 
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where j is the imaginary unit. This function has a key property in that it has the same values 
for wrapped and unwrapped phase, i.e., it is insensitive to phase wraps. The Laplacian 
of  the  P(r) function can be expressed as, 

 ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )22 2 ,est est estP P j P jPψ ψ ψ∇ = ∇ ∇ = − ∇ + ∇r r r r r r r  (5) 

which can be used to find ∇2
est (r): 

 ( ) ( ) ( ){ }12 2Im .est P Pψ −∇ = ∇r r r  (6) 

In the above formula, the Laplacian of the unwrapped phase distribution is expressed with 
the use of function P(r) which can be obtained from the known (measured) wrapped phase 
distribution. In the original approach, Schofield et al. [43] used Eq. 4 and Euler’s formula to 
derive the Laplacian of the unwrapped phase, 

 
( ) ( )( ) ( )( ){ }
( ) ( ) ( ) ( )

2 2

2 2

Im exp exp

cos sin sin cos .
est j jψ ϕ ϕ

ϕ ϕ ϕ ϕ

∇ = − ∇ =

= ∇ − ∇

r r r

r r r r
 (7) 

Application of the inverse Laplace operator to both sides of this equation leads to 
an expression for the unwrapped phase estimate, 

 ( ) ( ) ( ) ( ) ( )2 2 2 2cos csin s os .inestψ ϕ ϕ ϕ ϕ− −= ∇ ∇ ∇ ∇−r r r r r  (8) 
The Laplace operators of an arbitrary function g(r) can be calculated using Fourier 
transformations (FT) [54], 

 
( ) ( ) ( ){ }{ }
( ) ( ) ( ){ }{ }

2 1 2

2 1 2

2

2

2

2 ,

g F F g

g F F g

π

π

−

− − −−

∇ =

= −∇

−r K r

r K r
 (9) 

where K is Fourier space conjugate of the vector r, and { }F  and { }1F − are forward and 
inverse Fourier transformation operators. With this observation, Eq. 8 can be rewritten as,  

 
( ) ( ) ( ){ }{ }{ }{ }

( ) ( ){ }{ }{ }{ }
1 2 1 2

1 2 1 2

cos sin

sin cos .

est F F F F

F F F F

ψ ϕ ϕ

ϕ ϕ

− − −

− − −

= ⋅ +

− ⋅

r K r K r

K r K r
 (10) 

The above version of Schofield’s algorithm (Eq. (10)) requires eight Fourier 
transformations, and constitutes a computational challenge if the phase distribution is 
multidimensional. A straightforward improvement in the numerical efficiency arises from 
the simple rearrangement of Eq. (8), as proposed by Jeught et al. [37]: 

 ( ) ( ) ( ) ( ) ( )2 2 2cos sin si os ,n cestψ ϕ ϕ ϕ ϕ−= ∇ ∇ − ∇r r r r r  (11) 

which leads to a simplified version of Eq. (10) with six (instead of eight) Fourier 
transformations, 

 ( ) ( ) ( ){ }{ } ( ) ( ){ }{ }{ }{ }1 2 1 2 1 2cos s .in sin cosest F F F F F Fψ ϕ ϕ ϕ ϕ− − − −= ⋅ ⋅−r K r K r r K r

  (12) 
If the periodic boundary conditions required for the existence of the Fourier transforms are 
not fulfilled, phase unwrapping errors arise, thus preventing direct use of the estimate ψest (r) 
as the final unwrapped phase distribution. To overcome this issue, Schofield proposed the use 
of the phase correcting function defined as a difference between unwrapped and wrapped 
phase distributions, scaled by 2π, and rounded to the nearest integer values, 
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 ( ) ( ) ( ) ( )( )( ) ( )( )1round 2 round .estQ Qπ ψ ϕ− ′= − =r r r r  (13) 

Q(r) can be thought of as an integer map of 2π phase wraps. The phase correcting function 
was subsequently used in Eq. (1) to calculate the unwrapped phase. 

2.2 Optimized FPU algorithm 

We propose the modification of the FPU algorithm based on the application of Laplace 
operators directly on the function P(r). This enables the calculation of the unwrapped phase 
estimator est (r) from Eq. (6) with complex signals (Eq. (4)) as the input data. The Laplace 
operators can be computed again using Fourier transformations, 

 ( ) ( ) ( ){ }{ }{ }{ }{ }11 2 1 2Im .est F F P F F Pψ −− − −= ⋅r K r K r  (14) 

The clear advantage of our approach is a reduction of the number of required Fourier 
transformations to only four (4FT).  

2.3 Computational efficiency of FPU algorithms 

The proposed calculation scheme can be used for phase unwrapping in any phase-sensitive 
imaging or detection technique. Equations. 10, 12, and 14, can be applied to solve 
multidimensional phase unwrapping problems. Additionally, the 3D phase distribution can be 
unwrapped either by the use of the 3D version of the algorithm, or the use of the 2D version 
applied to each of the 2D data slices. This property makes the approach attractive for Doppler 
OCT, whereby 3D data is acquired as a sequence of 2D images. Its advantage in Doppler 
optical coherence tomography is attributed to the readily available complex function P(r), as 
it will be shown in the next sections. The 2D version requires the computation of two-
dimensional Fourier transformations (FT), whereas in the 3D option, the three-dimensional 
FT is calculated. In this work, we have implemented two-dimensional (2D) and three-
dimensional (3D) versions of the FPU method. To make the implementation as clear as 
possible (see Code 1 in Ref. [55]) we decided to use MATLAB but without any 
optimizations. Therefore, all the Fourier transforms are implemented as complex Fast Fourier 
Transforms (FFTs). Although full optimization of the algorithms is beyond the scope of this 
article, we can make one remark on this topic. The previously reported versions of the FPU 
algorithm [30, 32] calculated Laplacians on real-value input data. This allowed the calculation 
of Fourier transformations that led to Hermitian functions. This was followed by the 
multiplication with a real-valued, symmetrical coordinate function. The latter operation does 
not alter the phase of the transform, and the subsequent inverse Fourier transformation 
transforms the Hermitian function to a real-valued function. Therefore, each of 
the Laplacian calculations can be performed with the use of two real Fourier transformations 
that in principle require half of the operations needed by the complex Fourier transformation 
[56]. In the previous versions of the algorithm eight or six real Fourier transformations are 
required. In contrast, in our approach only one of the Laplacians is applied to real-valued 
function, while the second one is applied to complex-valued function and is calculated with 
the use of complex Fourier transformation. In Table 1 we compare our proposed 4FT FPU 
method with previously published approaches. 

If we assume that real the FT requires half the calculation time compared to the complex 
FT of the same size, one can immediately notice that our approach requires exactly the same 
number of calculations as the version with six real FTs. It has to be noted, however, that in 
practical applications, the code that implements the real FT requires additional steps to obtain 
the results, and is in general less efficient than the complex FT. This is true in principle for 
most data sizes and available FFT libraries [57]. Therefore, it is in general better to use 
complex FTs instead of real FTs. Accordingly, we believe that our approach has potential in 
outperforming the previous implementations. 

                                                                      Vol. 10, No. 3 | 1 Mar 2019 | BIOMEDICAL OPTICS EXPRESS 1369 

51



Experiments performed on the same simulated data sets with all three implementations of 
the FPU algorithms (using Code 1 run on MATLAB R2016b) showed that the obtained 
results are practically identical. The number of voxels with different values after phase 
unwrapping was in the range of 0.01% of the total number of voxels in tested data sets. All 
the results presented in the following sections were obtained with the 4FT version of the 
algorithm. 

Table 1. Comparison of fast phase unwrapping (FPU) algorithms 

Algorithm 
Number of 
multidimensional Fourier 
Transforms (FT) 

Formula** for the unwrapped phase distribution 
ψest with a given wrapped phase ϕ 

Original FPU [43] – Eq. (10) Eight real FTs ( ) ( )2 2 2 2sin cos cos sinestψ ϕ ϕ ϕ ϕ− −= ∇ ⋅∇ − ∇ ⋅∇

  

Re-arranged FPU [37] – 
Eq. (12) Six real FTs ( )2 2 2sin cos cos sinestψ ϕ ϕ ϕ ϕ−= ∇ ⋅∇ − ⋅ ∇   

4FT FPU – this article Eq. (14) Two real FTs + two 
complex FTs ( ) ( ){ }2 2Im exp expest j jψ ϕ ϕ−= ∇ − ∇  

**Note that each Laplacian operator, 2∇  and 2−∇ , requires two Fourier transformations. MATLAB implementation 
of the algorithms (with all FTs calculated as complex FTs for simplicity) can be found in Code 1. 

In the case of the 3D version of the algorithm, the computational times for the same 
dataset (256×256×256 voxels) are 1.07±0.03 s, 1.77±0.02 s, and 2.30±0.03 s, while for the 
2D version of the algorithm (applied to all the B-scans) the computation times are 
0.64±0.06 s, 0.93±0.15 s, and 1.20±0.26 s, for 4FT, 6FT, and 8FT, respectively. This 
shows  a  linear dependence of the calculation time on the number of Fourier transforms 
for  the  2D and 3D versions of the algorithms.  

2.4 Doppler OCT 

In the Fourier-domain OCT, an image line (A-scan) is obtained via the Fourier transformation 
of the interference signal collected in the wavelength space and linearized in the wavenumber 
space. 2D or 3D datasets are obtained by the lateral scanning of the object. Most frequently, 
a raster scan is performed in which the beam of light is scanned along the x– and y– axes of 
the Cartesian coordinates system. Fourier transformed FdOCT data can be represented at 
any given time t and for any spatial position r, using a complex amplitude A, 

 ( ) ( ) ( ), , exp ( , ) ,A t A t j tϕ=r r r  (15) 

where ϕ (r, t) is the phase of the interference pattern, and |A(r, t)|2 is proportional to the light 
intensity backscattered at position r in the object at time t. To perform Doppler OCT 
analyses, a series of A-scans needs to be collected from the same spatial location in 
the object. In practice, the beam position changes are not greater than half of the beam’s spot 
diameter [26, 29, 30, 58]. The phase differences ϕD between the pairs of A-scans are 
proportional to the axial component vz of the velocity vector v, 

 ( ) ( ) ( )( ){ } ( )*, Im ln , , 2 ,D z zt A t A t t k nv tϕ Δ = + Δ = Δr r r r  (16) 

where kz is the wavenumber, and n is the index of refraction of the moving 
medium.  The phase wrapping occurs when the time lapse t between the acquisition of the 
A-scan pairs involved in the Doppler OCT analysis exceeds the limit 

 max
max

,
2 z z

t
k nv

πΔ =  (17) 
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where vz max is the maximum measurable axial velocity at tmax. The measurements 
of  the  velocities exceeding the vz max value require the implementation of phase unwrapping 
algorithms. 

Given the representation of the FdOCT signal (Eq. (15)) and the representation of 
the phase differences in Doppler OCT (Eq. (16)), the function P(r) used to estimate 
the unwrapped phase in the FPU algorithm (Eq. (14)) can be defined as, 

 ( ) ( ) ( )
( ) ( )

( )
*

*

, ,
, exp ( , ) .

, , D

A t A t t
P t j t

A t A t t
ϕ

+ Δ
Δ = Δ

+ Δ
=

r r
r r

r r
 (18) 

The complex amplitudes A are obtained directly from the Fourier transformation 
of  the  interference spectra acquired in the FdOCT imaging. Our modified FPU algorithm is 
therefore naturally suited for the unwrapping of the phase differences in Doppler OCT. 

2.5 Numerical simulations 

To perform the tests of the FPU method and generate reference data for Doppler OCT 
imaging, a numerical model of the FdOCT signal corresponding to the flow of a scattering 
medium through a cylindrical tube was created. A laminar flow through a vessel with 
a circular lumen has a parabolic velocity distribution, changing from maximum in the center 
of the pipe to zero at the capillary walls according to 

 
( ) 22

max max for (inside the capillary)
( )

0 for (outside the capillary)
z

v v R R
v

R

− <
=

≥

r r
r

r
 (19) 

where |r| is the radial distance from the center of the tube, R is the radius of the tube lumen, 
and vmax is the maximum axial velocity in the center of the tube. 

In the simulation, the phase differences (ϕD) were computed from the spatial velocity 
distribution with a given vmax according to Eq. (17). The noise was simulated as a complex 
amplitude that changed randomly across the spatial and temporal coordinates according to 
An (r, t) = AnRe (r, t) + jAnIm (r, t) with a normal (N) probability distribution (p) of the real 
(AnRe) and imaginary (AnIm) parts, where p(AnRe) = N ( , ), and p(AnIm) = N ( , ). 
The mean of the normal distribution is  = 0 and the standard deviation  sets the noise level. 
Pairs of complex OCT amplitudes at each location r separated in time t were simulated as 
sums of the complex signal As and complex noise An according to 

 ( ) ( ) ( ) ( ) ( ), , , , exp[ ( , )] , ,s n nt t t t i tA tA A AA ϕ+= = +r r r r r r  (20) 

 
( ) ( ) ( )

( ) ( )
, , ,

                 , exp[ ( , ) ( , )] , .
s n

D n

t t A t t A t t

t i i tA t A

A

t tϕ ϕ

+ =Δ + Δ + + Δ =

= + Δ + + Δ

r r r

r r r r
 (21) 

These signals where used to compute P (r, t) according to Eq. (18) and applied in the fast 
phase unwrapping algorithm. 

2.6 Measures of error 

In our experiments we have analyzed the performance of the FPU algorithms depending on 
the noise level in the input data. To provide a measure of the noise, we use a circular standard 
deviation of the phase distribution circ [59] according to, 

 ( )( ) ( )( ) ( )( )( ), 2 ln 1 , exp , ,circ S
t p t i tσ ϕ ϕ ϕ

∈
=

r
r r r  (22) 

where the sum spans the spatial coordinates r in the area S where circ is calculated, and p(ϕ) 
is a probability density function which we have approximated with the histogram of the phase 
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distribution. The key property of circ is its independence with respect to the phase wraps. 
Therefore, it can be used as a measure of phase variability of the wrapped input data. Care 
must be taken when choosing the area S to ensure that the variability of the phase is not 
dominated by phase gradients. In other words, Eq. (22) must be calculated within a range in 
which the velocity does not vary. Since the value of circ goes to infinity when the phase 
distribution approaches a uniform distribution, this parameter is sensitive to low-SNR 
conditions, where none of the methods will correctly unwrap the phase. 

We have used the root-mean-square error (RMSE) as an error metric of the FPU algorithm 
outcomes, which measures the deviation of the unwrapped phase  (r) from the reference 
phase D ref (r), 

 ( ) ( )21
 ( ) ( ) ,D refRMSE Mψ ψ ϕ−= −

r
r r  (23) 

where M  is the number of pixels in the analyzed region-of-interest (ROI) in the dataset. In 
the absence of phase unwrapping errors, RMSE depends only on the noise level in 
the simulated data, and increases linearly at increasing circular standard deviations of 
the phase circ (ϕ). Errors in phase unwrapping, i.e., in ψ (r), increase the RMSE. This leads to 
deviations from its expected linear dependence on circ (ϕ). 

To analyze the influence of noise on the outcomes of the FPU algorithms, we have 
generated a diagram in which we have plotted the RMSE values of the unwrapped phase ψ (r) 
as a function of the circ values computed from the corresponding wrapped phase ϕ (r) 
distribution for a series of simulated data at increasing noise levels, as shown in Fig. 2. 

In the simulations, the reference phase ϕD ref (r) is identical to the arbitrarily given, noise-
free and phase-wrap-free ϕD(r). However, in the data obtained from the Doppler OCT 
imaging experiments (ϕexp), the true phase distribution that is undisturbed by wraps 
introduced during the OCT detection, is not known. In other words, RMSE(ψexp) cannot be 
calculated because of the lack of a reliable reference phase ϕD ref (r). Therefore, the scatterplot 
of RMSE (ψexp) vs. circ (ϕexp) cannot be generated. However, the circular standard deviation 

circ (ϕexp) can  still be calculated from the experimental data and referred to the simulated 
RMSE scatterplot to predict the outcome of the FPU algorithms for a particular noise level 
given by the same value of circ (ϕ). Such analysis can provide insights into the possibility of 
error-free phase unwrapping to enable the selection of the FPU algorithms that should be used 
for the  output data that are least affected by errors. 

2.7 Spectral-domain OCT experimental setup 

Experiments were performed with a spectral domain OCT setup developed in our 
laboratory [60]. The light was emitted by a superluminescent diode ( c = 860 nm, 

 = 135 nm, Broadlighter T860, Superlum) providing an axial imaging resolution in tissue 
of ~3 m. The imaging system was designed to provide a lateral resolution 17 m in 
the experiments with the flow phantom and 7.3 m in eye imaging. The repetition times of 
the CMOS camera used in the spectrometer were adjusted to obtain phase wrapping in 
the acquired data. The flow phantom contained 0.5 % fat milk, which was pumped through 
a glass capillary (600 m lumen) with a syringe pump (neMESYS 290N, CETONI GmbH). 
The in vivo imaging of the human eye was performed in a healthy volunteer (I.G). Informed 
consent was obtained prior to the imaging in compliance with the Declaration of Helsinki 
[61]. The details of the imaging protocols are listed in Table 2. 
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Table 2. Imaging protocols applied for the experiments with the use of the flow phantom 
and human eye. 

 Flow phantom Human eye 
A-scans × B-sans 500 × 800 600 × 700 
Transverse scan range (x, y) 1.6 × 0.9 mm 0.9 × 0.9 mm 
Camera repetition time ( tmax in Eq. (16) 10 s (20 s) 30 s 
vzmax (Eq. (17)) 21.5 mm/s (10.75 mm/s) 7.2 mm/s 

 
For the Doppler OCT computations we have used joint spectral and time domain OCT [5] 

in the fast flow detection regime, i.e., the flow velocity was calculated among groups of 
adjacent A-scans. To calculate flow based on the imaging of the human eye we have used 
groups of four A-scans. In the imaging of the flow phantom we have used groups of seven A-
scans. 

3. Results 

3.1 Simulation of Doppler OCT in a cylindrical tube 

We have simulated 3D Doppler OCT data of laminar flow in a cylindrical tube with 
the procedure described in Section 2.4. The time interval tmax and flow velocity were chosen 
to generate one phase wrap. One hundred different values of standard deviations  of 
the normal probability distribution N ( =0, ) were used to simulate increasing noise levels. 
One hundred datasets were generated at each noise level. The 2D and 3D 4FT FPU 
algorithms were executed in all the simulated datasets. The RMSE values of the unwrapped 
phase distributions ψ (r) were calculated and plotted against the circular standard deviation 

circ which was computed from the  phase-wrapped input data  ϕ (r), as shown in Fig. 2(a). 
These metric pairs were calculated in the ROI located in the center of the simulated 
cylindrical tube. The size of the ROI was selected to include the largest possible flow area 
with no phase wraps. Herein, we have arbitrarily selected a rectangular window and manually 
placed it in the center of the tube. However, other shapes of ROIs can be considered or even 
automatically determined. Regardless of the method of ROI selection, it should to be kept in 
mind that it is used to calculate the local standard deviation of the phase distribution 
characteristic of the blood flow in the analyzed vessel. If the ROI area is too small, then the 

circ values will exhibit increased dispersion due to noise. If the ROI area is too large, 
the phase distribution will no longer be characteristic of the local flow. Instead, it may attain 
all the values within the (- , + ) range and rapidly increase. In the limit case of pure phase 
noise, when the phase distribution in the ROI includes with equal probability values form (- , 
+ ) range the value of circ will be infinite. 

For the phase-wrap-free input data (the simulated phase distribution with increasing noise 
but with no phase wraps), the dependence between the RMSE and circ is linear (blue line in 
Fig. 2(a)). Their values increase proportionally at increasing noise levels. This idealized case 
serves as a reference for the analysis of more realistic scenarios in which the existing phase 
wraps have to be removed in the presence of noise. For low-noise levels (small circ values), 
the 2D and 3D versions of the 4FT FPU method yield correct unwrapped phase distributions. 
Example images obtained with circ = 0.69–1.04 are shown in Fig. 2(b). The plots of 
RMSE (ψ) vs. circ (ϕ) follow the reference line, i.e., the RMSE (ψ) is only affected by noise. 
At increasing noise levels, phase unwrapping errors begin to emerge in the case of the 2D 4F 
FPU algorithm. Patches of incorrect phase values appear within and outside the images of 
the tube. Their numbers and total areas increase at increasing circ values. As a consequence, 
the RMSE (ψ) vs. circ (ϕ) plot deviates considerably from the reference line. The 3D 4FT 
FPU method produces phase unwrapping errors at considerably higher noise levels. 
The RMSE (ψ) vs. circ (ϕ) plot deviates from the reference line at higher circ values. The 3D 
version of the algorithm is therefore more immune to noise compared to the 2D variant. It 
enables reliable phase unwrapping at higher noise levels. The standard deviation of the RMSE 
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values, which is a measure of the repeatability of the  outcomes of the algorithm, is 
considerably smaller in the case of the 3D 4FT FPU (dashed lines in Fig. 2(a)). We postulate 
that this is caused by the additional number of data from the third dimension which allows 
more precise derivatives calculations in the presence of noise. 

It has to be noted that we did not threshold the Doppler OCT images (based on intensity) 
as it is commonly done to reject the phase noise from the areas with no OCT signal, neither in 
the simulated nor in the experimental data. This was because our intention was to demonstrate 
the influence of the FPU methods on all the components of the Doppler OCT image, 
including the detected flow, and the stationary parts of the object and noise (where there was 
no signal from the object). 

 

Fig. 2. Result from the applications of 2D and 3D fast phase unwrapping in a set of simulated 
3D Doppler OCT data at increasing noise levels. (a) A plot of phase unwrapping error metrics 
(RMSE ( )) vs. phase noise metrics ( circ ( )). Dots represent mean RMSE ( ) values computed 
from data sets comprising 100 data points each. Dashed lines indicate the standard deviations 
of the mean RMSE [2D FPU algorithm (green) and 3D FPU algorithm (black) outcomes]. The 
blue plot shows a linear dependence of the RMSE ( ) on circ ( ) in the absence of phase 
unwrapping errors in  (r), i.e. RMSE ( ) is only affected by the noise level. The deviations of 
the 2D and 3D FPU RMSE plots from this reference line indicate an increasing probability of 
phase unwrapping errors in  (r). The inset presents an example of phase-wrapped input data  
(r). Yellow rectangle denote the region-of-interest used to calculate circ. (b) Example cross-
sectional images of the unwrapped phase  (r) extracted from four selected 3D data sets. The 
values of the circular standard deviation circ ( ) in the input data are listed in the top left 
corners. The top row of images shows the results of the 2D FPU method, and the bottom row 
demonstrates the outcomes of the 3D FPU algorithm. The Doppler OCT images were 
intentionally not thresholded for noise elimination to demonstrate the influences of the 4FT 
FPU algorithms on the noise areas. The results of the algorithms for all the data points in the 
plots on the top are presented in Visualization 1. 
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Similar simulations were performed to explore the performance of the algorithms 
in  the  case of multiple wraps in the simulated Doppler OCT data. The results are presented 
in Fig. 3(a-b), with an example of unwrapped phase image presented in Fig. 3(c). It can be 
observed that an increasing number of wrapping errors appear following unwrapping at lower 

circ values compared to the case of single wraps, as shown in Fig. 2(a). Once again, the 3D 
4FT FPU algorithm performs better at lower circ values compared to 2D 4FT FPU. 

 

Fig. 3. Phase unwrapping using the 4FT FPU algorithm for multiple phase wraps in four sets 
of data at different maximum values of unwrapped phases max. (a, b) Plots of phase 
unwrapping error metric (RMSE ( )) as a function of phase noise metric ( circ ( )) for 3D 
Doppler OCT data simulated at increasing noise levels. (a) 2D 4FT FPU and (b) 3D 4FT FPU. 
Dots represent the mean RMSE ( ) values computed from data sets comprising 100 data points 
each. Dashed lines indicate the standard deviations of the mean RMSE. Colors represent 
different maximum values of unwrapped phases max. The blue solid line shows a linear 
dependence of the RMSE ( ) on circ ( ) in the absence of phase unwrapping errors in  (r), 
i.e., RMSE ( ) is only affected by the noise level. The deviation of the 2D and 3D FPU RMSE 
plots from this reference line indicates increasing probability of phase unwrapping errors in  
(r). As the number of phase wraps increases, the sensitivities of the algorithms to noise also 
increase. (c) An example of phase-wrapped input data  (r) for circ. = 0.48 rad. 2D: Phase 
unwrapped using 2D 4FT FPU, and 3D: phase unwrapped using 3D 4FT FPU. Black rectangle 
denote the region-of-interest used to calculate circ. 

3.2 Doppler OCT imaging of a flow phantom 

The OCT experiments with a flow phantom were performed with the imaging parameters 
listed in Table 2 with tmax equal to 10 μs. The value of vzmax was selected to provide one 
phase wrap in the Doppler OCT data. In Fig. 4(b), we present OCT and Doppler OCT images 
of the glass tube with 0.5 % fat milk as the circulating fluid. The tube was tilted along the Z–
axis to ensure a nonzero axial component of the flow velocity vector. As a result, the image 
appears at increasing depths in subsequent B-scans. Given that the imaging sensitivity of 
the spectral-domain OCT system exhibits an inherent decay as a function of depth, the signal-
to-noise ratio decreases along the Z–axis. We have exploited this property in the analyses of 
the performances of the 2D and 3D 4FT FPU algorithms. Phase unwrapping was performed 
in the images of the glass tube cross-sections at increasing depth positions, i.e., at decreasing 
SNR values. Consequently, the circular standard deviation circ, which we calculated in 
the center of the tube, increases in subsequent images, as illustrated by the yellow rectangles 
in Fig. 4(b). The results are similar to the simulation outcomes. Phase unwrapping errors 
become evident as circ increases, first in the 2D version of the algorithm and in the 3D 
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variant, at larger circ. Thus, the experiment confirms higher immunity to noise in the case of 
the 3D 4FT FPU algorithm. 

 

Fig. 4. Phase unwrapping in the flow phantom. (a) Plot of the circular standard deviation 
values ( circ) in subsequent B-scans. The values were calculated based on the regions-of-
interest indicated by the yellow rectangles in the wrapped phase images in (b); black line: 
linear fit to the data points. (b) A0: cross-sectional structural OCT images of the glass tube with 
milk as the circulating fluid at four locations in the 3D data set; : wrapped phase; 2D: phase 
unwrapped with the 2D 4FT FPU method, arrows B and C indicate the phase unwrapping 
artefacts introduced in the areas of noise. 3D: outcomes of the 3D 4FT FPU method, arrow A: 
error-free phase unwrapping of the flow, arrow D: erroneous phase unwrapping (phase has 
remained wrapped). The colors in the images represent Doppler OCT phase values (red: blood 
flow direction against the incoming beam of light, and blue: blood flow along the light 
propagation direction). Increasing color intensities indicate increasing axial flow velocity 
values as indicated by the color bar. The thresholding of the Doppler OCT images to remove 
the noise was intentionally avoided to demonstrate how the 4FT FPU algorithms influenced 
the noise areas. Yellow rectangle denote the region-of-interest used to calculate circ. A movie 
showing all the frames from the data set is presented in Visualization 2. 
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The plot of RMSE (ψexp) vs. circ (ϕexp) cannot be constructed using the experimental 
data because the phase distribution that is undisturbed by the wraps that were introduced by 
the OCT detection is not known. Therefore, RMSE (ψexp) cannot be reliably calculated. 
However, we can relate the circ (ϕexp) values obtained in the experiments with the use 
of  the  flow phantom to the circular standard deviations, and to the RMSE values estimated 
based on simulations. Fig. 4(a) shows increasing circ (ϕexp) values in subsequent B-scans. The 
ROI position was approximated by a line that goes form the center of the capillary on the first 
B-scan in the data set to the last center on the last one. Because a single dataset was used, 
the dispersion of the data points is high. Therefore, we fitted the linear function ′circ (ϕexp) to 
the data points and related in this way the mean values of the circular standard deviation to 
the simulation results. 

Both algorithms yield phase unwrapping errors for lower values of ′circ (ϕexp) compared 
to simulations. This may be caused by the simplified noise model used in the simulations. 
This model does not take into account the few effects present in the experimental data. For 
example, the reductions of the SNR value owing to the interference signal washout caused by 
flow, or owing to depth, result in circ variations across each B-scan. Nevertheless, the results 
show that the calculations of ′circ (ϕexp) in the wrapped Doppler OCT image allow us to 
predict whether a given version of the algorithm can efficiently unwrap the phase. 

To validate whether the 4FT FPU method is able to unwrap multiple phase wraps from 
experimental data, we have performed OCT experiments, see Fig. 5(a). The imaging 
parameters listed in Table 2 with tmax being equal to 20 μs. Herein, the value of vzmax was set 
to give maximal phase value of approximately 11 rad to generate two phase wraps in 
the Doppler OCT data as visible in Fig. 5(b). The circ calculated from the center 
of  the  capillary was equal to 0.45. The results of phase unwrapping are presented in 
Fig. 5(c,d), whereby the 2D 4FT FPU algorithm results in an increased number of erroneously 
unwrapped voxels compared to the 3D 4FT FPU algorithm. This result is in agreement with 
our predictions based on the analysis of the RMSE (ψexp) vs. circ (ϕexp) plots presented in 
Fig. 3(a, b). 

 

Fig. 5. Comparison of 2D and 3D 4FT FPU methods in the imaging of the flow phantom with 
the use of multiple phase wraps. (a) Cross-sectional structural OCT image of the glass tube 
with milk as the circulating fluid. (b) Doppler OCT image with multiple phase wraps within 
the capillary lumen. Black rectangle denote the region-of-interest used to calculate circ. 
(c) Outcome of the 2D 4FT FPU method. (d) Results of the 3D 4FT FPU method. 

3.3 Doppler OCT imaging of the human eye in vivo 

The imaging of the human volunteer eye in vivo was performed in regions within the vicinity 
of the optic nerve head where a) phase wrapping is most likely to occur owing to the presence 
of large vessels, and b) fast blood flows and increased inclinations relative to the scanning 
beam of light occur. Two example datasets were acquired at the same location of the eye, as 
shown in Fig. 6. In Fig. 6(e–h), the eye was intentionally slightly misaligned as compared to 
the data in Fig. 6(a–d) to decrease the overall imaging sensitivity. The brightness of 
the structural image is weaker, especially in the left part of the B-scans. The two datasets 
were acquired at approximately the same location in the eye. The SNR values calculated from 
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the mean signal amplitude and noise variance for the data within the yellow rectangles in 
Fig. 6(a) and Fig. 6(e) are equal to 22 dB and 18 dB, respectively.  

 

Fig. 6. Comparison of the 2D and 3D 4FT FPU methods in the imaging of 
the human retina in vivo in the vicinity of the head of the optic nerve. (e-h) The eye was 
intentionally misaligned to decrease the imaging sensitivity as compared to (a-d). (a, e) 
Structural OCT images of the eye fundus. Arrows A, B, C, and D, indicate large and visible 
vessels. (b, f) Doppler OCT image with phase wraps within the vessels. (c, g) Results 
following the use of the 2D 4FT FPU method. (d, h) Results following the use of the 3D 4FT 
FPU method. Arrows E and F point to small vessels which are not apparent in the structural 
image but are detected with Doppler OCT. Colors in the images represent the Doppler OCT 
phase values (red: blood flow direction against the incoming beam of light, blue: flow 
direction along the light propagation direction). Increasing color intensity indicates increasing 
axial flow velocity values as indicated by the color bar. The thresholding of the Doppler OCT 
images to remove the noise was intentionally avoided to demonstrate how the 4FT FPU 
algorithms influenced the noise areas. Yellow rectangles denote the regions-of-interest used to 
calculate the signal-to-noise ratio and circ. Movies showing all the frames from both datasets 
are presented in Visualization 3 (top) and Visualization 4 (bottom). 

Two large vessels are visible, as indicated by arrows A, C (first vessel) and B, D (second 
vessel), both with phase wrapping in the Doppler OCT image. A smaller vessel was also 
revealed as indicated by arrows E and F. In the second vessel, the noise was low ( circ = 0.54 
and 0.64), and the phase was unwrapped with no apparent errors associated with 
the applications of the 2D and 3D 4FT FPU algorithms. The analysis of the first vessel is 
more interesting. In Fig. 6(a) the signal strength was high in this area. Therefore, the circular 
standard deviation of the phase was low ( circ = 0.88). Both variants of the algorithm 
unwrapped the datasets with no apparent errors. However, in Fig. 6(e), the noise was high in 
this area ( circ = 1.84). The 2D 4FT FPU has not only failed but also generated considerable 
artifacts. The 3D version has only partially removed the phase wraps, thus leaving patches of 
unwrapped phase in the areas where it has failed. The flow in the small vessel F was correctly 
unwrapped only by the 3D 4FT FPU algorithm in Fig. 6(d), but was not unwrapped in vessel 
E by the 2D 4FT FPU algorithm, as observed in Fig. 6(c). Finally, the noise areas in 
the unwrapped images are not affected by the 3D algorithm, but they show clusters of 
correlated phase values in the results of the 2D 4FT FPU method. These findings are 
consistent with the simulations and experiments in the flow phantom. 

4. Discussion and conclusions 
The fast phase unwrapping algorithm is well suited for applications in Doppler OCT. Its main 
advantage is the direct access to the complex signal in the cases of Fourier domain OCT 
techniques. The modification of the FPU algorithm (implemented in the form of the 4FT FPU 
method) led to the reduction of the number of Fourier transformations from eight – as 
reported in the original algorithm – to four. The decreased computational burden accelerated 
the data processing required to generate the phase unwrapped Doppler OCT images. 
The availability of volumetric data enabled the extension of the algorithm from two to three 
dimensions. We have demonstrated that the inclusion of additional information on the phase 
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distribution improved the performance of the 4FT FPU algorithm when it was applied to 
data with high noise levels. The tests performed on simulated Doppler OCT data obtained 
from a flow phantom and from the  imaging of the human eye in vivo indicated that in low-
noise data, 2D and 3D 4FT FPU algorithms provided reliable phase unwrapping outcomes. 
However, at increased noise levels, phase unwrapping errors occurred earlier in the 2D 
compared to the 3D versions of the algorithm. Additionally, the 3D 4FT FPU method was 
more immune to noise. However, it required more data processing. Correspondingly, 
increased computational computer powers were needed for its implementation. The choice 
between the 2D and 3D versions of the algorithm should thus be dictated by the noise levels 
of the Doppler OCT data. The measurement of the noise level in the data with phase-wraps 
required a metric insensitive to these phase ambiguities. We have used a circular standard 
deviation of phase distribution ( circ) as a measure of noise that was insensitive to phase-
wraps. We have related this metric to the RMSE which was calculated with the use of 
the unwrapped simulated data. The resultant plots served as reference plots and indicated 
which circ values of the 2D and 3D algorithms were suitable for the phase-sensitive imaging 
or for the measurements. For circ values larger than the noise level of the 2D algorithm, 
the 3D 4FT FPU method should be used. For noise levels higher than those associated with 
the 3D algorithm, the 4FT FPU algorithm cannot provide reliable phase unwrapping. The 4FT 
FPU algorithm applicability plot generated with the simulated data can thus be used to predict 
the outcomes of the 4FT FPU algorithm based on the data obtained from the experiments. 

The analyzed algorithms unwrapped the phase distribution recorded in the data regardless 
of the origin of the phase wraps. They only required the application of Laplacian operators 
and adequately high SNR values. As a result, they have been shown to be insensitive to the 
origins of wraps, and to their spatial and temporal distributions. Phase wraps may appear in 
the vessels temporarily or locally in the 3D datasets. The temporal occurrence of phase wraps 
was connected to natural or induced changes in the blood circulation. Accordingly, natural 
changes can be caused, for example, by the pulsatile blood flow. Changes may also be 
induced as a part of diagnostic or therapeutic procedures, or as a result of onset of pathology. 
The local phase wraps may occur owing to vascular tortuosity. Steeper parts of the vessels 
may exhibit phase wraps, while parts of the same vessels with shallower inclinations relative 
to the scanning beam of light may be free from phase wraps. Phase can be unwrapped by the 
3D phase unwrapping algorithm as long as the phase distribution is correlated in neighboring 
B-scans. In other words, phase can be unwrapped if the phase distribution does not change 
abruptly in successive B-scans due to sparse scanning and/or temporal changes in the blood 
flow when they slower than the acquisition speeds of the B-scans. Typically, scanning in 3D 
Doppler OCT is performed to ensure B-scan correlations. Additionally, during the typical 
acquisition of the 3D datasets, ~2–5 cardiac cycles were recorded in more than 300 B-scans. 
This ensured adequate temporal sampling for the changes in the blood flow along the vessels. 

The Doppler OCT images presented in our study were not intensity thresholded to 
demonstrate the effects of the phase unwrapping in all the areas of interest, including 
the vessels, stationary tissue, and areas with no OCT signal (noise only). The images can be 
intensity thresholded to suppress the phase noise. However, thresholding is typically 
performed subjectively, and care needs to be taken to avoid loss of relevant information. 
More importantly, intensity thresholding and the resulting noise removal from selected areas 
of the images prior to the application of the phase unwrapping algorithms should be avoided. 
Firstly, the thresholding is subjective and may cause loss of information relevant to successful 
phase unwrapping. Secondly, phase values equal to zero are arbitrarily introduced to 
the dataset. Both may result in incorrect phase unwrapping and generation of artefacts. 

The current overwhelming popularity of the OCT angiography slowed down 
the advancement of the Doppler OCT technique. However, the possibility of the quantitative 
analysis of blood flow should not be overlooked in the development of biomedical diagnostic 
techniques. Limitations often associated with Doppler OCT can be easily bypassed or 
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eliminated by the application of appropriate experimental and other data analyses methods. In 
this study, we have introduced a phase unwrapping method which eliminates the phase 
ambiguity, thus extending the measurable velocity range in the Doppler OCT technique. In 
addition, we have provided an applicability plot that provides guidance for the use of our 
method. The 4FT FPU algorithm takes advantage of the specific OCT data acquisition, but 
can be applied to any phase-sensitive imaging or other measurement technique. 
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ABSTRACT   

Ocular blood flow measurement may have a number of potential applications that explore the relationship between blood 
flow in the eye and diseases such as: diabetic retinopathy, ocular artery obstruction, hypertensive retinopathy and 
Alzheimer's disease. Reliable and quantitative method for retinal blood flow estimation is still to be created. Doppler 
OCT is one of candidates for such a method, but suffers from a number of limitations. Recently we proposed a solution 
to one of the most prominent artefacts in Doppler OCT, which is the phase wrapping problem. This allows for precise 
recovery of velocity profile the Doppler OCT technique remains sensitive to temporal dependence of the result on the 
blood flow velocity changing with the pulse during the OCT measurement. In this report we explore this problem and 
show that the synchronization of the OCT measurement with heart beats only partially gives control over the acquired 
blood flows. 

Keywords: Blood flow, optical coherence tomography, phase unwrapping 

1. INTRODUCTION  
Optical Coherence Tomography is a valuable tool for retinal imaging and diagnostics of ophthalmic diseases. It also 
provides information on functional aspects of the living eye with blood flow being the most prominent example. One of 
the limits in the blood flow estimation in the eye is that the flow velocity exceeds the maximal detectable velocity value. 
This manifests in the form of phase wrapping in phase difference signal which is the basis of the Doppler OCT method. 
This effectively prevents velocity estimation unless an effective phase unwrapping method is applied. In our recent 
approach to phase unwrapping problem we have shown that three dimensional fast phase unwrapping technique 
(3D 4FT FPU) is a robust, yet accurate phase wrapping problem solver in OCT, even in case of low signal to noise ratio 
[1]. We have also shown that this approach allows for calculation of flow in retinal vessels of various diameters ranging 
from 12 to 150 um [2]. This allowed us to observe that retinal vessels to follow both: the flow conservation law and the 
Murray s law stating that the flow and diameter are linked by power law relationship. These results were obtained with a 
simple assumption that the blood flow is stationary during the OCT measurement time, which is not true in most of 
cases. Since the standard Doppler OCT measurement protocol lasts for a few seconds (usually 2 to 5) a number of heart 
beats occur during this time what induces changes in the blood flow velocity. In this report we explore the impact of this 
effect on the Doppler OCT blood flow measurements and show that even the synchronization of the OCT measurement 
with pulse recording device, such as transcranial Doppler USG does not solve all the experimental requirements for 
precise blood flow estimation. 

2. METHODS 
Data was acquired using commercial spectral domain OCT (RevoNX, Optopol Technology, Poland). The light source 
was a super-luminescent diode (center wa

ellipse to XY cross-section of the vessel and minor axis of ellipse was considered to be the lumen of the vessel. To 
obtain axial velocity we used STdOCT which is a more sensitive variation of Doppler OCT [2]. The range of 
unambiguous velocity estimation, limited by phase wrapping, was extended by phase unwrapping method we recently 
developed (4FT FPU) [1]. The blood flow rate was calculated using the integration of axial velocity of flow over XY 
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cross-section of vessels. Vascular discrimination between arterioles and veins was supported by angiographic and fundus 
camera images. We used a GPU as a data processing accelerator and utilized NVIDIA CUDA compiler 10.1 with the 

-7700K (4.2 GHz) and 32 GB RAM memory. For data 
processi
processed in GPU in time 1 s or 27 s for standard Doppler OCT and STdOCT, respectively. Unwrapped axial velocities 
of flow were obtained for all vessels in the 3D data set at the same time. We used transcranial USG (Doppler-BoxX, 
Compumedics Germany GmbH) to measure cerebral blood velocity during OCT data collection. In order to synchronize 
the two signals, the USG signal was acquired with I/O card triggered with trigger signal used for OCT camera 
framegrabber.  

We enrolled six healthy volunteers for the study. All the experiments were performed in compliance with the Declaration 
of Helsinki [37] and regulations of the Bioethics Committee of the Nicolaus Copernicus University in Toru , Poland. 
Medical doctor was present during the data acquisition. The measurement protocol consisted of the same steps for all the 
subjects. To limit the number of OCT experiments to the required minimum, the cerebral flow was located with the use 
of the transcranial USG before the OCT measurement was started to assure that both signals are recorded. Two datasets 
were acquired for each subject: (1) the 3D Doppler OCT with 1024 A-scans x 256 B-scans over 3x3 mm area, (2) the 
time-series Doppler OCT with 1024 A-scans x 512 B-scans over 3 mm at the same retinal location. The two procedures 
were repeated five times for each subject. After the experiments, the data was processed to extract the phase unwrapped 
velocity profiles followed by flow calculation over C-scan projection in case of protocol (1) and by integrating the 
velocity over vessel cross-section in each B-scan to observe the plod pulsatility.  

3. RESULTS 

3.1 Blood flow in human retina using Doppler OCT 

The ability to calculate blood flow rate is proven on a microfluidic device with controlled flow and on arteriole 
bifurcations in data acquired form five healthy subjects was shown in previous paper [3]. For each subject distribution of 
flow in arterioles, veins and capillaries versus vessel lumen was calculated. The additive character of flow within human 
retinal vessels are shown [3]. Here, we repeated our measurements for six more volunteers and compared with those 
previously reported. Again, we obtain parabolic relation between flow and vessel diameter and the log-log dependence of 
human retinal flow Q versus vessel lumens d present linear correlation with a coefficient of determination close to 0.80. 
Example of the result for one of the (ID 4, see Tab. 1) volunteers there is in the Fig. 1. It allowed us to determine 

Tab. 1. More details you can find in the paper [3]. 

Tab. 1. Murray  coefficient for six volunteers subject arterioles and 
veins. The vessel diameter is in the range 12 to 150 m. 

ID Arterioles Veins 
1 d-  d-  
2 d-  d-  
3 d-  d-  
4 d-  d-  
5 d-  d-  
6 d-  d-  

   

3.2 Comparison USG cerebral vessel signal with retinal Doppler OCT vessel signal 

The blood flow calculation shown above requires phase unwrapped Doppler OCT methods combined with velocity 
integration over vessel lumen cross-section in the plane perpendicular to the probing beam as described by Srinivasan et 
al. in Ref. [4]. Such en-face Doppler OCT image is presented in Fig. 2(a). The results presented in the previous section 
assume that the blood flow is constant during acquisition of the vessel cross-section in the en-face plane (or C-scan), see 
Fig. 2(a). This is hardly possible to fulfill in standard Doppler OCT protocol such as protocol (1). The total measurement 
time is equal to approximately 2.5s and, as shown in Fig. 2(b), the time required to acquire the example cross-section is 
equal to 0.139s. In this example the acquisition time is equal to approx. one third of heart beat period, see Fig. 2(c).  
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Fig. 1. Blood flow rates measured in arterioles, veins and capillaries of the optic nerve head of volunteer ID 4 (Tab. 1) 
plotted as a function of vessel lumen diameters. Solid line is a weighted least-square power curve fit. The log-log plots of the 
same data are presented in the insets at the top of the figure. Linear coefficient corresponds to Mur
Table. 1. See text for details. 
 

 
Fig. 2. Problem with data collection in Doppler OCT. a) En face image of the proximity of the optics head acquired with 
protocol (1) for subject ID 4. A yellow rectangle indicate Doppler-OCT axial velocity cross section from selected depth. b) 
Zoom of the selected with A-scans and B-scans numbers in the OCT dataset. Total acquisition time between the first and last 
B-scan with the vessel is equal to 0.139 s. c) Transcranial Doppler USG signal acquired during the OCT data acquisition (in 
blue). The red line indicate scanning time of the vessel during Doppler OCT detection. The red points show start and end of 
the OCT data collection on the plot of the heart rate.  
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Fig. 3. a) & c) Location of vessels V1 to V3 measured with protocol (2) overlaid on the en-face projection from OCT data 
acquired with protocol (1) from subjects ID 4 and ID 3. b) & d) Doppler OCT images extracted from protocol (2) 
measurement at location of the vessels V1 to V3.  

 
Fig. 4. a) Doppler USG signal from cerebral vessel (blue) and Doppler OCT axial velocity profiles for retinal vessels V1 and 
V2 (black and magenta) for subject ID 4. b) Doppler USG signal from cerebral vessel (blue) and Doppler OCT axial velocity 
profiles for retinal vessels V3 (red) for subject ID 3. 
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If the blood velocity changes during this time, the calculated flow will be disturbed. Therefore, it is important to 
synchronize the Doppler OCT signal with the pulse at each retinal location. In order to check whether the cerebral pulse 
can be used to synchronize the OCT data acquisition we used the signal from transcranial Doppler USG. We used 
protocol (2) to acquire Doppler OCT tomograms with frequency comparable to the Doppler USG. We have chosen 
vessels from the proximity of the optic nerve head as shown on Fig. 3(a, c). Selected vessels, as visible in Fig. 3(b, d) 
were manually segmented and the integral of axial velocity and vessel lumen was calculated. Next the two signals, 
Doppler USG and Doppler OCT, were compared, see Fig. 4(a) for results from vessel V1 and V2 from subject ID 4 and 
Fig. 4(b) for results from vessel V3 subject ID 3. It can be seen that the phase difference for the two subjects is different 
and equal to 10ms for subject ID 3 and approx. 500ms for subject ID 4.  

 
Fig. 5. (left) Selected en-face Doppler OCT images for subjects ID 3 and ID 4. (right) Blood flow velocity from cerebral 
vessel measured with transcranial Doppler USG. The red lines indicate scanning time of the vessels A-C during Doppler 
OCT detection. The red points show start and end of the OCT data collection on the plot of the heart rate. 
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4. CONCLUSIONS 

The results show that the Doppler OCT method with the  unwrapping 3D 4FT FPU method is able to provide blood flow 

flow can be used as indicator of pathological changes in the vessels in the course of systemic disorders, the proposed 
technique should be insensitive to the blood flow velocity changes during the acquisition of the Doppler OCT signal. 
Unfortunately, for larger vessels, the data acquisition time may be equal to a significant fraction of the heart rate. 
Although it is possible to find periods with quasi constant blood velocity long enough to measure the whole vessel cross-
section, it is possible to be done only with external heart rate measurement. An example of such signal source can be 
transcranial Doppler USG, but care must be taken as phase delay between pulse registered by Doppler OCT and Doppler 
USG vary from subject to subject. Currently, we are investigating the relations between the two and methods to exploit 
them for improved retinal blood flow estimation. 
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Abstract: Several specialized retinal optical coherence tomography (OCT) acquisition and

processing methods have been recently developed to allow in vivo probing of light-evoked

photoreceptors function, focusing on measurements in individual photoreceptors (rods and

cones). Recent OCT investigations in humans and experimental animals have shown that

the outer segments in dark-adapted rods and cones elongate in response to the visible optical

stimuli that bleach fractions of their visual photopigment. We have previously successfully

contributed to these developments by implementing OCT intensity-based “optoretinograms”

(ORG), the paradigm of using near-infrared OCT (NIR OCT) to measure bleaching-induced

back-scattering and/or elongation changes of photoreceptors in the eye in vivo. In parallel, several

groups have successfully implemented phase-based ORGs, mainly in human studies, exploiting

changes in the phases of back-scattered light. This allowed more sensitive observations of

tiny alterations of photoreceptors structures. Applications of the phase-based ORG have been

implemented primarily in high speed and cellular resolution AO-OCT systems that can visualize

photoreceptor mosaic, allowing phase measurements of path length changes in outer segments

of individual photoreceptors. The phase-based ORG in standard resolution OCT systems is

much more demanding to implement and has not been explored extensively. This manuscript

describes our efforts to implement a phase analysis framework to retinal images acquired with a

standard resolution and raster scanning OCT system, which offers much lower phase stability than

line-field or full-field OCT detection schemes due to the relatively slower acquisition speed. Our

initial results showcase the successful extraction of phase-based ORG signal from the B-scans

acquired at ∼100 Hz rate and its favorable comparison with intensity-based ORG signal extracted

from the same data sets. We implemented the calculation of phase-based ORG signals using

Knox-Thompson paths and modified signal recovery by adding decorrelation weights. The

phase-sensitive ORG signal analysis developed here for mouse retinal raster scanning OCT

systems could be in principle extended to clinical retinal raster scanning OCT systems, potentially

opening doors for clinically friendly ORG probing.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

OCT is an optical imaging method relying on the interference of a reference light with light

back-scattered from the sample allowing depth-resolved measurements of back-scattering profiles

(A-scans). Acquisition of many A-scans mapped over imaged region allows three-dimensional

(3D) visualization of semitransparent tissue [1–3]. Over the last decade, OCT became a gold

standard in the non-invasive evaluation of the volumetric structure of the eye. With the increasing

need for improved sensitivity of ocular diagnostic, the simple measurements of tissue morphology,

based on light scattering intensity alone, are often insufficient. Several functional extensions

of OCT have been developed, over the years, that offer different contrast, greatly improving

sensitivity for ocular diagnosis. These include Doppler OCT [4–7], OCTA [8], STdOCT [9],

OCE [10,11], polarization-sensitive OCT [12], and spectroscopic OCT [13]. However, all these

methods do not directly measure tissue functions but rather higher-order optical properties of

tissue beyond simple scattering potential (blood flow, birefringence, absorption).

There are several functional objective tests of ocular tissue that extract light-evoked responses

of the retina. These measurements include electroretinograms (ERGs) that measure light-evoked

changes in the electrical activity of the retina. Following the same paradigm, there have been

many successful attempts to observe light-evoked changes in the retina using optical imaging

only [14–26]. This paper uses the term “optoretinogram” (ORG) to describe the light-evoked

photoreceptor function measured by OCT. The term ORG was initially coined by Don MacLeod

[27] and recently adopted by other investigators [28–32] for the paradigm of using NIR OCT

to measure bleaching-induced back-scattering and/or elongation changes in the eye in vivo

noninvasively. The name ORG draws an instructive parallel to the ERG, which has long been

used to assess retinal function in vivo. Specifically, the ORG, like the ERG, comprises multiple

components arising from distinct cells and mechanisms. Moreover, both ERG and ORG require an

explanation of the underlying cellular and molecular mechanisms to achieve their full scientific and

clinical utility. The most recent measurements of light-evoked intrinsic signals in photoreceptors

can be divided into two categories, one extracting changes in retinal/photoreceptors reflectivity

[33–36] and the other extracting changes in photoreceptors morphology. The latter splits into sub-

categories: phase-based methods [17,26,28–31,37–41] and intensity-based methods [32,42,43].

Application of the phase-based ORG has been implemented mostly in cellular resolution AO-OCT

systems that can visualize the photoreceptor mosaic allowing phase measurements of path length

changes in outer segments of individual photoreceptors. All these methods required dedicated

image acquisition systems (cellular resolution (3–4 um) or ultrahigh acquisition speed (MHz)),

often not available in the current generation of clinical retinal imaging systems. However, the

ultimate goal for this work should result in the implementation of light-evoked functional retinal

tests using commercial OCT setups. In the OCT systems with standard clinical resolution

(10–15 μm) and acquisition speed (∼100 kHz), the phase-based ORG is much more demanding

to implement and explore because the systems cannot resolve individual photoreceptors and

show instead speckle pattern corresponding to groups of cells [44], with no meaningful phase

information due to temporal speckle decorrelation. However, a framework implemented to

study phase-based light-evoked photoreceptor activity (ORG) with full-field swept-source optical

coherence tomography (FF-SS-OCT) [29] proves that phase comparison between decorrelated

speckle patterns is still possible by utilizing a series of images acquired before full decorrelation.

The main problem in implementing such a framework to raster scanning systems with standard

acquisition speed is that the signal decorrelates very fast (tens of ms) due to saccadic and axial

eye movements [41], which results in loss of phase-based ORG signals. Many groups have made

a substantial effort to develop eye tracking and eye motion correction to reduce or remove tissue

motion, allowing phase-sensitive measurements over seconds [45]. In intensity-based ORG

measurements on mice, we observed that the light-evoked changes of the retina morphology

continue over several seconds to minutes (an order of magnitude longer than in human studies).
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Therefore, phase-based analysis in mice faces challenges such as tissue movements caused by

breathing, heartbeat, and eye drift, which are inevitable even after anesthesia.

In this paper, we describe the application of the modified Knox-Thompson method [46], where

the cross-correlation of the phase difference between the measured layers of the object allows

identification of the areas in which phase decorrelation occurs. In general, the method assembles

the ORG signal from the most correlated elements of the inter-layer differential phase signal

measured over time [47]. This work presents an evaluation of noise in phase-based length

measurements in the sample consisting of a microscope coverslip and in a mouse retina in vivo.

We also show that the ORG measurements, despite the relatively slow acquisition speed (equal

to 100 kHz for A-scans and 100 Hz for B-scans), combined with the modified Knox-Thompson

method, allow reconstruction of the phase-based ORG signal of the retina in an anesthetized

mouse.

Several anatomical differences between mouse and human photoreceptors (both rods and

cones) result in different appearances of the photoreceptor bands as measured by OCT. In human

retinal imaging, cones reflectance provides a dominant signal and thus is naturally investigated

for ORGs. On the other hand, human rods are much more challenging to image and analyze due

to their lower reflectivity and size, but there are efforts to measure ORGs in rods [38]. There is

no distinct difference between rods and cones reflectivity in mice, making the separation of two

classes of photoreceptors very challenging. Additionally, due to the composition of the mouse

retina (rod dominant), the measured ORG signal is believed to come mostly from rods. There

are, however, efforts to measure cone ORGs in mice, and proposed phase-based analysis might

provide access to the cone-based ORGs in mice [32].

The phase-sensitive ORG signal analysis presented here could be in principle extended to

clinical retinal raster scanning OCT systems, potentially opening doors for clinically friendly

ORG probing.

2. Methods

This paragraph will briefly describe details of our experimental system, including ORG data

acquisition procedure and presentation of the main components of phased-based ORG processing.

2.1. Experiments in the living mice

All mouse husbandry and handling were in accord with protocols approved by the University of

California Animal Care and Use Committee, which strictly adheres to all National Institutes of

Health guidelines. Mice (B6-albinos (B6(Cg)-Tyrc-2J/J)) were obtained from Jackson Labs. A

contact lens and gel (GelTeal Tears, Alcon) were used to maintain corneal transparency. All ORG

experiments were performed in a darkroom. During the experiment’s mice were anesthetized

with 2% isoflurane delivered in O2, and maintained on a heated, adjustable platform adjacent to

the imaging apparatus, as described previously [48].

2.2. Experimental system

For in vivo imaging of the mouse retina, we used a custom multimodal system with OCT and SLO

sharing the same scanning system for simultaneous imaging of the retina. In the experiments here,

only horizontal scanning is on without vertical scanning. Each horizontal scan collects 1024

pixels for SLO and 1024 A-scans for OCT at a 100 kHz rate. The SLO subsystem is equipped with

a 488-nm laser (Coherent, 488-30FP) with an external trigger that enables precise control of light

delivery during scanning. The SLO was used to deliver precisely calibrated 488-nm bleaching

exposures. The SLO laser power was set to 4.7 μW at the mouse pupil. A single SLO scan (50

degrees) at this power bleaches ∼10% of the rhodopsin. The NIR Fourier domain-OCT system

has a superluminescent diode light source (Superlum, T-860-HP) with an 82-nm bandwidth

(effective fullwidth at half maximum [FWHM] after Hann windowing) centered at 860 nm and
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delivers 600 μW at the mouse pupil. The total 860 nm light exposure during an imaging session

produced negligible bleaching or activation of rhodopsin. The lateral resolution of the system

was characterized as ∼3 μm for SLO [49] and ∼5 μm for OCT, respectively.

The timing protocol for the experiment described in this paper is different from our standard

protocol for in vivo imaging of the rod ORG, consisting of a series of scanning cycles (each taking

about ∼0.92 seconds) with 4 B-scans collected in each cycle. Standard ORG protocol, used in

our previous work relying on intensity-based light-evoked signal extraction, includes repeated

raster scanning of the retina over field-of-view (FOV) of 50× 25 degrees and a pixel sampling

of 512× 128 pixels at 100 kHz A-scan rate; the OCT signal is collected only from 4 centered

adjacent B-scans in each raster scan. Considering the scanner fly-back time and the software

resetting time, the time interval between two raster scans is about 0.92 s [32] which is ∼100

times slower than what we present here. Instead, the data is collected in a BM-scan mode, where

consecutive B-scans are acquired over the same spatial location at a 100 Hz frame acquisition

rate. For the “stimulus ON” experiment, the 488 nm laser was triggered to deliver the bleaching

exposure for ∼1.4 s between B-scans 129 to 270. The scanning continued for an additional ∼40 s

(4,000 B-scans) to record the ORG response. The “stimulus ON” scanning protocol was designed

to analyze the phase stability between B-scans and ensure all the rhodopsin is bleached during

light stimulation.

2.3. Initial OCT signal processing

The OCT interferometer acquires back-scattered light from the sample arm and allows its

interference with the reference arm light. A line camera detects the spectrally modulated

spectrum of light that undergoes the typical A-scan reconstruction steps: fixed pattern noise

subtraction followed by wavenumber linearization, dispersion mismatch compensation, and

spectral shaping. Finally, the Fourier transformation produces a complex-valued A-scan [50].

Several such complex A-scans acquired by moving the imaging beam with a fast x-scanner are

combined to create a two-dimensional complex OCT B-scan:

I(x, z, t) = FFT[I(x, k, t)] = A(x, z, t)exp(−iϕ(x, z, t)), (1)

where FFT is Fourier Transformation, z – depth coordinate of the pixel, x – lateral pixel position

defined by x-scanner position, A – signal amplitude, ϕ – signal phase.

2.4. Intensity-based processing of ORG signals in mice

The intensity-based processing of ORG signals in mice has been described in detail previously

[32]. Here we just highlight its major components: the center 60%−80% (600–800 A-scans)

portion of the BM-Stack was manually selected, then it was divided into sub-stacks, each with

20 A-scans widths, they were cross-correlated, axial position corrected and averaged, then, the

averaged A-scans were interpolated axially to increase digital sampling to 0.1 μm/pixel and

further cross-correlated, and axial potion corrected in the time direction to form a kymography

flatten to BrM. Finally, the peak positions and peak intensities of BrM, ELM, ISOS, and other

layers of interest were calculated using gaussian fit of individual layers to allow comparison

with ORG extracted using phase-based processing. Note that the axial peak position estimation

method is similar to the centroiding methods used in photoactivated localization microscopy

(PALM), one of the super-resolution microscopy techniques [51]. Therefore, we can achieve

sub-micron sensitivity of peak position shifts between individual OCT layers.

2.5. Phase-based processing of ORG signals

The phase-based processing of ORG signals in mice has been implemented to improve the

sensitivity or ORG measurements (change in thickness of photoreceptor structures). In general,
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we expect phase-based position detection methods to be more sensitive in OCT processing

than intensity-based position detection methods. Figure 1. shows an outline of phase-based

processing of ORG signals with visualization of intermediate results. In the first step to extract

phase information from layers of interest, an intensity-based OCT segmentation is performed by

semi-automatic procedure derived from the work of Yin [52]. Initially, manual segmentation is

performed on one specific Intensity B-scan to define the layer of interest. For all other B-scans,

segmentation is performed automatically by an iterative Monte-Carlo method minimizing a cost

function based on intensity changes between the line and its envelope (so-called double-line

algorithm). After this intensity segmentation, we obtain reference positions for the phase

processing. We refer to them as lay1 and lay2 for two retinal layers, respectively. To observe

phase changes between two segmented layers in time t, we adopted the method of cross-spectra

analysis first proposed by Spahr et al. [47]. Cross-spectrum is a two-dimensional representation

of time-dependent phase-correlation between complex numbers. We calculate the cross-spectrum

of the time evolution of a point with coordinates x and z, as:

Ulay(x, z, t,Δt) = I(x, z, t) · I(x, z, t + Δt)∗, (2)

where * represents complex conjugate, Δt– the time interval between two B-scans (reference one,

at time t, and time-shifted one at t +Δt). An example visualization of the time evolution of the

cross-spectrum phase from a single point in the retina (lay) is shown in Fig. 1(b).

Next, a phase difference between two spatially separated points (in our case, two layers of

interest separated by a distance along the z-axis on an A-scan) is calculated by multiplying the

cross-spectrum of the first layer with conjugation of cross-spectrum of the second layer, see

Fig. 1(c):

Ulay1/lay2(x, t,Δt) = Ulay1(x, z1, t,Δt) · Ulay2(x, z2, t,Δt)∗. (3)

The difference signal between two layers Ulay1/lay2 is averaged in space (over multiple A-scans)

over window od size M, to improve the accuracy of phase difference estimation for ORG, see

Fig. 1(d):

UM
lay1/lay2

(t,Δt) = 1

M

∑
x∈M

Ulay1/lay2(x, t,Δt), (4)

M – number of pixels used for averaging. The main advantage of cross-spectrum is the opportunity

to separate less correlated speckle from a well-defined phase signal easily. We achieve that by

use of the weights w defined below and visualized in Fig. 1(e):

w(t,Δt) =

���� ∑
x,z∈M

Ulay1/lay2(x, t,Δt)
����∑

x,z∈M
|Ulay1/lay2(x, t,Δt)| . (5)

The weights w can be interpreted as the phase correlation between points within the window

M. The weights w has the value of 0 for totally random phase shifts and 1 for fully coherent phase

shifts. Next, we calculate w2 for easier visualization of phase correlations, and we use it for

thresholding of the UM
lay1/lay2

. The threshold was selected experimentally on the level th= 0.02.

In our experiments, this thresholding removed ∼ 55% of the most decorrelated pairs of B-scans

(separated by Δt) in mouse data and ∼ 14% of the final phase ORG signal. A real-valued weights

b, shown in Fig. 1(f), used to extract well-defined regions of phase cross-spectrum are defined

below:

b(t,Δt) =
⎧⎪⎪⎨⎪⎪⎩

1 for w2(t,Δt) >th

0 for w2(t,Δt) ≤ th.
(6)
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Fig. 1. Outline of the processing steps for phase-based ORG signal extraction, with

visualization of intermediate results. (a) OCT BM-Scans. (b) Time evolution of the cross-

spectrum phase from single point in the retina (lay), representative position of point is marked

by orange rectangle in (a). (c) Time evolution of a phase difference of the cross spectrum

between two spatially separated points from two layers (lay1 & lay2), representative position

of points is marked by two green rectangles in (a). (d) Time evolution of a phase difference

of the averaged cross spectrum, over window od size M, between two spatially separated

layers (lay1 & lay2), representative position of windows is marked by two blue rectangles

in (a). (e) Weights w showing phase correlation between points within the window M. (f)

Binary-valued weights b, calculated to extract well-defined regions of phase cross-spectrum.

(g) Reduced weighted time evolution of a phase difference of the averaged cross spectrum

from (d). (h) Visualization of phase extraction paths from g, brown arrow (along the first

(left) vertical line) and green arrows (using the Knox-Thompson paths). (i) Time-dependent

phase difference between two layers extracted using single path. (j) Time-dependent phase

difference between two layers extracted using the Knox-Thompson paths. See Eq. (1–9) in

text for details regarding mathematical operations.

Providing the reduced weighted cross spectra between layers 1 and 2 over window M, see

examples in Fig. 1(g), Fig. 7(c), Fig. 9(c), Fig. 10(c), and Fig. 11(a,d,g,j):

UbM
lay1/lay2

(t,Δt) = b(t,Δt) · UM
lay1/lay2

(t,Δt). (7)

The regions where UbM
lay1/lay2

was reduced to zero (created by zeros in the weights b (Eq. (6))

were interpolated using an averaged value from ten nearest points (+/- 5 Δt), resulting in weighted

corrected cross-spectra UcM
lay1/lay2

. This worked well for the UcM
lay1/lay2

values near the base (Δt= 0),

which is sufficient for Knox-Thompson reconstruction.

To extract time-dependent phase difference between two layers using weighted corrected cross

spectra, which is needed for ORG signal extraction, one needs to define the reference time t0.

Once this is done, the ORG signal can be reconstructed using:

Δϕb
lay1/lay2

(t0,Δt) = arg(UcM
lay1/lay2

(t0,Δt)), (8)

where t0 is the reference time when phase measurements start, see Fig. 1(i). Designation “arg” is

the operation to extract phase from complex signals or complex numbers. This represents the

phase extraction along the first (left) vertical column in the weighted corrected cross-spectra.

This method of ORG extraction produced good results for short time intervals Δt, but it is not

sufficient for long-term monitoring of ORG.
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In order to improve ORG signal fidelity over larger time intervals, the final phase signal

ΔϕKT
lay1/lay2

was computed using the Knox-Thompson paths [46,47]. The number of paths has

been selected in such a way that allowed phase wrapping and decorrelated region (Fig. 1(h)).

Signal reconstruction was done by assembling Knox-Thompson paths of length p between

B-scans indicated with arrows. The total number of Knox-Thompson paths Π is given by:

Π = Zquotient(Δtmax/(p · Δtmin)), where Δtmax is the total measurement time. Current Knox-

Thompson path number δ for time difference Δt is defined as δ = Zquotient(Δt/(p · Δtmin)) where

Δtmin is the time step between two consecutive B-scans. Then we define ΔϕKT
lay1/lay2

as a phase

difference at the end of δ-th of Knox-Thompson paths, see Fig. 1(j):

ΔϕKT
lay1/lay2

(t′0,Δt′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg[UM
lay1/lay2

(t′
0
,Δt′)], for t′

0
<Δt′ ≤ Δt′KT

arg[UM
lay1/lay2

(t′
0
+ δ · Δt′KT ,Δt′ − δ · Δt′KT )] +

1
tN
∑δ−1

m=0

∑Δt′KT
j=Δt′KT−tN

arg[UM
lay1/lay2

(t′
0
+ m · Δt′KT , j)] ,

for δ · Δt′KT<Δt′ ≤ (δ + 1) · Δt′KT , δ = 1, . . . ,Π − 1,

(9)

where t′
0
, Δt′, Δt′KT are the indices of continuously varied times t0, Δt, ΔtKT . Note that ΔtKT = p,

and tN is the number of pixels taken at the end of the previous arrow to obtain an average value to

be added to consecutive Knox-Thompson paths. tN should be small so that it does not extend

towards UcM
lay1/lay2

dominated by zeros, which would change the final calculated phase. In our

measurement, we took five pixels tN at the end of each KT arrow, and we added the mean value

from these pixels to the next arrow of the Knox-Thompson path; m indicates consecutive phase

arrows with signal extracted from previous (δ-1)-th Knox-Thompson paths. This ensured a

reduction in phase bias.

Binarization function b was computed the similar way as ΔϕKT
lay1/lay2

by path collection from Π

Knox-Thompson paths:

b(t′0,Δt′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
b(t′

0
,Δt′), for t′

0
<Δt′ ≤ Δt′KT

b(t′
0
+ δ · Δt′KT ,Δt′ − δ · Δt′KT ),

for δ · Δt′KT<Δt′ ≤ (δ + 1) · Δt′KT , δ = 1, . . . ,Π − 1.

(10)

The phase differences with weights are then defined as:

Δϕb,KT
lay1/lay2

(t′0,Δt′) = b(t′0,Δt′) · ΔϕKT
lay1/lay2

(t′0,Δt′). (11)

Finally, the time-depended layer displacement can be calculated from:

Δlay1/lay2(t) = λ0 ·
Δϕb,KT

lay1/lay2
(t)

4πn
, (12)

where n – refractive index of tissue, λ0 – light source central wavelength. In our experiments, we

assigned BrM to layer 1 and ELM to layer 2 to extract time-dependent phase-based ORG signals.

2.6. Phase-based distance measurements error

The theoretical sensitivity of phase difference measurements depends on two components. The

first component is defined by the signal-to-noise ratio of OCT data [53,54]. In the case of the

ORG measurements, since we compare phases between two layers, SNR of each layer needs to
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be taken into account:

σΔph,ORG =

√
1

2SNRlay1

+
1

2SNRlay2

=

√
1

SNRlay12

. (13)

where SNRlay= 20·log(lay/σnoise). The SNR was calculated from segmented layers 1 and 2

(signal) and pixels outside the sample (noise) using amplitudes in a region of interest.

The second component is defined by a reduction in coherence between two phase measurements.

In classical Doppler measurements, the reduction of coherence is simulated by phase error caused

by lateral displacement, Δx between two consecutive phase measurements acquired with the

beam of diameter d [53,54]:

σΔx =

√√√
4π

3

(
1 − exp

(
−2

(
Δx
d

)2
))

. (14)

This results in the total phase sensitivity estimation of:

σphase, Doppler =
√
σ2
Δph, Doppler

+ σ2
Δx. (15)

Note that from Eq. (14), the maximum value of Doppler phase error calculated between

two totally decorrelated measurements (d >> Δx) should be equal to
√

4π/3 rad. Considering

Eq. (12) and our central wavelength of 860 nm, this translates to σΔx,max, ∼ 105 nm. In the

ORG measurements, the phase difference is calculated between two points separated in space,

not in time. This means that the phase variance of the ORG signal calculated between two

positions should depend on how correlated the two fields are. Resulting in the experimental

values consistently higher than theoretical phase variance estimation σΔph, ORG for correlated

fields:

σphase, ORG =
√
σ2
Δph, ORG

+ σ2
incoherence

. (16)

In the phase estimation presented here, two random independent speckle fields are used to

calculate phase difference. Thus, we should expect to have the phase error σincoherence in the

range of σΔx,max.

Another consequence of this phase decorrelation between two layers is that ORG signal

averaging between different A-scans will not follow simple SNR-dependent improvement of

phase sensitivity (with the square root of the number of averaged signals M). Therefore, we

decided to use a more elaborate Kernel to investigate the effect of averaging on ORG signal

variance. We found experimentally that the following equation describes the improvement of

differential phase error, due to A-scan averaging, very accurately (see Fig. 3):

σthe/exp =
σ

athe/exp

√
M + bthe/exp

+ cthe/exp, (17)

where σ is a phase sensitivity of a single ORG measurement for M = 1 (theoretical “the”:

σΔph, ORG or experimental “exp”: σphase, ORG), athe/exp, bthe/exp, cthe/exp – fitting parameter from

the least square method, M – number of averaged phase differences in space (over multiple A-

scans). This ORG phase error estimation should not apply to the adaptive optics (AO) based ORG

measurements where the ORGs from individual photoreceptors are measured, and one expects to

have a good phase correlation between two axial positions within the same photoreceptor.

3. Results

3.1. System stability characterization

The system was characterized by signal-to-noise ratio (SNR) and temporal phase stability. A

measure of phase sensitivity or stability is given by the standard deviation of the measured phase
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differences. Figure 2 showcases the effect of the galvo-scanner jitter quantified by measurements

of phase sensitivity under three conditions: (cond. I) galvo-scanner powered off, 4000 BM-scans

of a coverslip glass plate, (cond. II) galvo-scanner powered on, and linear scan of a coverslip

glass plate, 4000 BM-scans, and (cond. III) a galvo-scanner powered on and linear scan of the

living mouse retina. The first column of the Fig. 2 shows an example of OCT intensity B-scans

for three experiments. The following two columns show the time-varying phase extracted from

the OCT data over the whole duration of the experiment (40 s) and the zoomed-in portion (2 s).

The fourth column shows temporal Phase Power Spectrum (FFT of phase signals from layers

1–2 and the phase difference between layers), and the fifth column shows a phase histogram for

corresponding data sets. For absolute phase variation, the phase on the front surface of coverslip

over time was obtained for conditions (cond. I) and (cond. II) in a BM-scan. For (cond. III),

the phase in the same spatial location on a layer in mouse retina in each BM-scan was obtained

along the time. Note, that cond. I and cond. II represent static sample, while cond. III represent

moving sample (living mouse retina). The theoretical sensitivity σthe (calculated using SNR)

of the raw phase for one A-scan was equal to 0.04, 0.19, and 0.24 radians respectively for the

three conditions (cond. I), (cond. II) and (cond. III). The standard deviation of the measured raw

unreferenced phase over time was equal to 0.20, 1.03, and 1.30 radians, respectively for the three

conditions (cond. I), (cond. II), and (cond. III), confirming deviation from shot-noise limited

detection of the phase.

Fig. 2. Signal analysis of the temporal phase stability. The first column presents an example

of one OCT B-scan, from series of BM-scans, for glass plate (a, f) and mouse retina (k).

The second column presents phase stability for edges of the coverslip glass in the sample

channel with the scanners off (b) and on (g), and for layers in a scanned mouse retina (l).

Red and blue colors correspond to phase calculated from layers 1 & 2 marked by rectangles

with corresponding colors in (a, f, k). The black line shows the phase difference between the

signal from layers 1 and 2. The third column presents the magnified phase results from (b, g,

l) - seconds 10 to 12 marked by a dashed green line. The fourth column shows temporal

Phase Power Spectrum (FFT of phase signals from layers 1–2 and the phase difference

between layers). The fifth column shows a phase histogram for corresponding data sets.

In order to showcase that our phase stability was not negatively affected by the time interval

between phase measurements and to show that our system is phase stable, we compared our

previously measured temporal phase stability between B-scans to temporal phase stability between

A-scans. This resulted in two orders of magnitude reduction in the time interval between phase

measurements. Figure 3 shows an analysis of differential phase stability in this case for the

microscope coverslip and both galvo scanners powered off (cond. I). Note that Fig. 3(c) shows
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virtually the same differential phase histogram as shown previously for longer time intervals in

Fig. 2(e,j) for conditions (cond. I) and (cond. II).

Fig. 3. Signal analysis of temporal phase stability for 100 kHz A-scan acquisition (cond. I).

(a) Phase stability for edges of the coverslip glass in the sample channel with the scanners off.

Red and blue colors correspond to phase calculated from layers 1 & 2 marked by rectangles

with corresponding colors in Fig. 1(a). The black line shows the phase difference between the

signal from layers 1 and 2. (b) Temporal Phase Power Spectrum (FFT of phase signals from

layers 1–2 and for the phase difference between layers). c) Histogram for phase difference.

3.2. Effect of averaging on phase-based processing

To estimate the effect of averaging on differential phase measurement error, we evaluated data

acquired with cond. I) galvo-scanner powered off, acquired at coverslip glass plate, and cond.

III) a galvo powered and linear galvo scan of the mouse retina. The changes in phase stability

as a function of number averaged A-scans were measured and fitted using Eq. (17). Figure 4

summarizes these results for both theoretical (SNR based: σΔph, ORG) and experimental (direct:

σphase, ORG) differential phase error estimation.

Fig. 4. Estimation of phase noise theoretically – SNR-based (red line) and experimentally

(black line) for a glass plate with scan off (a) and mouse retina with scan on (b). Coefficient

of determination for (a) and (b) is equal R2 = 0.99.

The results shown in Fig. 4 allow us to estimate the phase error σincoherence using Eq. (16),

due to decorrelation between two layers. This error is equal to ∼9.6 nm and ∼102 nm for glass

plate and mouse retina differential phase measurements, respectively. This result is expected

since reflections of two surfaces of a glass plate should be well correlated while scattering

between two retinal layers should be decorrelated. Another interesting observation is that

averaging of A-scans allows a very efficient reduction of the differential phase error bringing the
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theoretical limit of improvement by averaging to the same range (see from (Eq. (17)) cexp and

cthe for both measurements). This also showcases the need for averaging of differential phase

measurements between A-scan when extracting light-evoked changes in layer thickness. The

similar values of fitting parameters athe/exp, and bthe/exp (both in SNR-based estimation and direct

phase measurements) suggest that degree of differential phase decorrelation does not affect the

averaging process.

3.3. Measurements of phase-based ORG signal

In our ORG measurements, the light-evoked changes in retinal activity are measured as the

relative swelling of the outer retina, which is extracted by measuring a change in relative distance

between the BrM and ELM directly proportional to the phase difference (Eq. (12)). However, a

simple calculation of the phase change between the first and subsequent B-scans is not feasible

due to the OCT signal decorrelation (within the same layer) over time. This signal decorrelation

(due to the eye movements and tissue internal dynamics) causes the measured phase differential

signal to disappear, as shown in Visualization 1.avi and Visualization 2.avi. Selected frames are

shown in Fig. 5 and Fig. 8, where we can see that for a time difference of Δt= 0.01 s, the phase

difference between two B-scans is well defined. After 11 seconds, the common phase information

between the same structures in the 1st and 1060th B-scan has decreased, manifested by a low

phase difference signal (phase difference becomes random). This is why the use of periodic

signal self-referencing is necessary to allow the comparison of successive phase differences over

a longer time.

3.3.1. Control experiment (no light stimulation)

ORG control experiment measured changes in the relative swelling of the outer retina (distance

between the BrM and ELM) without any visible light stimulation. The only source of bleaching

is the imaging OCT light itself. Figure 5 showcases the phases stability during the experiment

performed over 40 s acquisition window.

The problem of time-dependent signal decorrelation observed in Fig. 5. can be solved using

phase analysis employing Knox-Thompson paths [46]. The light-induced retinal activity in the

mouse retina was mapped as the time-dependent change in outer retina thickness (between ELM

and BrM). These reference layers were presented in Fig. 2, Fig. 5, and Fig. 8. For comparison, we

measured the light-evoked activity using our previously developed intensity-based methods and

newly developed phase-based method, as described in section §2.7. In order to allow phase-based

ORG signal extraction, we calculated cross-spectra differences UM=150
lay1/lay2

from 150 A-scans (from

350th A-scan to 500th A-scan). The number of the A-scans that need to be averaged will depend

on the OCT signal intensity and phase stability of the optical system. Figure 4 shows the change

of the phase noise level depending on the number of averaged A-scans. According to Eq. (17),

we can estimate the theoretical phase error depending on the number of averaged A-scans,

corresponding to the accuracy of the phase-based ORG signal. We have chosen the number of

A-scans to be averaged based on the difference between the experimental standard deviation of

phase and the theoretical phase error levels. We found that the number of A-scans around 150

(see cexp and cthe in Fig. 4(b)) provide the smallest difference. Figure 6(a) and Fig. 9(a) show

examples of the cross-spectrum before averaging. Based on this, we conclude that solid ORG

responses could be traced with a low number of averaged A-scans, while week ORG responses

would require a large number of averaged A-scans.

The range of A-scans used to extract the ORG signal is indicated in Fig. 5(a). As a control

experiment, the results of phase-based ORG signal extracted from 40 sec. acquisition without

light stimulation are presented in Fig. 6. The phase difference signal from a single A-scan was

characterized by a standard deviation σlin. The σlin varied from A-scan to A-scan in the range of

1.0–2.1 rad (51–107 nm). This variation in σlin is probably due to the local tissue properties of
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Fig. 5. Phase stability during measurement of a mouse retina. (a & e) The OCT intensity in

log10 scale of B-scan #2 and #1060 was collected in time 0.01 s and 10.59 s from the first

reference B-scan. The red and blue rectangles indicate ELM and BrM layers accordingly.

The yellow dashed lines presented a range of A-scans that were taken to analyze with

Knox-Thompson paths. (b & f) Reference phase of first B-scan in radians. The color scale

bars (b-d & f-h) indicate values of phase from –π to π from blue to red, respectively. (c

& g) The phase of B-scans collected in time 0.01 s and 10.59 s from the first reference

B-scan, respectively. (d & h) The phase difference between phases of first reference B-scan

and B-scan collected after time interval Δt. The phase stability over time is presented in

Visualization 1.avi.

ELM and BrM and represents a varying contribution of back-scattering and back-reflection from

these structures. Low σlin corresponds to reflection dominant signal, and high σlin corresponds

to scattering dominant signal (see a change in ELM and BrM brightens depending on the lateral

position of A-scans in Fig. 5(a,e). This is why spatial signal averaging was needed to reduce the

phase variance, as presented in Fig. 6(b). The spatial averaging over M = 150 A-scans reduced

the standard deviation of phase difference to σlin= 0.19–0.39 rad (10–20 nm), depending on

the specific A-scans used for averaging. The initially constant phase difference (before light

stimulation) is associated with the baseline “dark adapted” state of the retina and can be visible

in the averaged image Fig. 6(d), better depicted in the portion of the experiment acquired during

the first 10 s Fig. 7(d).

The phase ORG signal in Fig. 6 was reconstructed using Π = 5 Knox-Thompson paths

corresponding to ΔtKT= 8 s. The phase ORG signal in Fig. 7 was reconstructed using Π=10

Knox-Thompson paths corresponding to ΔtKT= 4 s. The thresholding on ΔϕKT
lay1/lay2

signal for

ΔtKT= 8 s removed 3% of the least correlated phase and 26% of data from a total phase of

UM=150
lay1/lay2

. The thresholding on zoomed ΔϕKT
lay1/lay2

signal for ΔtKT= 4 s removed 2% of the

least correlated phase and 5% of data from a total phase of UM=150
lay1/lay2

. The phase-based ORG
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Fig. 6. The results of the control experiment (no visible light stimulation) in the mouse retina

with a distance between ELM and BrM layers followed over 40 s. (a) The phase of UM=1
lay1/lay2

cross-spectra layer differences for one A-scan. (b) Result of averaging M= 150 cross-spectra

differences UM=150
lay1/lay2

for ELM and BrM layers. A-scan range taken to average is shown in

Fig. 4(a,c). (c) The binary map b was used to threshold and remove less correlated phasors.

The white region indicates a well-defined phase signal that could be taken to analyze. (d)

Comparison of Knox-Thompson signal without thresholding (red line) and with weights

(black line). (e) Comparison ORG phase-based signal with ORG intensity-based signal. The

ORG phase signal was reconstructed from Π=5 Knox-Thompson paths. (f) Power spectrum

(FFT of phase signals from ELM and BrM layers).

results are compared with averaged intensity-based ORG calculations for the same data set in

Fig. 6(d,e) and Fig. 7(d,e) for shorter time evaluation. For comparison, the standard deviation

for the phase-based ORG method, the variance of position difference between ELM and BrM

intensity maxima, was σlin ∼ 12 nm (Fig. 7(e)). The standard deviation for the intensity-based

ORG method, the variance of position difference between ELM and BrM intensity maxima, was

σlin= 45 nm (∼4 times higher than for phase-based ORG method).

The increase in distance between ELM and BrM layers in this experiment represents the

unwanted activation of photoreceptors by the NIR OCT imaging beam bleaching 0.01% of

rhodopsin during the whole imaging session (∼12000 B-scans (∼2 min) in total, including the

alignment, the pre-imaging scans, and the imaging acquisition). The method to calculate the

bleach levels in mice was described in detail previously [55], and includes formulas for pigmented

and albino mice. Briefly, the spectral power distribution function (W/nm) of the OCT light at the

pupil was determined from the spectrometer, and the total power was measured by Thorlabs S120C

photodiode with its wavelength setting at 860 nm. For calculation of bleaching, the spectral

energy density was converted into rhodopsin-equivalent units, using a Lamb–Govardovskii

[56,57], template for mouse rhodopsin, assuming the axial density of rhodopsin in mouse rods to

be 0.35. Note that total elongation of ELM and BrM due to this continuous stimulation equaled

100 nm over 40 s and that it can be only seen on phase-based ORG analysis. Also, note that in this

paper, we use serial B-scans for fast ORG signal measurement rather than serial volumes used in

our standard intensity-based ORG signal measurements [32,43], when local bleaching by OCT

light is 100x lower, and thus its effects are negligible. The periodic pattern seen on magnified,
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Fig. 7. Magnified results of the distance between ELM and BrM layers in the first 10

s without light stimulus. (a) The phase of UM=1
lay1/lay2

cross-spectra layer differences for

one A-scan. (b) Result of averaging M = 150 cross-spectra differences UM=150
lay1/lay2

for ELM

and BrM layers. A-scan range taken to average is shown in Fig. 4(a). (c) The averaged

Ub,M=150

lay1/lay2
signal after thresholding to remove less correlated phasors. The yellow rectangles

in (b-c) indicate a region where we can see decorrelated signal reduction using weights. (d)

Comparison of Knox-Thompson signal without thresholding (red line) and with weights

(black line). (e) Comparison ORG phase-based signal with ORG intensity-based signal. The

ORG phase signal was reconstructed from Π=10 Knox-Thompson paths. (f) The power

spectrum for phase difference signal (FFT of time-varying phase signals from ELM and

BrM layers).

and A-scan averaged cross-spectra in Fig. 7(c) is depicted by the power frequency analysis seen

on Fig. 7(f) and corresponds to the modulations of 1.3 Hz and 9.5 Hz. The potential origins of

these modulations are breathing and heartbeat, respectively. Their effect on phase-based ORG

signal variance will be briefly discussed in the discussion and conclusions section.

3.3.2. Light evoked ORG experiment

After our baseline experiment (no visible light stimulation) present in the previous section,

here we want to present our phase-based ORG analysis of ELM-BrM distance changes due

to visible light stimulation. The bleaching light was introduced after 1.29 s from the start of

the OCT acquisition. The stimulus continued for ∼1.41 s. Similar to previously observed

time-dependent signal decorrelation depicted in Fig. 5 in our baseline experiment, here as well

the same effect is evident as showcased in Fig. 8. To resolve this problem, we used the same

phase analysis employing Knox-Thompson paths and mapping light-induced retinal activity as

the time-dependent change in outer retina thickness (between ELM and BrM). Here as well the

phase-based extraction of ORG signals was compared with the intensity-based method. To allow

phase-based ORG signal extraction, we calculated cross-spectra differences UM=150
lay1/lay2

from 150

A-scans (from 350th A-scan to 500th A-scan). The range of A-scans used for our analysis is

indicated in Fig. 8(a).

The results of the phase-based ORG signal extracted in the experiment with light stimulation

are presented in Fig. 9 for the whole duration of the experiment. Here the ORG was reconstructed
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Fig. 8. Phase stability during measurement of the light-evoked responses of the mouse

retina. (a & e) The OCT intensity in log10 scale of B-scan #2 and #1060 was collected in

time 0.01 s and 10.59 s from the first reference B-scan. The red and blue rectangles indicate

ELM and BrM layers accordingly. The yellow dashed lines presented a range of A-scans that

were taken to analyze with Knox-Thompson paths. (b & f) Reference phase of first B-scan

in radians. The color scale bars (b-d & f-h) indicate values of phase from –π to π from blue

to red, respectively. (c & g) The phase of B-scans collected in time 0.01 s and 10.59 s from

the first reference B-scan, respectively. (d & h) The phase difference between phases of first

reference B-scan and B-scan collected after time interval Δt. The phase stability over time is

presented in Visualization 2.avi.

using Π = 20 Knox-Thompson paths corresponding to ΔtKT= 2 s. The phase ORG signal in

Fig. 10 was reconstructed using Π = 10 Knox-Thompson paths corresponding to ΔtKT= 4 s. The

thresholding on ΔϕKT
lay1/lay2

signal ΔtKT= 2 s removed 15% of the least correlated phase and 58%

of data from a total phase of UM=150
lay1/lay2

. The thresholding on zoomed ΔϕKT
lay1/lay2

signal for ΔtKT= 4

s removed 10% of the least correlated phase and 29% of data from a total phase of UM=150
lay1/lay2

.

Figure 9(e) and Fig. 10(e) show the comparison of the ORG signals extracted with phase-based

and intensity-based calculations. Here as well, the phase difference signal from a single A-scan

was characterized by a standard deviation σlin. The σlin varied from A-scan to A-scan in the

range of 1.0-2.4 rad (51–123 nm). After spatial signal averaging, the phase variance was reduced,

as presented in Fig. 9(b) and Fig. 10(b). The spatial averaging over M = 150 A-scans reduced

the standard deviation of phase difference to σlin = 0.29–0.67 rad (15–34 nm), depending on the

specific A-scans used for averaging. Note that the constant slope was removed to estimate the

standard deviation of phase difference during light stimulation. The initial brief constant phase

difference (before visible light stimulation) can be visible in the averaged image Fig. 9(d,e), better

depicted in the magnified portion of the experiment acquired during the first 10 s Fig. 10(d,e).

The standard deviation for phase-based ORG method, the variance of position difference between

ELM and BrM intensity maxima, was σlin ∼ 15 nm (Fig. 10(e)). The standard deviation for
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Fig. 9. The light-evoked activity of the mouse retina for ELM and BrM layers. (a) The

phase of UM=1
lay1/lay2

cross-spectra layer differences for one A-scan with light stimulus. (b)

Result of averaging M = 150 cross-spectra differences UM=150
lay1/lay2

for ELM and BrM layers.

A-scan range taken to average is shown in Fig. 8(a). (c) The averaged Ub,M=150

lay1/lay2
signal after

thresholding to remove less correlated phasors. (d) Comparison of Knox-Thompson signal

without thresholding (red line) and with weights (black line). (e) Comparison ORG phase-

based signal with ORG intensity-based signal. The ORG phase signal was reconstructed

from Π=20 Knox-Thompson paths. (f) The power spectrum for phase difference signal (FFT

of phase signals from ELM and BrM layers).

the intensity-based ORG method, the variance of position difference between ELM and BrM

intensity maxima, was σlin = 68 nm, ∼ 4 times higher than for the phase-based ORG method.

The increase in distance between ELM and BrM layers in this experiment is much more

evident than in our baseline studies due to the estimated total bleaching (100%) of photoreceptors

rhodopsin during 1.41 s visible light exposure. Total elongation of ELM and BrM due to this

stimulation equaled 1.5 μm over 40 s (15 times more than in our baseline experiment), and that it

can be easily seen on both phase-based and intensity-based ORG analysis. Note that here as well,

the periodic pattern can be seen on zoomed and A-scan averaged cross spectra in Fig. 10(c), and

that it is clearly depicted by the power frequency analysis seen on Fig. 10(f) and corresponds

to the modulations of 1.3 Hz and 10.4 Hz, similar to the values observed in control experiment

presented in section §3.3.1 and assigned to breathing and heartbeat, respectively.

3.3.3. Repeatability of phase-based ORG signal extraction

To showcase the repeatability of the phase-base ORG signal extraction, Fig. 11 shows the

results of four more representative experiments (two without light stimulation and two with light

stimulation).

These results confirm the improved accuracy of phased-based ORG signal extraction compared

to our standard intensity-based ORG analysis.

Note that decorrelation between B-scans can be estimated by evaluating the averaged Ub,M=150

lay1/lay2

signals after thresholding. In all experiments, phase variations corresponding to breathing and

heartbeat can be easily identified, further confirming similar phase sensitivity with previous data.
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Fig. 10. Magnified results of the light-evoked activity of the mouse retina for ELM and

BrM layers in the first 10 s in response to 1.41 s of light stimulation. (a) The phase of

UM=1
lay1/lay2

cross-spectra layer differences for one A-scan with light stimulus. (b) Result of

averaging M = 150 cross-spectra differences UM=150
lay1/lay2

for ELM and BrM layers. A-scan

range taken to average is shown in Fig. 7(a). (c) The averaged Ub,M=150

lay1/lay2
signal after

thresholding to remove less correlated phasors. The yellow rectangles in (b-c) indicate a

region where we can see decorrelated signal reduction using weights. (d) Comparison of

Knox-Thompson signal without thresholding and (red line) with weights (black line). (e)

Comparison ORG phase-based signal with ORG intensity-based signal. The ORG phase

signal was reconstructed from Π=10 Knox-Thompson paths. The blue rectangle indicates

light exposure time. (f) The power spectrum for phase difference signal (FFT of phase

signals from ELM and BrM layers).

As an example, “Experiment 2” data shows a breathing artifacts-free dataset. In all experiments,

phase-based ORG signal extraction resulted in much less noisy estimation of the ORG signals,

see Fig. 11(c, f, i, l). Application of the Knox-Thompson paths allowed reliable extraction of the

ORG signal even in Experiment 4 (Fig. 11(j- l)), where the OCT signal becomes decorrelated

after about 5 seconds from the start of the acquisition.
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Fig. 11. The results of additional control experiment (Experiment 1 & 2) and light-evoked

activity experiment (Experiment 3 & 4) of the mouse retina showing the distance between

ELM and BrM layers in the first 10 s in response to 0.85 s (Experiment 3) and 0.62 s

(Experiment 4) light stimulation. (a, d, g, j) The averaged Ub,M=150

lay1/lay2
signals after thresholding

to remove less correlated phasors are shown for each experiment. (b, e, h, k) Comparison

of Knox-Thompson signal without thresholding (red line) and with weights (black line) for

each experiment, respectively. (c, f, i, l) Comparison between ORG phase-based signal

with ORG intensity-based signal. The ORG phase-based signal was reconstructed from

Π=4 Knox-Thompson paths and threshold b= 0.03. The blue rectangle indicates blue light

exposure time.
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4. Discussion and conclusions

OCT is a coherent detection technique that carries not only information about scattering intensity

but also about the axial position of the scattering object encoded in both the peak position of

the signal and in a relative phase of its interferometric fringe. The FFT amplitude of the fringes

allows for obtaining information about the structure of the object. Evaluation of the FFT phase of

spectral fringes allows access to information about axial shifts smaller than the axial resolution

of the OCT system. The work presented here described the practical implementation of the

framework to use phase-based OCT signal analysis to measure axial displacement between two

randomly scattering structures generating time-varying, uncorrelated speckle fields.

Lack of melanin in albino mice allows clear visualization of OCT signal back-scattered from

ROS tips (ROST) and from BrM, therefore only B6-albinos (B6(Cg)-Tyrc-2J/J) mice, which

are congenic with B6 mice (C57BL/6(J)) save for the null mutation in the tyrosinase gene that

eliminates melanin, were used for this study. However, the methodology developed here could be

applied to pigmented mice as well. We intend to work in the future on extending our phase-based

ORG method analysis to mouse models with varying pigmentation levels [58].

Our previous work [43] has shown that intensity-based processing can be applied to measure

the light-evoked response of the retina in an anesthetized mouse. These methods allow the

extraction of time-dependent changes in the thickness of the retinal layers using simple and fast

data processing. Additionally, intensity-based processing was relatively not sensitive to the eye

motion artifacts. Alternatively, in OCT data, changes in the relative position of retinal layers

can be measured using phase-based processing [39]. The phase-based position detection in

interferometric methods is in general more sensitive than intensity-based peak position detection.

However, phase-based measurement is more sensitive to bulk motion artifacts, which makes it

particularly vulnerable to the eye motion artifacts mainly caused by saccades, heartbeat, and

breath. One way to avoid these artifacts is to increase the acquisition speed. Publications

[17,40,41] show that with an A-scan acquisition rate of 1 MHz and motion correction, it is

possible to measure the phase shifts within individual photoreceptors caused by swelling of

photoreceptors outer segments using direct phase analysis methods using flying spot AO-OCT

datasets. The standard approach is to subtract consecutive A-scans from the reference A-scan,

then measure the signal change over time.

However, as shown in this paper, during the measurement lasting from a few to several

dozens of seconds, and in the presence of speckles, there are time varying changes in signal

correlation. Here, we have visualized the mutual correlation of each B-scan by implementation of

the cross-spectra analysis allowing for easy separation of highly correlated regions from weakly

correlated ones. Using the Knox-Thompson method with the path analysis (folding arrows in

Fig. 1(h,j)), it is possible to perform the phase analysis of the retina during light stimulation for

systems with an A-scan acquisition rate in the range of 100 kHz and multiple scattering dominant

(presence of speckle) of OCT signal. The threshold providing the reduced weighted cross spectra

between layers 1 and 2 over window M was set so that to remove artifacts related primarily to

the breath of the mice. The breath of the mice can be observed by phase jumps, as shown in

Fig. 7(d) and Fig. 10(d) and Fig. 11(b, h, k). The red line in Fig. 7(d) and Fig. 10(d) show the

ORG signal without thresholding compared to the final threshold signal drawn in the black line.

Overestimating the threshold value could include the decorrelated signal of the mouse breathing

in ORG calculations. The standard deviation of the measured ORG signal might increase, and

the accuracy of the calculation decreases. On the other hand, the threshold should be chosen to

retain useful phase information. Underestimating the threshold might demote the precision of the

ORG measurement.

We have shown that for a 100 Hz serial B-scan acquisition, and in the case of an immobilized

animal (mouse), we are able to reconstruct the phase-based ORG signal from the BrM and ELM

layers using the Knox-Thompson path analysis. We achieved compliance of the phase-based
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ORG signal with the amplitude-based ORG signal. As expected, the phase signal shows a higher

sensitivity depending on the number of averaged A-scans and signal SNR. As the sensitivity of

the phase method is higher, we could observe a decrease in the ELM-BrM distance with the onset

of the light stimulus (Fig. 10(d)), plausibly caused by the contraction of the photoreceptor OS.

This effect was not visible in the amplitude measurement. The relatively high value of phase

difference variance in the in vivo ORG experiment is due to residual phase shifts in the retina. A

closer look at the power spectrum of the phase-based ORG signals shown in Fig. 6(f) and Fig. 7(f)

for control and Figs. 9(f) and 10(f) for light stimulus case reveal the presence of slow (∼1.3 Hz

for both experiments) and fast (∼9.5 Hz and ∼10.4 Hz for control and light stimulus experiments

respectively) phase modulations. We have confirmed that this corresponds to mouse breading

and heart bit frequency, respectively. This showcase that our phase-based ORG measurements

are more sensitive than our current intensity-based distance analysis, offering about 10 times

improvement in sensitivity of phase-based ORG estimation.

Since the distance between the ELM-BrM boundary rather than individual compartments of

this band (RPE, SRS, OS, IS) were measured in the present study, we cannot directly attribute

our observations with photoreceptor swelling. One alternative possibility is that ELM-BrM

distance change could correspond to light-induced subretinal space (SRS) expansion caused by

mitochondrial respiration [59], where SRS is defined as the extracellular fluid space between

RPE cells and photoreceptors, with the growing body of work researching this topic [60–63]. We

have, however, previously studied the light-evoked SRS changes [32], and did not find any SRS

expansion after a visible light stimulus. One noticeable difference between these experiments is

the type of anesthesia used in the study. Other groups often use a mix of ketamine (100 mg/kg) and

xylazine (6 mg/kg) as injectable anesthetics, while our mice are always anesthetized with 1.5–2%

isoflurane mixed with oxygen. Taking into account how different methods of anesthesia affects

mouse physiology, such as blood flow [64], intraocular pressure (IOP) [65], or eye movements

and electroretinogram (ERG) [66], it is possible that it could affect the light-evoked response of

the retina in general and of the SRS in particular, despite some reports suggesting no difference

[61]. Therefore, future ORG studies in animal models should include evaluating the different

effects anesthesia could have on the extracted signals.

Over the last few years there has been rapid progress in development of the non-invasive,

optical measurement of neural function in the retina. These functions have been investigated

using imaging systems already used in the clinic or intended for clinical and translational use.

While the most success in ORG signal extraction has been achieved with a phase-based analysis

of data acquired with optical coherence tomography (OCT) with adaptive optics (AO), its

broader application in clinical settings remains limited mostly due to high cost of AO-OCT

systems and difficulty of its use in truly clinical settings. The work presented here contributes to

developing sensitive phase-based methods to extract ORG signal from clinical-grade non-AO

OCT systems. The ORG methodology has demonstrated the ability to detect responses to stimuli

isomerizing less than 0.01% of photopigment. Therefore it has the potential to prove a quick,

non-invasive, and objective way to measure subtle disease-related dysfunction and thus to provide

an entirely new and complementary biomarker for retinal disease and recovery [67]. Using the

presented cross-correlation spectrum analysis framework, the use of phase-based ORG signal

extraction should be possible in the current clinical systems operating at B-scan acquisition rates

of 0.1 Hz and without active eye-tracking systems or AO correction. Presented data processing

was performed after the acquisition of serial B-scans, and lateral and axial displacement of

tissue was waited by cross-spectra decorrelation and Knox-Thompson paths calculations. Thus,

phase errors caused by large transverse or axial displacements were removed from the analysis.

This development of a phase-sensitive analysis method that is insensitive to speckle signal

decorrelation due to the eye movements represents an important step towards implementing

non-invasive procedures of measuring the light-evoked retinal function in the human clinic.
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Toruń, Grudziądzka 5, 87-100 Torun, Poland
5These authors contributed equally to this work
*jiayue.li@research.uwa.edu.au

Abstract: In compression optical coherence elastography (OCE), deformation is quantified as

the local strain at each pixel in the OCT field-of-view. A range of strain estimation methods have

been demonstrated, yet it is unclear which method provides the best performance. Here, we

analyze the two most prevalent strain estimation methods used in phase-sensitive compression

OCE, i.e., weighted least squares (WLS) and the vector method. We introduce a framework to

compare strain imaging metrics, incorporating strain sensitivity, strain signal-to-noise ratio (SNR),

strain resolution, and strain accuracy. In addition, we propose a new phase unwrapping algorithm

in OCE, fast phase unwrapping (FPU), and combine it with WLS, termed WLSFPU. Using the

framework, we compare this new strain estimation method with both a current implementation of

WLS that incorporates weighted phase unwrapping (WPU), termed WLSWPU, and the vector

method. Our analysis reveals that the three methods provide similar strain sensitivity, strain SNR,

and strain resolution, but that WLSFPU extends the dynamic range of accurate, measurable local

strain, e.g., measuring a strain of 2.5 mε with ∼4% error, that is ×11 and ×15 smaller than the

error measured using WLSWPU and the vector method, respectively. We also demonstrate, for

the first time, the capability to detect sub-resolution contrast in compression OCE, i.e., changes

in strain occurring within the strain axial resolution, and how this contrast varies between the

different strain estimation methods. Lastly, we compare the performance of the three strain

estimation methods on mouse skeletal muscle and human breast tissue and demonstrate that

WLSFPU avoids strain imaging artifacts resulting from phase unwrapping errors in WLSWPU and

provides improved contrast over the other two methods.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical coherence elastography (OCE) is an imaging technique that maps mechanical param-

eters (e.g., strain, stress, transverse-wave velocity, and resonance frequency) and mechanical

properties of tissue (e.g., elasticity and viscoelasticity) into micro-scale images, termed micro-

elastograms [1–6]. Phase-sensitive compression OCE is one of the most prominent variants

of OCE, providing rapid image acquisition with micro-scale resolution over millimeter-scale

fields-of-view. This approach has shown promise in a number of applications, particularly in

oncology [7–11] and mechanobiology [12–14]. In addition, as the compressive load is co-axially

aligned with the optical axis, phase-sensitive compression OCE is readily implemented in compact

imaging probes [15–19], which holds promise for translation of OCE to pre-clinical and clinical

#447340 https://doi.org/10.1364/BOE.447340
Journal © 2022 Received 1 Nov 2021; revised 20 Dec 2021; accepted 23 Dec 2021; published 18 Mar 2022
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applications. Phase-sensitive compression OCE comprises three main steps: measuring sample

deformation (i.e., displacement) using phase-sensitive optical coherence tomography (OCT),

calculating local strain as the spatial derivative of displacement, and relating strain to elasticity

via a mechanical model. Thus, a key factor in determining the image quality of compression

OCE is the method used to estimate local strain.

A main challenge in compression OCE is obtaining accurate strain estimation in the presence

of noise in the measured displacement. In an optimally configured OCE system, displacement

sensitivity is determined by shot noise [20] and, also, as has recently been shown, speckle

brightness [21]. The most straightforward approach to estimating strain is the finite difference

method [22], i.e., the calculation of the change in displacement with depth between two discrete

depth locations. However, this results in noisy strain as the noise in measured displacement

is amplified in the estimated strain [23,24]. To alleviate this, several more sophisticated strain

estimation methods have been proposed [5,24]. In particular, in the last decade, linear regression

methods have been extensively utilized [19,24–28]. For instance, in an early demonstration of

vibrational OCE [25], which is effectively a variant of compression OCE, ordinary least squares

(OLS) was used to estimate the slope of vibration amplitude with depth. In this approach, a

range of consecutive vibration or displacement measurements in depth are used to estimate

strain, often referred to as the fitting range (typically, 5-10 times larger than the OCT axial

resolution). As OCT signal-to-noise ratio (SNR) is one of the main determinants of the accuracy

and precision of the measured displacement at a given depth [20], weighted least squares (WLS)

was then proposed, with larger weights given to pixels corresponding to higher OCT SNR [24].

However, phase wrapping (occurring when the phase difference exceeds 2π) imposes a limit

on the maximum measurable displacement and, by extension, the maximum measurable local

strain, requiring the additional step of phase unwrapping to extend the strain dynamic range.

Phase unwrapping techniques are inherently sensitive to noise, which can cause artifacts in strain

micro-elastograms. Alternatively, a variant of the finite difference method implemented in the

complex plane, referred to as the vector method [29,30], has been proposed to estimate local

strain by calculating the phase gradient (i.e., the gradient in phase difference calculated between

consecutive pixels in the axial direction). As this phase gradient is typically smaller than 2π and

the intermediate steps for calculating phase gradients are implemented in the complex plane, this

method avoids phase unwrapping. Importantly, the vector method performs vector summation,

i.e., a type of spatial averaging to increase phase stability by summing a set of complex OCT

signals, providing improved image quality over the finite difference and OLS methods [29].

Whilst both WLS and the vector method have been demonstrated in the majority of recent

compression OCE studies [5,13,24,28–30], a systematic comparison of these two methods has

yet to be performed. Consequently, it is difficult to determine which method is optimal for a

given application. A main challenge is that, until now, each method has been demonstrated

on different samples and using specific parameters that are difficult to compare between the

methods, e.g., the fitting range and size of the phase averaging window are main determinants

of spatial resolution in WLS and the vector method, respectively, but it is not clear how they

compare. To address this, we introduce a framework to quantitatively compare strain imaging

metrics (e.g., strain sensitivity [24,31,32], strain SNR [24,31,33], strain resolution [34–36],

and strain accuracy [21,32]) calculated on the same data acquired from phantoms. In addition,

we demonstrate the utility of the framework by comparing the performance of a new phase

unwrapping algorithm for WLS, fast phase unwrapping (FPU), to both the existing WLS method

and the vector method. The existing implementation of WLS applies a phase unwrapping

algorithm that corrects phase discontinuities in depth by subtracting an integer multiple of 2π

from the weighted phase difference [37], termed weighted phase unwrapping (WPU). Whilst

WPU accounts for the dependence of phase sensitivity on OCT SNR, it is sensitive to phase noise

in regions of low OCT SNR, resulting in phase unwrapping errors that manifest as prominent,
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streak-like artifacts in strain micro-elastograms [15]. This issue is addressed by FPU, which

identifies phase discontinuities by calculating phase gradients using Laplace operators that

can be calculated using Fourier transforms to improve computational efficiency [38]. The

three-dimensional (3-D) version of the algorithm was initially developed and implemented in a

graphics processing unit for quantitative retinal blood flow measurements in Doppler OCT [39,40].

Here, we propose iterative-based 3-D FPU combined with Volkov symmetrization [38,41] to

fulfill periodic boundary conditions of Fourier transforms so that the accuracy of the approach is

optimum for OCE. We then perform a comparison between the existing WLS method, termed

WLSWPU, the vector method, and the new implementation of WLS, termed WLSFPU. Our results

show that whilst these three methods provide similar strain sensitivity, strain SNR, and strain

resolution, WLSFPU provides improved dynamic range of accurate strain estimation with an

error of ∼4% that is ×11 and ×15 times smaller than the error measured for WLSWPU and the

vector method, respectively, for an expected strain of 2.5 mε. We also provide preliminary

analysis of sub-resolution contrast in compression OCE, i.e., the capability to detect changes

in strain occurring within the strain axial resolution and, also, how this varies for the different

strain estimation methods. Furthermore, we present strain micro-elastograms of mouse skeletal

muscle and human breast tissue. We demonstrate that strain imaging artifacts caused by phase

unwrapping errors in WLSWPU are avoided in the other two methods and that the higher dynamic

range of accurate strain estimation provided by WLSFPU translates to improved contrast in strain

micro-elastograms.

2. Theory: strain estimation methods in phase-sensitive compression OCE

Consistent with the broader field of elastography, in compression OCE, the sample is commonly

assumed to be linearly elastic and mechanically isotropic. Under these assumptions, the elasticity

of the sample can be represented by Young’s modulus, E, which is defined as the ratio between

the normal uniaxial stress, σzz, and the normal uniaxial strain, εzz,

E =
σzz

εzz
. (1)

Assuming that each pixel within the OCT field-of-view is mechanically isolated, E estimated at

each pixel, i.e., local elasticity, is independent throughout the micro-elastogram. In early demon-

strations of compression OCE, the assumption of uniform stress was commonly made [1,5,42],

whereby strain is inversely proportional to elasticity. More recently, techniques have been

developed to estimate local stress, providing a more direct estimate of elasticity [43–45]. In both

cases, developing accurate strain estimation methods is a crucial determinant of image quality in

compression OCE. In this section, we describe in detail the two most prominent methods, WLS

and the vector method.

2.1. Weighted least squares regression

2.1.1. Displacement measurement

In phase-sensitive compression OCE, the OCT phasor difference B-scan, b(x, z), can be calculated

using the Kasai estimator [46,47] from complex OCT B-scans of the sample in unloaded, aU(x, z),
and loaded, aL(x, z) states,

b(x, z) = a∗U(x, z) · aL(x, z)
= AU(x, z)AL(x, z) exp[i · (φL(x, z) − φU(x, z))]
= B(x, z) exp[i · Δφ(x, z)],

(2)

where a∗U(x, z) denotes the complex conjugate of aU(x, z), AU(x, z) and AL(x, z) are the amplitude

of aU(x, z) and aL(x, z), respectively, φU(x, z) and φL(x, z) are the corresponding phase of aU(x, z)
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and aL(x, z), respectively, Δφ(x, z) represents the phase difference, and B(x, z) represents the

amplitude of b(x, z). In phase-sensitive compression OCE, the axial displacement, uz(x, z), is

directly proportional to Δφ(x, z),

uz(x, z) = λΔφ(x, z)
4πn

, (3)

where λ and n represent the central wavelength of the light source and the bulk refractive index

of the sample (often assumed to be 1.3-1.4), respectively. Assuming that noise is purely from the

optical and electronic components of the OCT system, and ignoring other sources of displacement

noise (e.g., environmental vibration), the minimum measurable change in phase difference, i.e.,
the phase difference sensitivity, SΔφ is [20],

SΔφ =
1√

SNROCT
, when SNROCT>>1. (4)

Combining Eqs. (3) and (4), the displacement sensitivity, Suz , is

Suz =
λ

4πn
√

SNROCT
. (5)

However, phase difference is a circular variable and wraps when the phase difference exceeds

2π, creating ambiguity in the measured displacement. Thus, to increase the dynamic range of

displacement and, therefore, strain estimated using WLS, phase unwrapping is required.

2.1.2. Weighted phase unwrapping (WPU) algorithm

The WPU algorithm has been described in detail in a previous study [37]. Here, we provide

a brief summary. The algorithm was initially proposed for a common-path phase-sensitive

compression OCE configuration [37], where the back surface of the imaging window in contact

with the sample is used as a reference reflector. Furthermore, the imaging window is affixed

to an annular PZT actuator and acts as a compression plate. In this configuration, the phase

difference at the surface of the sample is zero, as the window and sample surface have the same

displacement. For a sample under uniform compression, as the resulting magnitude of phase

difference increases with depth, i.e., as the change in displacement between the imaging window

and the sample increases, the direction of required phase unwrapping is known. In addition, as

highlighted in Eq. (4), phase difference sensitivity is dependent on OCT SNR, which allows the

phase difference at each pixel to be weighted by the corresponding OCT SNR.

The weighted phase differences at the first nz pixels in depth are assumed to be free of wrapping

events, where the mean of weighted phase difference in these pixels, μΔφ,z, is used as a reference

to determine if a wrapping discontinuity has occurred. Then, for subsequent depths, starting from

nz+1, each pixel is unwrapped by subtracting an integer multiple of 2π such that the difference

between each weighted phase difference and μΔφ,z calculated from the preceding nz pixels is

minimized. Similar to the axial phase unwrapping, in the subsequent lateral phase unwrapping,

a sliding window with a size of (2m+1)× (2m+1) in the xy plane is specified to calculate the

mean of weighted phase difference in the en face plane, μΔφ,xy, used as a reference to determine

if lateral phase unwrapping is needed. Each pixel in the en face plane is laterally unwrapped by

subtracting an integer multiple of 2π to minimize the difference between the axially unwrapped

phase difference at each pixel and μΔφ,xy.

2.1.3. Fast phase unwrapping algorithm

Here, we propose to use 3-D FPU algorithm as an alternative phase unwrapping algorithm [39] for

use in phase-sensitive compression OCE. The algorithm was initially developed for unwrapping
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blood velocity profiles in retinal vessels imaged with Doppler OCT [39,40] and a complete

derivation of the method can be found there. The method can be regarded as one of the transport

of intensity equation solvers described in detail in [38,48]. Compared to the original FPU method,

we introduce two modifications here. The first is the use of iterative error correction as described

in [38], and the second is the use of Volkov symmetrization [41] in the FPU algorithm. FPU

calculates the estimated unwrapped phase, Δψest(r), by solving the Poisson equation,

Δψest(r) = ∇−2Im
{
P(r)−1∇2P(r)} , (6)

where r denotes the spatial coordinates, ∇−2 and ∇2 are the inverse and forward Laplace operators.

In the above equation, P(r) is the complex-valued function of both wrapped phase Δφ(r) and

unwrapped phase Δψ(r),
P(r) = exp(jΔψ(r)) = exp(jΔφ(r)), (7)

where j2 = -1, and P(r) can be obtained directly from complex OCT A-scans [39] using all

B-scans of the sample in unloaded and loaded states, as described by Eq. (2):

P(r) = b(r)
|b(r)| , (8)

where r denotes the spatial coordinates ( x, y, z). To improve the computational efficiency, Eq. (6)

can be expressed with Fourier transformations instead of Laplace operators as [38,39]

Δψest(r) = −(2π)−2F−1{K−2F[Im(−P(r)−1(2π)2F−1[K2F(P(r))])]}, (9)

where K is the Fourier space conjugate of the vector r, and F and F−1 are forward and inverse

transformation operators. In contrast to Doppler OCT, the periodic boundary conditions of

the OCE data are usually not fulfilled due to a phase ramp and discontinuities on the tissue

boundaries, which lead to phase unwrapping errors. Therefore, it is reasonable to utilize

Volkov symmetrization to improve the accuracy of unwrapped phase difference, as shown by

Martinez-Carranza et al. [38]. In this paper, we extend their work by performing the Volkov

symmetrization on 3-D data prior to the estimation of unwrapped phase difference in Eq. (9).

Figure 1 presents an illustrative diagram of the modified FPU algorithm using experimental

data acquired from a silicone inclusion phantom. After the calculations of Δψest(r) from the

enlarged data, we extract one part (represented by a solid black frame in Fig. 1) for the subsequent

steps of the FPU algorithm. As it is common that Δψest(r) may not be fully unwrapped from

the first estimation, the phase unwrapping errors can be minimized by iterating Eq. (9) based on

the condition that Δφ(r) and Δψest(r) should be the same in the complex plane, as highlighted

in Eq. (7). Therefore, we define the error function for the estimation of the unwrapped phase

difference, Q(r), as

Q(r) = angle[exp(jΔφ(r)) · exp(−jΔψest(r))]. (10)

Q(r) is likely to be wrapped, which also can be unwrapped using Eq. (9) by replacing P(r) with

exp(jQ(r)). Similar to Δψest(r), we also perform Volkov symmetrization for the estimation of the

unwrapped phase difference error, Qiter
est (r), and iteratively update Δψiter

est (r) with the addition of

Qiter
est (r),

Δψiter+1
est (r) = Δψiter

est (r) + Qiter
est (r). (11)

As the number of iterations in Eq. (11) increases, Qiter
est (r) is reduced towards zero. When

Qiter+1
est (r) is equal to zero, the iterations stop and Δψiter+1

est (r) represents the final estimation of

unwrapped phase difference. In practical implementation, the FPU algorithm faces two main

problems when using Q(r) as the stop criterion. The first is that Δψest(r) can have different phase

offset equal to an integer multiple of 2π, leading to an ambiguity of applying Eq. (10). The
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Fig. 1. Illustrative diagram of the FPU algorithm for phase-sensitive compression OCE

on a silicone inclusion phantom. “Sym.” is the Volkov symmetrization that precedes

Eq. (9). “Cut.” is the operation of cutting off data that was marked as a solid black frame on

enlarged symmetrized data. “Angle” is the operator to extract phase difference from complex

functions.

second is variation in noise that still exists after a number of iterations. Thus, we instead compute

spatial variance of Qiter
est (r) as the stop criterion since it is insensitive to constant value difference

between Δφ(r) and Δψest(r). Then, the iteration only stops when the variance of Qiter
est (r) reaches

a threshold accuracy δ, which is obtained by measuring the noise floor of (wrapped) phase

difference in the deep regions of experimental OCT scans.

2.1.4. WLS strain estimation

After disambiguating the relationship between phase difference and displacement using phase

unwrapping, strain can be estimated using WLS. WLS has been shown to improve strain sensitivity

over OLS by accounting for spatially varying OCT SNR at each pixe [24] over the fitting range

Δz, which determines the axial resolution of strain estimation [24,34]. Specifically, WLS assigns

a weight, wi, to each displacement measurement, uzi , where wi is defined as the inverse variance

of each displacement measurement,

wi =
1

Suzi
2

(12)

A complete derivation of the analytical expression for WLS strain estimation is provided

in [24]. Here, we directly provide the expression,

εw
zz =

(j+m−1∑
i=j

wi

) (j+m−1∑
i=j

wiuziΔz
)
−
(j+m−1∑

i=j
wiΔz

) (j+m−1∑
i=j

wiuzi

)
(j+m−1∑

i=j
wi

) (j+m−1∑
i=j

wi(Δz)2
)
−
(j+m−1∑

i=j
wiΔz

)2
, (13)
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where uzi and m are the displacement measurements at each depth location zi and the number

of displacement points, respectively, over the fitting range Δz. By combining WLS with the

WPU and FPU algorithms, respectively, we consider two WLS-based strain estimation methods,

namely WLSWPU and WLSFPU.

2.2. Vector method

Here, we provide a brief description of the vector method. A more detailed description can

be found elsewhere [30]. In the vector method, strain is estimated from the finite difference

between two OCT phasor differences from consecutive depths within b(x, z). We refer to this

finite difference as the OCT phasor gradient, c(x, z). This method removes the need for phase

unwrapping as the computation is performed in the complex plane, and the phase angle of c(x, z),
Δφ′(x, zi) = [Δφ(x, zi) − Δφ(x, zi+1)], referred to as the phase gradient, is typically smaller than

2π. From Eq. (3), as uz(x, z) is proportional to Δφ(x, z), it follows that since εzz = Δuz/Δz, then

εzz(x, z) is proportional to the Δφ′(x, z),

c(x, zi) = b∗(x, zi) · b(x, zi+1)
= B(x, zi)B(x, zi+1) exp[i · (Δφ(x, zi) − Δφ(x, zi+1))]
= C(x, zi) exp[i · Δφ′(x, zi)],

(14)

where C(x, z) is the amplitude of c(x, z) in units of squared intensity. Δφ′(x, z) is in units of

radians per pixel and, more importantly, is proportional to εzz(x, z),

εv
zz =
λΔφ′

4πδz
, (15)

where δz is the pixel size in the axial direction. Analogously to the finite difference method

demonstrated in previous studies [22,24], the finite difference of phasor differences along the

z-axis is inherently noisy, resulting in low strain sensitivity. To improve strain sensitivity,

the vector method incorporates spatial averaging known as “vector summation” [29,30]. By

summing a set of complex OCT signals, i.e.,b(x, z) and c(x, z), the stability of the resulting phase

angles, i.e.,Δφ(x, z) and Δφ′(x, z), is considerably improved, corresponding to an improved phase

sensitivity. Briefly, from the displacement measured using Eq. (2), a small preliminary vector

summation window, typically, with a size of ∼2-3 pixels in x and z, is used to smooth b(x, z). As

the amplitude of b(x, z) is proportional to the OCT SNR, summing a small region of OCT phasor

differences effectively weights b(x, z) at each pixel. The spatially averaged b(x, z) is then used to

calculate c(x, z), as illustrated in Eq. (14). Subsequently, a larger vector summation window with

a size of Nx ×Nz (typically 16× 16 pixels) is used to smooth the normalized c(x, z) that is obtained

by dividing c(x, z) with C(x, z). This is effectively unweighted averaging of the estimated εzz. It

should be noted that, to improve SNR of c(x, z), the vector method typically calculates c(x, z)
from the finite difference between b(x, zi) and b(x, zi+n) at a step of n pixels (n= 2 used in [29,30]).

To provide a reasonable comparison between the vector method, WLSWPU, and WLSFPU, in

Section 4, we demonstrate these three methods under the same processing conditions.

3. Experimental setup and procedure

3.1. Phantom fabrication, tissue preparation and histology

The bulk material of the inclusion phantom (Phantom 1) is a 3 mm thick cylinder with a diameter

of 10 mm, which was made from Elastosil P7676 (Wacker, Germany) with Young’s modulus of

∼19 kPa, as measured by a compression testing device. To minimize the out-of-plane deformation

which could reduce the accuracy of strain estimation in OCE [49], the inclusion was designed

to be a strip with dimensions of ∼8× 0.6× 0.5 mm (xyz), and was made from Elastosil RT601
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(Wacker, Germany) with measured Young’s modulus of ∼327 kPa. To provide optical contrast,

titanium dioxide (TiO2) particles (refractive index= 2.3, Sigma-Aldrich, Germany) with a mean

diameter of 1 μm were mixed in the bulk and inclusion silicone materials (both of refractive

index= 1.4) at concentrations of 2 mg/ml and 10 mg/ml, respectively. Separately, to investigate

the accuracy of strain estimation methods, a mechanically homogeneous phantom (Phantom 2)

with a thickness of ∼1 mm and a diameter of 10 mm was made from Elastosil P7676 (Wacker,

Germany). A 2 mg/ml concentration of TiO2 particles was incorporated in the silicone mixture

for Phantom 2.

In addition, we performed OCE experiments on data acquired from freshly excised mouse

skeletal muscle and human breast tissue. An extensor digitorum longus (EDL) muscle with

dimensions of ∼10× 3× 1 mm was excised from a 10-month-old male wild-type (WT) mouse

sacrificed via cervical dislocation under anesthetic, as per institutional ethics requirements.

Similar to a previous OCE study [50], we encapsulated the EDL muscle in 3-D methacrylated

gelatin (GelMA [51]), a clear photopolymerizable hydrogel (∼15× 15× 3 mm), to keep the

tissue hydrated during scan acquisition, and more importantly, to reduce image artifacts induced

by non-uniform compression due to uneven surface topology [52]. The small size of the

EDL muscle made it challenging to obtain meaningful co-registration between histology and

micro-elastograms. When we attempted this, we observed freeze artifacts that caused staining

issues in tissue histology. Thus, the corresponding histology is not provided here. In addition,

we scanned a human breast tissue specimen excised during a mastectomy surgery. Informed

consent was obtained from the patient and ethics was approved by the Sir Charles Gairdner and

Osborne Park Health Care Group Human Research Ethics Committee (HREC No: 2007-152).

This specimen had approximate dimensions of 4× 4× 2 cm and was scanned within an hour

of excision. After data acquisition, the specimen was marked by ink for orientation, dissected,

placed in two cassettes, and fixed in 10% neutral-buffered formalin for at least one day before

histology processing was performed. Paraffin embedding was performed prior to sectioning and

staining with hematoxylin and eosin, following the standard histology protocols at the hospital.

3.2. Phase-sensitive compression OCE system

The compression OCE system used has been detailed in previous studies [8,32]. Hence, a brief

summary is provided here. Compression OCE measurements were performed using a fiber-based

spectral-domain OCT system (Telesto 220; Thorlabs Inc., USA) with a central wavelength of

1300 nm and a 3 dB bandwidth of 170 nm. The measured full-width-at-half-maximum (FWHM)

OCT axial resolution is 4.8 μm (in air). For imaging tissue-mimicking phantoms and the

encapsulated muscle tissue, a scan lens (LSM03; Thorlabs Inc., USA) with a measured lateral

resolution of 7.2 μm (FWHM in air) and a maximum field-of-view of 10 mm was used. A scan

lens (LSM04; Thorlabs Inc., USA) with a measured lateral resolution of 13 μm (FWHM in air)

and a maximum field-of-view of 16 mm was used to image the relatively larger breast specimen

for cancer margin assessment. An imaging window (Edmund Optics Inc., USA) with a diameter

of 75 mm was bonded with wax to a ring actuator (Piezomechanik GmbH, Germany) with an

internal aperture of 65 mm, enabling imaging and compression to be introduced from the same

side of the sample. The OCT system was implemented in a common-path configuration where

the bottom side of the imaging window that contacts the sample during scanning provides the

reference reflection. Silicone oil was applied between the sample and the imaging window

to reduce surface friction. For biological tissue scans, a compliant silicone layer (made from

Elastosil P7676) with a thickness of ∼500 μm was placed between the imaging window and

the underlying tissue sample to improve the uniformity of compressive loading throughout the

sample [43,52]. To ensure uniform contact, a pre-strain (i.e., a bulk strain prior to actuation) of

20% was imparted to the layer-sample system via a motorized vertical translation stage (MLJ150;

Thorlabs Inc., USA). At this pre-strain, the ring actuator was driven collinearly with the imaging
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beam and synchronized with the OCT B-scan rate, delivering a maximum stroke of 10 μm. The

A-scan acquisition time was 20 μs. A single B-scan consisting of 1000 A-scans was recorded in

an acquisition time of 20 ms.

To characterize the strain sensitivity, strain SNR, and strain resolution, we utilized methods

defined previously [31,32,34]. Specifically, in this study, 1,000 A-scans per B-scan, and 1,000

B-scan pairs (unloaded and loaded) per C-scan were acquired from Phantom 1 over a 2.5 mm

field-of-view with a lateral sampling density of 2.5 μm. To enable a more accurate characterization

of strain accuracy, denser lateral sampling was performed to include more OCT realizations;

2,000 A-scans per B-scan were acquired over a 2 mm lateral extent (1 μm per pixel in x) and a

total of 256 B-scans were acquired at the same spatial location in Phantom 2. Similarly, to reduce

the effect of optical noise on strain accuracy measurement, temporal averaging of 16 phasor

difference B-scans was performed, which resulted in a total of 8 averaged phasor difference

B-scans. The middle B-scan (the 4th B-scan) was used to characterize the accuracy of the strain

estimation methods, described in Section 4.2. Scans of the encapsulated EDL muscle were

acquired by taking 1,000 A-scans per B-scan, and 1,000 B-scan pairs (unloaded and loaded) per

C-scan over a 10 mm field-of-view at a lateral sampling density of 10 μm. Additionally, for the

breast tissue scans, 808 A-scans per B-scan and 808 B-scan pairs (unloaded and loaded) per

C-scan were acquired over a 16 mm field-of-view at a lateral sampling density of 19.8 μm. We

note that the OCT lateral resolution was sub-sampled for measurements on biological tissues

to allow for rapid data acquisition by trading off resolution to reduce the impact of temporal

factors (e.g., dehydration [53] or viscoelastic creep [54]) that could alter the mechanical response

of tissue in the process of data acquisition. The imaging specifications used in this study are

summarized in Table 1.

Table 1. Phase-sensitive compression OCE scanning parameters and FPU parameters used in this
study.

Inclusion phantom Homogeneous phantom EDL

muscle

Breast

tissue(Phantom 1) (Phantom 2)

A-scans×B-scans 1000× 1000 2000× 256 1000× 1000 808× 808

Field-of-view (mm) 2.5× 2.5 2× 0.001 10× 10 16× 16

Lateral OCT resolution 7.2 μm 7.2 μm 7.2 μm 13 μm

Axial OCT resolution 4.8 μm 4.8 μm 4.8 μm 4.8 μm

FPU – threshold accuracy δ (rad2) 0.3 0.02-2.9 0.2 0.1

FPU - number of iterations 150 10-150 150 120

To unwrap the phase difference using the WPU algorithm, nz = 7 axial pixels were utilized

to calculate the phase unwrapping reference along the axial direction (μΔφ,z). After axial

phase unwrapping, a window of 9× 9 lateral pixels (m= 4) was specified to calculate the phase

unwrapping reference along the lateral direction (μΔφ,xy). To determine the optimal number

of iterations in FPU, a threshold accuracy of δ was measured from the standard deviation of

phase difference calculated within a spatial window in the xz plane (typically 20× 30 pixels) at a

depth of 1.4 mm in OCT scans. The measured δ and the corresponding number of iterations

for different datasets are also summarized in Table 1. We note that different values of δ in

Table 1 correspond to varying sample deformation that increases strain-induced decorrelation

and amplifies the spatial variation of phase difference in the strain accuracy experiment. Based

on Eq. (3), the axial displacement at each pixel was then calculated from the unwrapped phase

difference using the WPU and FPU algorithms, respectively, prior to WLS strain estimation. In

terms of the computational cost, using the homogenous OCT data as an example, it requires

146.43± 0.38 s, 142.39± 0.86 s, and 22.62± 0.43 s for reconstructing 3-D strain from phasor

difference using WLSWPU, WLSFPU, and the vector method, respectively, in MATLAB (R2016a)
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with a workstation that has two Intel Xeon E5-2690 8-core CPUs, 192 GB of RAM, and a 1 TB

solid-state drive.

3.3. Comparison of strain estimation methods

Figure 2 provides a comparison of strain micro-elastograms generated using WLSWPU and the

vector method from data acquired on Phantom 1, using processing parameters previously reported

for both methods [30,37]. For WLSWPU, a 1-D axial fitting range of 100 μm, corresponding

to 30 axial pixels, was implemented to estimate strain. For the vector method, a pre-filtering

window with a size of 3×3 pixels (xz) was applied to OCT phasor differences, followed by vector

summation over 16 pixels of normalized phasor gradients in x and a subsequent vector summation

over 16 pixels of normalized, laterally-averaged phasor gradients in z. In addition, the phasor

gradient at each pixel was calculated between two pre-filtered phasor differences at a step of 2

pixels (i.e., n= 2).

Fig. 2. Comparison of strain micro-elastograms generated with WLSWPU and the vector

method using typical parameters described in previous studies for both techniques. (a)

OCT B-scan (xz plane), and the corresponding strain micro-elastograms generated using

(b) WLSWPU with a 1-D axial fitting range of 100 μm and (c) the vector method with a

pre-filtered window size of 3×3 pixels (xz) and a main processing window size of 16×16

pixels (xz). The OCT SNR plotted as a function of (d) lateral position in x and (f) axial

position in z, respectively. The strain estimated using WLSWPU (blue) and the vector method

(purple) as a function of (e) lateral position in x and (g) axial position in z, respectively.

Figure 2(a) shows the OCT B-scan of Phantom 1, and the corresponding strain micro-

elastograms obtained with WLSWPU and the vector method are presented in Figs. 2(b) and 2(c),

respectively, where the difference in the strain texture is pronounced due to the different spatial

averaging techniques used in both methods. Figures 2(d)–2(g) show the variation of OCT SNR

and strain over the lateral and axial ranges indicated by dashed black lines in Figs. 2(a)–2(c),

respectively. Compared to WLSWPU (Fig. 2(b)), the lateral boundaries of the inclusion are more

blurred in the strain micro-elastogram obtained using the vector method (Fig. 2(c)) due to the

incorporation of lateral averaging. Consequently, in Fig. 2(e), the strain estimated by WLSWPU

along the x-axis is noisier than that of the vector method. Similarly, as the axial averaging window

size of WLSWPU is larger than that of the vector method, the axial boundary of the inclusion is

more blurred in the case of WLSWPU in Fig. 2(b), and the corresponding strain along the z-axis

shown in Fig. 2(g) is relatively smoother, compared to the case of the vector method.
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From Fig. 2, it can be seen that differences in the averaging techniques and window size used for

different strain estimation methods make it challenging to analyze and compare performance. To

enable a fair comparison, for the results presented in Section 4, we modified both strain estimation

methods and, importantly, aimed to preserve the advantages of each method, by restricting the

processing to two layers of spatial averaging: (1) pre-filtering OCT phasor difference using a

3-D vector summation window (2×2×7 pixels, xyz), which has been typically incorporated in

the vector method in previous studies [30,45], and (2) estimating strain over a 100 μm axial

range of consecutive displacement and phasor gradient (n= 1 herein) data points for WLS-based

methods and the vector method, respectively. To facilitate a numerical comparison of imaging

performance between the different strain estimation methods, we define the following imaging

metrics: strain sensitivity, strain SNR, strain resolution, and strain accuracy, as summarized in

Table 2.

Table 2. Imaging metrics used to compare strain estimation methods

Imaging metric Definition Approach

Strain sensitivity (Sε ) The precision of estimated strain. The standard deviation of strain measurements,

Sε , within a spatial window in a strain

micro-elastogram [24,31,32].

Strain SNR (SNRε ) The ratio of the mean strain and the strain

sensitivity.

SNRε = 20log10(με/Sε ) [24,31,33].

Strain resolution The measured resolution of features in a

strain micro-elastogram.

The FWHM of the point spread function

provided by the derivative of the step response

in axial strain across axial and lateral feature

boundaries [34].

Strain accuracy The deviation of strain from a known true

value.

Compare the mean of strain measurements, με ,

within a spatial window against the “ground

truth” (defined in Section 4.2).

4. Experimental results

4.1. Strain sensitivity, strain SNR, and strain resolution

Figure 3(a) shows an experimental OCT B-scan acquired from Phantom 1, where the top surface

of the embedded stiff inclusion can be observed at a depth of 380 μm. The corresponding strain

micro-elastograms generated using the vector method, WLSWPU, and WLSFPU are presented in

Figs. 3(b)–3(d), respectively. We note that there are variations in strain different between the

homogeneous regions of Phantom 1, i.e., at the top left and top right of Figs. 3(b)–3(d). This is

most likely caused by the non-uniform deformation in the sample due to sample imperfections

(e.g., uneven surface topology [55]) arising from the phantom fabrication process. The quality of

the strain micro-elastogram obtained using WLSFPU (Fig. 3(d)) is similar to WLSWPU (Fig. 3(c)).

However, the texture of the strain micro-elastogram obtained using the vector method in Fig. 3(b)

is distinct to that of the WLS-based methods, where the strain at each pixel estimated by the vector

method appears to be less stretched along the z-axis (i.e., the fitting direction), despite the same

axial range for strain estimation being used. This is attributed to the difference between weighted

(i.e., WLS) and unweighted averaging (i.e., the vector method) in strain estimation. Because

of weighted averaging, the linear regression in WLS tends to fit towards those displacement

pixels with high OCT SNR (i.e., large weights) over the axial range. In contrast, the second

layer of vector summation in the vector method is performed on the normalized phasor gradients,

which means that each pixel over the axial range contributes equally to the estimated strain.

This effect caused by weighting can also result in distinct features in strain micro-elastograms

generated using WLS and the vector method, respectively. For example, Fig. 3(e) shows the

magnified OCT image of a feature, a clump of TiO2 particles, highlighted by the dashed blue
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box in Fig. 3(a). This feature extends over an axial range of 30 μm, i.e., it is smaller than the

axial resolution of the OCE system (FWHM, ∼71 μm [34]). The corresponding magnified region

in the strain micro-elastograms obtained using the vector method, WLSWPU, and WLSFPU are

shown in Figs. 3(f)–3(h), respectively. Noticeably, using the WLS-based methods, the feature is

identified as a region of low strain, indicating a stiff “inclusion”. However, this feature is not

present in the micro-elastogram obtained with the vector method. Figures 3(i) and 3(j) present the

OCT SNR and displacement depth profiles from a single A-scan through the middle of the bright

feature. Importantly, the depth range where the slope of the displacement is close to zero (i.e.,
zero strain), marked by dashed black lines in Fig. 3(j), corresponds to the location of the highest

OCT SNR, indicating that, in this case, the WLS-based methods correctly detect the presence of

the stiff feature, whilst the vector method does not. The locations of the dashed lines in Figs. 3(i)

and 3(j) represent the top and bottom boundaries of the aggregate determined from the abrupt

changes of OCT SNR ranging from 30 dB to 41 dB and 37 dB to 26 dB, respectively. This result

demonstrates a coupling between optical and mechanical contrast brought about by the weighting

used in WLS-based methods. For a stiff and highly scattering feature that is smaller than the

fitting range (×3 smaller in this case), the fitting can be biased towards the bright region, resulting

in the detection of the feature whilst the absence of this weighting precludes the detection of

the feature using the vector method. It should be noted, however, that although the feature is

detected using the WLS-based methods, as it extends over an axial length that is lower than the

fitting length, it is not resolved, as can be observed by its elongation over a larger axial range than

is the case in the OCT image. This phenomenon will be further discussed in Section 5.

Fig. 3. Characterizations of strain sensitivity and strain SNR using the vector method,

WLSWPU and WLSFPU using a B-scan acquired from Phantom 1. (a) OCT image. The

corresponding strain micro-elastograms obtained using (b) the vector method, (c) WLSWPU

and (d) WLSFPU. (e) The magnified region-of-interest where a TiO2 aggregate is resolved,

marked by the dashed blue box in (a). The corresponding magnified strain obtained using (f)

the vector method, (g) WLSWPU and (h) WLSFPU. The depth profiles of (i) OCT SNR and

(j) displacement across the middle of the TiO2 aggregate. The dashed black lines in both (i)

and (j) indicate the location of the aggregate.
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To quantify the comparative performance of the three strain estimation methods, we used the

imaging metrics defined in Table 2. We measured the strain sensitivity (Smε), mean strain (μmε),

and strain SNR (SNRmε) from five different regions (each ∼375× 50 μm in area, 3,000 pixels

in total) in Phantom 1, indicated by the green boxes in Figs. 3(a)–3(d). The imaging metrics

corresponding to the regions are summarized in Table 3. Overall, in the regions of high OCT

SNR (R1-R4), the measured strain sensitivity is similar (<5% difference), whereas in the region

of low OCT SNR (R5), the strain sensitivity of the WLS-based methods is slightly superior

(∼12% improvement) to that of the vector method. The improved strain sensitivity of WLS is

likely due to the advantage of weighted averaging over unweighted averaging in regions of low

OCT SNR. Similar to strain sensitivity, the mean strain is also comparable between each method,

within 5%. As such, the measured strain SNR, in general, is close between the three different

methods except in region R5 where the strain SNR of both WLSWPU and WLSFPU is slightly

higher than that of the vector method due to the higher strain sensitivity. In addition, we reported

the resolution (mean± standard deviation) of strain micro-elastograms for all three methods, as

shown in Table 3. As indicated by the dashed black lines in Figs. 3(b)–3(d), the axial resolution

for each method was measured from the middle A-scan across the inclusion axial boundary,

and the lateral resolution was measured from the strain step response over the inclusion lateral

boundary at a depth location of ∼134 μm from the inclusion surface. The mean and standard

deviation were computed from three resolution measurements. Although the texture in the strain

micro-elastograms gives the appearance of different resolution, as shown in Figs. 3(b)–3(d), the

measured lateral and axial strain feature resolutions for three different methods are close: 181 μm

and 182 μm, respectively. Overall, both lateral and axial strain resolution for the three different

methods are similar: 181 μm and 182 μm, respectively. As the same number of pixels were used

to estimate strain from Phantom 1 and the same OCT system was used, it is expected that the

strain resolution is similar for the three different methods.

Table 3. Strain sensitivity, mean strain, strain SNR, and strain resolution (mean±standard
deviation) for the three strain estimation methods.

R
OCT Strain sensitivity, Smε Mean strain, μmε Strain SNR, SNRmε (dB)

SNR (dB) Vector WLSWPU WLSFPU Vector WLSWPU WLSFPU Vector WLSWPU WLSFPU

1 24.9 0.16 0.16 0.16 -1.27 -1.27 -1.27 17.99 17.99 17.99
2 17.7 0.25 0.24 0.24 -1.82 -1.82 -1.80 17.24 17.60 17.50
3 25.5 0.22 0.20 0.20 -2.22 -2.22 -2.22 20.08 20.91 20.91
4 24.1 0.23 0.24 0.24 -0.87 -0.86 -0.88 11.56 11.09 11.29
5 12.4 0.41 0.36 0.36 -0.78 -0.79 -0.82 5.59 6.83 7.15
Strain estimation method Lateral feature resolution (μm) Axial feature resolution (μm)

Vector 181± 3 182± 2
WLSWPU 181± 3 182± 3
WLSFPU 180± 3 183± 3

4.2. Strain accuracy

In this section, we investigate the accuracy of strain estimation for the different methods over a

range of strains imparted to Phantom 2, a homogeneous silicone phantom. Figure 4(a) shows

the OCT image of Phantom 2. To determine strain accuracy, we require a method to measure

the strain introduced to the phantom independently of the three strain estimation methods under

analysis. To achieve this, we defined the expected strain using a method previously implemented

in quantitative micro-elastography (QME) [43] where strain is calculated as the displacement

introduced to the phantom using a PZT actuator (as described in Section 3.2) divided by the
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unloaded phantom thickness, measured from the OCT intensity image. In a common-path

system, the displacement is calculated from the phase difference at the phantom boundary distal

from the imaging plate, i.e., at the back plate, importantly, for the specific case of Phantom

2, it was possible to image through the entire phantom. This allowed us to calculate strain

without using one of the strain estimation methods typically used in OCE. Also, as described

below, this method provided a strain accuracy far superior to that achievable using the strain

estimation methods, providing a “ground truth” strain measurement. It is important to note that

this method is not generally applicable in OCE, as it is only suited to samples whose thickness

can be determined directly from an OCT image, which is not typically the case in turbid samples.

Another critical aspect is that the boundaries should be well lubricated to ensure uniform axial

strain throughout the sample. Using this approach, phase-sensitive detection was used to measure

the displacement of the phantom at the distal back plate, with the number of wrapping events

manually counted and added to the phase difference measured at the interface, avoiding any

inaccuracies introduced by phase unwrapping. The phantom thickness was measured from the

distance between the first pixel in the OCT image (Fig. 4(a)) and a pixel of high OCT SNR

(∼58 dB) at the sample-plate interface. The error in the strain measured using this method is

the combination of errors in the displacement measurement at the interface and errors in the

phantom thickness measurement. For the case of a specular reflection, it can be assumed that

the phase difference error measured from any specular reflection (e.g., a bright interface) is

inversely proportional to OCT SNR [20,21,56] and, thus, the displacement error is 3.7 nm for a

corresponding OCT SNR of 58 dB. For the phantom thickness measurement, the maximum error

of the measured peak intensity is determined by the axial pixel size, corresponding to ∼2.4 μm in

the phantom (assuming a bulk refractive index of 1.4). Applying the law of error propagation,

the error of expected strain is ∼7.2 με, which is more than an order of magnitude higher strain

sensitivity than that reported in Table 3.

Smε , μmε and SNRmε at different expected strain were measured from the ∼1000× 250 μm

white box indicated in Fig. 4(a) in the strain micro-elastograms of Phantom 2 obtained using

the three different methods. Figures 4(b)–4(d) show the strain micro-elastograms at 2.5 mε
for the vector method, WLSWPU and WLSFPU, respectively. Figure 4(e) shows the measured

strain sensitivity of the different strain estimation methods plotted as a function of expected

strain measured. Within the low strain regime (i.e., <1.1 mε), the strain sensitivity of all three

methods is similar, but degrades slowly as the expected strain increases. The degradation of strain

sensitivity is attributed to strain-induced phase decorrelation, which invalidates the assumption

that the unloaded and loaded scans are fully correlated [31]. Within the strain regime 1.4-2.5

mε, the strain sensitivity of all three methods degrades more rapidly, particularly for the vector

method. This is likely due to the positive strain artifacts (i.e., vertical bright lines indicated by a

black arrow in Fig. 4(b)), which start to appear in the strain micro-elastogram obtained using

the vector method at ∼1.4 mε. Compared to WLS-based methods, these positive strain artifacts

occur at lower expected strain and introduce spatial variation to the strain micro-elastogram of a

mechanically homogeneous phantom, decreasing the precision (i.e., strain sensitivity) of strain

micro-elastograms generated using the vector method. The formation of this artifact results from

the accumulated errors in the unweighted vector summation over a set of normalized phasor

gradients (i.e., only phase angles retained) including some noisy phase signals, which are likely

to be inaccurate in regions of dark speckle [21]. As both strong and weak signals are normalized

to unity, these weak and inaccurate phase values reduce the accuracy of the averaged phase

gradient after vector summation.

Figure 4(f) shows the mean strain estimated using the different methods plotted against the

expected strain, overlaid with a solid black line that indicates the ideal result where expected

strain and estimated strain are equal. Up to the expected strain of 1.4 mε, the strain estimated

using all three methods is similar and shows good agreement with the ground truth. Above 1.4
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Fig. 4. Accuracy of strain estimation using the vector method, WLSWPU and WLSFPU,

respectively. (a) OCT B-scan of Phantom 2, where a spatial window (marked by a white

box) with a size of ∼1000× 250 μm is used to quantify strain sensitivity (Smε), strain

accuracy (μmε) and strain SNR (SNRmε). Magnified views of the window in the strain

micro-elastograms at 2.5 mε obtained using (b) the vector method, (c) WLSWPU and (d)

WLSFPU, respectively. Scale bars in (b)-(d) represent 100 μm. The black arrow in (b)

highlights a line artifact corresponding to positive strain in the case of the vector method. (e)

Smε , (f) μmε and (g) SNRmε as a function of expected strain. The black line in (f) represents

the ideal strain measurements where OCE strain matches expected strain.

mε, the vector method significantly underestimates the expected strain. For instance, at 2.1 mε,
the error of strain estimation using the vector method is approximately 5 and 7 times larger than

WLSWPU and WLSFPU, respectively. Analogously to the degradation of strain sensitivity using

the vector method, the accuracy is also reduced due to a significant underestimation of expected

strain resulting from the formation of positive strain line artifacts. Above 2.1 mε, WLSWPU also

significantly underestimates the strain. At 2.5 mε, the vector method and WLSWPU deviate by

∼42% and ∼60% from the expected value, respectively. In contrast, at this point, the error of

strain estimation using WLSFPU is ∼4%, which is nearly 11 and 15 times smaller than WLSWPU

and the vector method, respectively. The underestimation of strain using WLSWPU is attributed to

increased strain-induced decorrelation resulting in decreased phase difference sensitivity, causing

errors in the calculation of the axial phase unwrapping reference in WPU. We observed that, as

strain increases above 2.5 mε, a high spatial frequency noise due to phase decorrelation occurs at

local depth locations, resulting in zero strain (i.e., a flattened unwrapped phase difference-depth

profile) in these locations. This suggests that the unwrapped phase difference using WPU no

longer reflects the true displacement in the sample, as indicated in Eq. (3). This ultimately leads

to the reduction of strain accuracy using WLSWPU, setting an upper limit to its dynamic range

of accurate strain estimation. Compared to WPU, by performing Volkov symmetrization in
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3-D space, FPU incorporates more data points (i.e., eight duplicates of the whole data volume),

providing a more accurate estimation of unwrapped phase difference in the presence of noise.

In addition, FPU is implemented in an iterative manner in which phase unwrapping errors are

further reduced by iterating Q(r) (i.e., the phase unwrapping error function) until its spatial

variance meets δ (i.e., the threshold accuracy), leading to a larger dynamic range of accurate

displacement estimation and, by extension, strain estimated by WLSFPU, in comparison to the

other two methods. More importantly, as highlighted in Fig. 4(f), the extended strain dynamic

range of WLSFPU could potentially lead to improved strain contrast. For instance, for expected

strains of 1.4 mε and 2.5 mε, the strain contrast (i.e., strain ratio) between these two points

measured by WLSFPU is ×2 larger than that of the vector method, suggesting the suitability of

WLSFPU for imaging strain in mechanically heterogeneous samples. Figure 4(g) presents the

measured strain SNR for the three different methods, with WLSFPU providing the highest strain

SNR when the expected strain is above 2.1 mε.

4.3. Comparison of the performance of strain estimation methods in biological tissue

To compare the performance of the three strain estimation techniques on biological tissue,

we first imaged a mouse muscle, as such tissue has previously been shown to provide large

variations in strain across muscle fibers [57]. Figure 5 presents the results of the encapsulated

EDL muscle using the different strain estimation methods. An en face OCT image of the tissue

at a depth of ∼340 μm below the tissue surface is presented in Fig. 5(a). Figures 5(b)–5(d)

demonstrate the corresponding strain micro-elastograms. To better visualize the difference in

image quality between the different methods, we selected a local region (∼3× 1 mm) that contains

a characteristic feature showing a muscle striation close to the highly scattering tendon, which is

highlighted by a white arrow in the magnified OCT image shown in Fig. 5(e). The corresponding

magnified strain micro-elastograms are shown in Figs. 5(f)–5(h). Similar to a previous study [57],

striation patterns manifest in both the OCT image and the strain micro-elastograms. Noticeably,

the striation is much more clearly delineated by WLSFPU in Fig. 5(h), in comparison to the other

two methods, especially for the case of the vector method where the striation is hardly visible

(Fig. 5(f)). The improved contrast of muscle striation provided by WLSFPU, corresponding to

larger compressive strains in the micro-elastogram of WLSFPU (Fig. 5(h)), likely results from the

extended dynamic range of WLSFPU (Fig. 4(f)).

Figures 5(i) and 5(j) show the en face unwrapped phase difference images obtained using the

WPU and FPU algorithms, respectively. Interestingly, distinctive imaging artifacts (highlighted

by a dashed black arrow in Fig. 5(i)) that propagate from the tissue boundary can be observed

in the unwrapped phase difference image generated using WPU, which result in streak-like

imaging artifacts appearing in the corresponding strain micro-elastogram obtained with WLSWPU

(highlighted by a dashed black arrow in Fig. 5(c)). As the tissue is encapsulated within clear

hydrogel with correspondingly low OCT SNR, the phase difference sensitivity in the hydrogel

is low. As such, the axial phase unwrapping reference calculated from the preceding nz (i.e.,
nz = 7 herein) axial pixels is inaccurate. As highlighted in the unwrapped phase difference B-scan

obtained using WPU in Fig. 5(k), this error is then propagated in the axial phase unwrapping of

the subsequent axial pixels, followed by the lateral phase unwrapping [15]. In contrast, owing

to the advantage of using an enlarged data volume through Volkov symmetrization and 150

iterations for the estimation of unwrapped phase difference, such an artifact is not present in the

unwrapped phase difference images in the same plane generated using FPU (Figs. 5(j) and 5(l))

and the corresponding strain micro-elastograms (Figs. 5(d) and 5(h)). Similarly, since the vector

method avoids the need for phase unwrapping, the strain micro-elastogram is free of this imaging

artifact in Figs. 5(b) and 5(f), as expected.

In addition, we analyzed the performance of each strain estimation method on excised human

breast tissue. Figure 6(a) shows an en face OCT image at a depth of 100 μm from the tissue
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Fig. 5. Excised mouse EDL muscle encapsulated in the hydrogel. En face (a) OCT image

at a depth of ∼340 μm below the tissue surface. The corresponding strain micro-elastograms

obtained using (b) the vector method, (c) WLSWPU and (d) WLSFPU, respectively. Magnified

regions-of-interest (marked by dashed blue boxes in (a)-(d)) for (e) OCT, (f) the vector

method, (g) WLSWPU and (h) WLSFPU. White arrows indicate a location where additional

strain contrast of a muscle striation can be observed in (h) using WLSFPU. En face unwrapped

phase difference images obtained using (i) WPU and (j) FPU, respectively. Unwrapped

phase difference B-scans obtained using (k) WPU and (l) FPU, respectively. Cross-sections

in the B-scan plane and en face plane are represented by dashed green and red boxes. The

dashed black arrows in (i) and (k) indicate a streak-like phase unwrapping artifact caused by

WPU, corresponding to an artifact in the strain micro-elastogram generated using WLSWPU

in (c) and (g).

surface. Analogously to Fig. 5, we selected a ∼4× 4 mm region-of-interest (highlighted by a

dashed blue box in Fig. 6(a)) in OCT, for better visualization of differences in micro-elastogram

quality, and the magnified OCT image of this region is presented in Fig. 6(b). The co-registered

histology and the corresponding strain micro-elastograms of the vector method, WLSWPU and

WLSFPU are presented in Fig. 6(c)–6(f), respectively. In contrast to the OCT image in Fig. 6(b)

where the optical contrast between the tumor and benign tissue is limited, the tumor is clearly

delineated by distinctive mechanical contrast provided by all three strain estimation methods in

Figs. 6(d)–6(f), showing a close correspondence with the co-registered histology in Fig. 6(c).

The strain estimated by each method presents a heterogeneous pattern in regions corresponding to

tumor, which is consistent with previous OCE studies [7–9]. Whilst the improvement in contrast

provided by WLSFPU is lower here than the case of the mouse muscle shown in Fig. 5, additional
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contrast in the tumor region is still visible in the WLSFPU strain micro-elastogram (Fig. 6(f)),

highlighted by white arrows, particularly with respect to the vector method (Fig. 6(d)). The

relatively low improvement in contrast observed in Fig. 6(f) is likely attributed to lower strain

induced in this much thicker breast tissue (×7 thicker than the mouse muscle demonstrated in

Fig. 5) under compression. As such, the advantage of larger dynamic range of accurate strain

estimation using WLSFPU is less pronounced. Similar to Fig. 5(c), in Fig. 6(e), streak-like artifacts

in the WLSWPU strain micro-elastogram can be seen, which are attributed to phase unwrapping

errors in WPU.

Fig. 6. Excised human breast tissue containing invasive tumor. (a) En face OCT image

and (b) the magnified region-of-interest marked by the dashed blue box in (a) (∼4× 4

mm in area). (c) The corresponding co-registered histology. L: Lobules, T: Tumor. The

corresponding zoomed-in strain micro-elastograms for (d) the vector method, (e) WLSWPU

and (f) WLSFPU. White arrows showing additional strain contrast provided by WLSFPU.

5. Discussion

In this paper, we have presented the first framework that provides a comprehensive comparison

between WLS and the vector method: the two most prevalent strain estimation methods. In

addition, we proposed a new implementation of WLS, i.e., WLSFPU, by implementing FPU in

OCE for the first time. We demonstrated that WLSFPU provides comparable strain sensitivity and

resolution to the existing methods, but an increased dynamic range of accurate strain estimation

with ∼4% error that is approximately 11 and 15 times lower than WLSWPU and the vector method,

respectively, for an expected strain of 2.5 mε. Through a qualitative comparison of tissue results,

we have demonstrated that the improved dynamic range of accurate strain translates to a noticeable

improvement in strain contrast of tissue provided by WLSFPU. In addition, WLSFPU removes

phase unwrapping errors in WLSWPU that result in imaging artifacts in strain micro-elastograms.

In Fig. 3, we demonstrated that a highly scattering, stiff feature with dimensions below the

system resolution of the OCE system presents differently in the WLS-based methods and the

vector method, respectively. In the example shown in Fig. 3, whilst the WLS fitting range is ×3

larger than the size of the bright feature, the corresponding strain of the feature is detected using

WLS, demonstrating the detection of sub-resolution mechanical features in OCE for the first
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time. However, as the feature size is below the system resolution, the strain in the soft region

adjacent to the feature is significantly underestimated by WLS (Figs. 3(g) and 3(h)). Furthermore,

it can be inferred that, in the case that a soft or stiff feature is less scattering than the surrounding

region, the weighting used in WLS may result in a feature being masked by the surrounding

region. Whilst this effect has been demonstrated here to provide useful contrast, it should be

highlighted that these scenarios are examples where the assumption used in WLS that a more

accurate fitting is enabled by accounting for OCT SNR is violated. This coupling between OCT

SNR and mechanical contrast suggest that it is prudent to analyze the OCT image before deciding

on the optimal strain estimation technique to use for a given sample.

In Fig. 4(f), we demonstrated the effect of applied strain on the accuracy of strain estimation

for three different methods. Compared to the WLS-based methods, in particular to WLSFPU,

the results suggest that the vector method is less tolerant to strain-induced decorrelation noise,

where the “line” artifacts (Fig. 4(b)) corresponding to positive strain becoming dominant in the

micro-elastogram at an expected strain of 2.1 mε, resulting in an underestimation of strain by

∼36%. As detailed in Section 4.2, the formation of this artifact is attributed to the accumulated

errors of strain estimation arising from the weak and inaccurate phasor gradients within the axial

range of unweighted vector summation. In addition, as the phasor gradient in the vector method

is calculated from the finite difference of two adjacent phasor difference in depth, it is subject to

errors caused by optical noise. As such, simply increasing axial range of the unweighted vector

summation worsens the strain image quality. One solution is to assign a weight of OCT SNR or,

ideally, speckle brightness [21] to the phasor gradient at each pixel over the axial range of vector

summation, which should improve the sensitivity and accuracy of strain estimation using the

vector method. Besides, it is straightforward to increase the size of the pre-filter window of the

weighted averaging for improved strain sensitivity and strain accuracy at the expense of strain

resolution. For the calculation of the phasor gradient, one could calculate the finite difference

between two discrete depth locations at a step of n (n ≥ 2) pixels. This essentially improves the

SNR of the phasor gradient since it increases n-fold the angle of the phasor gradient (i.e., the

phase gradient) with a constant phase noise at each pixel. However, as it skips several pixels in

depth, phase wrapping may occur within the step when the applied strain imparted to a sample is

very high, making it difficult to choose an appropriate step size for the optimal strain SNR in

mechanically heterogeneous biological tissues where phase wrapping could vary significantly. In

addition, we note that both strain sensitivity and strain accuracy should be taken into account

in OCE image interpretation. Whilst the mean strain measured in a local region could be close

to the true value, the low strain sensitivity corresponding to larger spatial variation of strain

measurements makes it challenging to differentiate a real mechanical feature from the noise.

Thus, strain SNR (the ratio of mean strain to strain sensitivity), as illustrated in Table 2, can be

used to assess the reliability of strain micro-elastograms. Separately, to trace the origin of the

strain imaging artifact at various reconstruction steps, the images of OCT intensity, wrapped

phase difference, unwrapped phase difference (if needed), and strain can be displayed at the same

plane, and the artifacts can be identified from the comparison between these images, as shown in

Fig. 5.

In Sections 4.1 and 4.2, we demonstrated the numerical comparisons of strain imaging metrics

from one inclusion phantom and one homogeneous phantom. In general, to demonstrate the

repeatability and reproducibility of each method, the experimental results of both intra-sample

comparison and inter-sample comparison should be performed. However, previous studies

suggested that, in addition to the contribution of strain estimation that we specifically focus on

here, the strain micro-elastogram quality is determined by mechanical deformation [31–34]. As

such, intra-sample variations (e.g., inconsistent frictional conditions [32,52,55]) and inter-sample

variations (e.g., sample geometries and stiffness [33,34]) would obscure variations between strain

estimation methods that we are targeting in this paper. A robust compression OCE setup and a
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framework to enable meaningful inter-sample comparison of strain imaging metrics are worth

investigating in the future.

In this paper, we demonstrated that incorporating a robust phase unwrapping algorithm into

WLS can provide improved strain dynamic range over the vector method, which leads to additional

imaging contrast, as demonstrated by the results in Section 4.3. However, the necessity of phase

unwrapping and the varying weights in WLS make it challenging to implement this method

rapidly. A main advantage of the vector method is its computational efficiency as no phase

unwrapping is required. This means that the computation can readily be accelerated using

complex convolution rather than vector summation and the computation of phasor difference and

phasor gradients can be parallelized. This suggests that, despite the improved dynamic range of

accurate strain achievable using WLSFPU, in applications requiring real-time visualization of

strain, e.g., imaging strain dynamics induced by thermal heating [58–62], it may be preferable to

implement the vector method. This highlights the need to take a considered approach in deciding

which strain estimation method to use in a given application. We believe the analysis performed

in this study can assist in making that decision.

6. Conclusion

We have presented a framework for analyzing strain estimation in phase-sensitive compression

OCE. We have demonstrated the use of this framework by proposing a new strain estimation

method, WLSFPU, and more importantly, we have presented a quantitative comparison between

this new method and the two most prevalent methods in compression OCE, i.e., WLSWPU

and the vector method. Our experimental results indicate that WLSFPU provides an increased

dynamic range of accurate strain estimation by reducing errors to ∼4% that is approximately 11

and 15 times smaller relative to WLSWPU and the vector method, respectively, for an expected

strain of 2.5 mε. Through a qualitative comparison of tissue results, we have shown that this

increased dynamic range translates to higher mechanical contrast in strain micro-elastograms of

heterogeneous tissue. We have also shown that imaging artifacts caused by phase unwrapping

in WLSWPU can be avoided using WLSFPU. Furthermore, we have demonstrated the detection

of sub-resolution mechanical features using WLS-based strain estimation. We believe that our

framework provides a useful mechanism to compare strain estimation methods that could be

adapted to compare different signal processing methods used in other OCE techniques such as

transient OCE.
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